Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,126)

Search Parameters:
Keywords = metallic sulfides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1111 KB  
Article
Suppression of Sulphur-Reducing Bacteria in Formation Water by Sonoplasma Treatment
by Egor S. Mikhalev, Anna V. Kamler, Vadim M. Bayazitov, Roman V. Nikonov, Igor S. Fedulov, Irina O. Abramova and Giancarlo Cravotto
Processes 2025, 13(8), 2653; https://doi.org/10.3390/pr13082653 - 21 Aug 2025
Viewed by 155
Abstract
In petroleum production processes, the water used to maintain formation pressure often plays a key role and is pumped into injection wells to compensate for the pressure drop in the formation after oil extraction and displacement of the remaining petroleum products to the [...] Read more.
In petroleum production processes, the water used to maintain formation pressure often plays a key role and is pumped into injection wells to compensate for the pressure drop in the formation after oil extraction and displacement of the remaining petroleum products to the development well. The source of such water may be produced by waters extracted together with oil and previously purified from mechanical impurities and hydrocarbons. However, a significant disadvantage of using such water is the presence of pollutants such as sulphur-reducing bacteria (SRB) and a high content of hydrogen sulfide. Traditional purification methods against them show low efficiency. Hydrogen sulfide and SRB are not only a threat of environmental pollution, but they also pose a high risk to pipelines in the petroleum industry due to an increase in the rate of metal corrosion. In this paper, formation water was treated with a field deployment flow-mode plasma discharge unit. A significant decrease in the growth rate of SRB in treated water was achieved. Bacterial growth was suppressed for up to 14 days after three treatment cycles of treatment. The hydrogen sulfide content was reduced by 33% after one cycle of plasma discharge water treatment. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

15 pages, 5348 KB  
Article
High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode
by Anastassiya Migunova, Maratbek Gabdullin, Renata Nemkayeva and Khabibulla Abdullin
Energies 2025, 18(16), 4348; https://doi.org/10.3390/en18164348 - 15 Aug 2025
Viewed by 399
Abstract
Supercapacitors have begun to successfully compete with Li-ion batteries in various portable energy storage applications, owing to their ability to enable fast charging, deliver high power and energy, and offer an exceptionally long cycle life. This paper presents the results of a study [...] Read more.
Supercapacitors have begun to successfully compete with Li-ion batteries in various portable energy storage applications, owing to their ability to enable fast charging, deliver high power and energy, and offer an exceptionally long cycle life. This paper presents the results of a study on the performance of a positive electrode composed of a CuxZn1−xCoNiSyO4−y whisker layer and an underlying porous Ni3S2 layer, synthesized in a single step via the hydrothermal method. The coating with the nominal composition Cu0.7Zn0.3CoNiS3O/Ni3S2 exhibited a high specific capacitance of 4.10 C cm−2 at a current density of 2 mA cm−2 or 9535 F g−1 at a current density of 1 A g−1, attributed to the synergistic contribution of both layers and the optimized ratio of the four transition metals in the sulfoxide matrix. The assembled asymmetric supercapacitor (ASC), employing the obtained composite as the positive electrode and activated carbon as the negative electrode, exhibited a specific capacitance of 115 F g−1 (200 C g−1). It achieved a high energy density of 48.3 Wh kg−1 at a power density of 870 W kg−1. After 20,000 charge–discharge cycles at a current density of 10 A g−1, the ASC retained 74% of its initial capacitance, highlighting the potential of the CuxZn1−xCoNiSyO4−y electrode for high-performance energy storage applications. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

20 pages, 4898 KB  
Review
Advanced Progress of Non-Stoichiometric Transition Metal Sulfides for Sensing, Catalysis, and Energy Storage
by Xuyang Xu, Mengyang Zhang, Jincheng Wu, Ziyan Shen, Yang Liu and Longlu Wang
Nanomaterials 2025, 15(16), 1237; https://doi.org/10.3390/nano15161237 - 13 Aug 2025
Viewed by 261
Abstract
Beyond the extensively studied two-dimensional transition metal dichalcogenides, a wide range of non-stoichiometric transition metal sulfides, such as molybdenum sulfides and tungsten sulfides (Mo2S3, W2S3, Mo6S8, Mo6S6, [...] Read more.
Beyond the extensively studied two-dimensional transition metal dichalcogenides, a wide range of non-stoichiometric transition metal sulfides, such as molybdenum sulfides and tungsten sulfides (Mo2S3, W2S3, Mo6S8, Mo6S6, NiMo3S4), have attracted significant attention for their promising applications in sensing, catalysis, and energy storage. It is necessary to review the current advanced progress of non-stoichiometric transition metal sulfides for various applications. Here, we systematically summarize the synthesis strategies of the non-stoichiometric transition metal sulfides, encompassing methods such as the molten salt synthesis method, high-metal-content growth strategy, and others. Particular emphasis is placed on how variations in the metal-to-sulfur ratio give rise to distinct crystal structures and electronic properties, and how these features influence their conductivity, stability, and performance. This review will deepen the understanding of the state of the art of non-stoichiometric transition metal sulfides, including the synthesis, characterization, modification, and various applications. Full article
(This article belongs to the Special Issue Pioneering Nanomaterials: Revolutionizing Energy and Catalysis)
Show Figures

Graphical abstract

14 pages, 4593 KB  
Article
Fine-Tuned Large Language Models for High-Accuracy Prediction of Band Gap and Stability in Transition Metal Sulfides
by Zimo Zhao, Lin Hu and Honghui Wang
Materials 2025, 18(16), 3793; https://doi.org/10.3390/ma18163793 - 13 Aug 2025
Viewed by 402
Abstract
This study presents a fine-tuned Large Language Model approach for predicting band gap and stability of transition metal sulfides. Our method processes textual descriptions of crystal structures directly, eliminating the need for complex feature engineering required by traditional ML and GNN approaches. Using [...] Read more.
This study presents a fine-tuned Large Language Model approach for predicting band gap and stability of transition metal sulfides. Our method processes textual descriptions of crystal structures directly, eliminating the need for complex feature engineering required by traditional ML and GNN approaches. Using a strategically selected dataset of 554 compounds from the Materials Project database, we fine-tuned GPT-3.5-turbo through nine consecutive iterations. Performance metrics improved significantly, with band gap prediction R2 values increasing from 0.7564 to 0.9989, while stability classification achieved F1 > 0.7751. The fine-tuned model demonstrated superior generalization ability compared to both GPT-3.5 and GPT-4.0 models, maintaining high accuracy across diverse material structures. This approach is particularly valuable for new material systems with limited experimental data, as it can extract meaningful features directly from text descriptions and transfer knowledge from pre-training to domain-specific tasks without relying on extensive numerical datasets. Full article
Show Figures

Graphical abstract

15 pages, 3654 KB  
Article
Kinetic Analysis of the Reaction of Silver with Elemental Sulfur in Mineral Insulating Oil
by Dejan Kolarski, Jelena Lukić, Jelena Janković and Sandra Glišić
Materials 2025, 18(16), 3771; https://doi.org/10.3390/ma18163771 - 12 Aug 2025
Viewed by 297
Abstract
Elemental sulfur (S8) reacts readily with silver, forming highly conductive silver sulfide on silver-coated components of on-load tap changers (OLTCs), forming a highly conductive silver sulfide film at the surface of an OLTC, which can lead to the failure of critical [...] Read more.
Elemental sulfur (S8) reacts readily with silver, forming highly conductive silver sulfide on silver-coated components of on-load tap changers (OLTCs), forming a highly conductive silver sulfide film at the surface of an OLTC, which can lead to the failure of critical components in power transformers. This study investigates the reaction between metallic silver and elemental sulfur dissolved in mineral insulating oil across temperatures from 60 °C to 180 °C. The process involves three stages: the diffusion of sulfur through oil, surface reaction, and product diffusion. For low-viscosity oil, diffusion is not the limiting factor, and sulfur does not react immediately on the silver’s surface, suggesting possible adsorption or intermediate formation. A kinetic analysis revealed that the reaction follows first-order kinetics, with a change in mechanism above 150 °C. The reaction follows the Arrhenius equation in two separate regions: 60–150 °C and 150–180 °C. Activation energy was calculated as 23.67 kJ mol−1, and it can be concluded that the reaction is controlled by the diffusion of sulfur through mineral oil, and at higher temperatures (150 °C to 180 °C), the calculated activation energy is 160.69 kJ mol−1, which leads to the conclusion that the combined chemisorption and diffusion through a silver sulfide–oil interface becomes the new limiting factor. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

8 pages, 3709 KB  
Proceeding Paper
Performance Assessment of Fe0.5Cu0.5S/rGO Hybrid Composite as Potential Material for Advanced Energy Storage Applications
by Anusha Arif, Hasnain Murtaza, Mohsin Ali Marwat, Muhammad Ramzan Abdul Karim and Shariq Ijaz
Mater. Proc. 2025, 23(1), 14; https://doi.org/10.3390/materproc2025023014 - 8 Aug 2025
Viewed by 63
Abstract
Transition metal sulfides have found a popular spot in research for super capacitive materials due to their enhanced power density and conductivity. This study reports the preparation of a hybrid iron copper sulfide, Fe0.5Cu0.5S/rGO, composite via the co-precipitation method. [...] Read more.
Transition metal sulfides have found a popular spot in research for super capacitive materials due to their enhanced power density and conductivity. This study reports the preparation of a hybrid iron copper sulfide, Fe0.5Cu0.5S/rGO, composite via the co-precipitation method. The structural and morphological characterization was carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM), which confirmed the successful integration of Fe0.5Cu0.5S with rGO. The composite exhibited a high specific capacitance of 416.91 F/g at 1 A/g, 330.65% higher than 96.81 F/g of Fe0.5Cu0.5S and outstanding cyclic stability. The enhanced performance can be attributed to the synergistic effects of Fe0.5Cu0.5S and rGO, facilitating efficient charge transfer kinetics, ion diffusion, and structural stability, making it a promising candidate for high-performing supercapacitor applications. Full article
Show Figures

Figure 1

35 pages, 3497 KB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Viewed by 1177
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Graphical abstract

16 pages, 5434 KB  
Article
Facile Engineering of CoS@NiS Heterostructures for Efficient Oxygen Evolution Reaction
by Ting Yang, Aiyi Dong, Weimin Liao, Xun Zhang, Yinhua Ma, Li Che and Honglin Gao
Nanomaterials 2025, 15(16), 1216; https://doi.org/10.3390/nano15161216 - 8 Aug 2025
Viewed by 327
Abstract
Hydrogen production by the electrolysis of water has become an important way to prepare green hydrogen because of its simple process and high product purity. However, the oxygen evolution reaction (OER) in the electrolysis process has a high overpotential, which leads to the [...] Read more.
Hydrogen production by the electrolysis of water has become an important way to prepare green hydrogen because of its simple process and high product purity. However, the oxygen evolution reaction (OER) in the electrolysis process has a high overpotential, which leads to the increase of energy consumption. Developing efficient, stable and low-cost electrolytic water catalyst is the core challenge to reduce the reaction energy barrier and improve the energy conversion efficiency. CoS@NiS-80% nanosheets with rich heterogeneous interfaces were successfully synthesized by hydrothermal reaction and sulfuration. Heterogeneous interface not only promotes the effective charge transfer between different materials and reduces the charge transfer resistance but also accelerates the four-electron transfer process through the synergistic effect of nickel and cobalt atoms. Under alkaline conditions, the overpotential of CoS@NiS-80% nanosheets was only 280 mV at a current density of 10 mA cm−2, with a Tafel slope of 100.87 mV dec−1. Furthermore, it could work continuously for 100 h, exhibiting its outstanding stability. This work provides a novel approach for improving the OER performance of transition metal sulfide-based electrocatalysts through heterogeneous interface engineering. Full article
Show Figures

Figure 1

15 pages, 1920 KB  
Article
Optimization of the Froth Flotation Process for the Enrichment of Cu and Co Concentrate from Low-Grade Copper Sulfide Ore
by Michal Marcin, Martin Sisol, Martina Laubertová, Jakub Kurty and Ema Gánovská
Materials 2025, 18(15), 3704; https://doi.org/10.3390/ma18153704 - 6 Aug 2025
Viewed by 418
Abstract
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants [...] Read more.
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants are applied in different ways, each serving an essential function such as acting as collectors, frothers, froth stabilizers, depressants, activators, pH modifiers, and more. A series of flotation tests employing different collectors (SIPX, PBX, AERO, DF 507B) and process conditions was conducted to optimize recovery and selectivity. Methyl isobutyl carbinol (MIBC) was consistently used as the foaming agent, and 700 g/L was used as the slurry density at 25 °C. Dosages of 30 and 100 g/t1 were used in all tests. Notably, adjusting the pH to ~4 using HCl significantly improved cobalt concentrate separation. The optimized flotation conditions yielded concentrates with over 15% Cu and metal recoveries exceeding 80%. Mineralogical characterization confirmed the selective enrichment of target metals in the concentrate. The results demonstrate the potential of this beneficiation approach to contribute to the European Union’s supply of critical raw materials. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

20 pages, 4576 KB  
Article
Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru
by Dery Castillo, Karol Palma, Lizbeth Santander, Héctor Bolaños, Gregorio Palma and Patricio Navarro
Minerals 2025, 15(8), 830; https://doi.org/10.3390/min15080830 - 5 Aug 2025
Viewed by 456
Abstract
Mining activity in Peru generates environmental liabilities with the potential to release toxic metals into the environment. This study conducted a comprehensive physical, chemical, mineralogical, and toxicological characterization of ten active and inactive tailings samples from the Arequipa region in southern Peru. Particle [...] Read more.
Mining activity in Peru generates environmental liabilities with the potential to release toxic metals into the environment. This study conducted a comprehensive physical, chemical, mineralogical, and toxicological characterization of ten active and inactive tailings samples from the Arequipa region in southern Peru. Particle size distribution analysis, inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the Toxicity Characteristic Leaching Procedure (TCLP) followed by ICP-MS were employed. The results revealed variable particle size distributions, with the sample of Secocha exhibiting the finest granulometry. Chemically, 8 out of 10 samples exhibited concentrations of at least two metals surpassing the Peruvian Environmental Quality Standards (EQS) for soils with values reaching >6000 mg/kg of arsenic (Paraiso), 193.1 mg/kg of mercury (Mollehuaca), and 2309 mg/kg of zinc (Paraiso). Mineralogical analysis revealed the presence of sulfides such as arsenopyrite, cinnabar, galena, and sphalerite, along with uraninite in the Otapara sample. In the TCLP tests, 5 out of 10 samples released at least two metals exceeding the environmental standards on water quality, with concentrations up to 0.401 mg/L for mercury (Paraiso), 0.590 mg/L for lead (Paraiso), and 9.286 mg/L for zinc (Kiowa Cobre). These results demonstrate elevated levels of Potentially Toxic Elements (PTEs) in both solid and dissolved states, reflecting a critical geochemical risk in the evaluated areas. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

36 pages, 9312 KB  
Review
Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review
by Carol D. Langa, Nonhlangabezo Mabuba and Nomso C. Hintsho-Mbita
Catalysts 2025, 15(8), 727; https://doi.org/10.3390/catal15080727 - 30 Jul 2025
Viewed by 491
Abstract
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted [...] Read more.
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted the potential of metal sulfide-based photocatalysts, particularly those synthesized through environmentally friendly, plant-mediated approaches, as promising alternatives for efficient and sustainable dye degradation. However, despite their promising potential, metal sulfide photocatalysts often suffer from limitations such as photocorrosion, low stability under irradiation, and rapid recombination of charge carriers, which restrict their long-term applicability. In light of these challenges, this review provides a comprehensive examination of the physicochemical characteristics, synthetic strategies, and photocatalytic applications of metal sulfides. Particular emphasis is placed on green synthesis routes employing plant-derived extracts, which offer environmentally benign and sustainable alternatives to conventional methods. Moreover, the review elucidates various modification approaches, most notably, the formation of heterostructures, as viable strategies to enhance photocatalytic efficiency and mitigate the aforementioned drawbacks. The green synthesis of metal sulfides, aligned with the principles of green chemistry, offers a promising route toward the development of sustainable and environmentally friendly water treatment technologies. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

26 pages, 4449 KB  
Review
Recent Progress in Electrocatalysts for Hydroquinone Electrochemical Sensing Application
by Mohammad Aslam, Khursheed Ahmad, Saood Ali, Khaled Hamdy and Danishuddin
Biosensors 2025, 15(8), 488; https://doi.org/10.3390/bios15080488 - 28 Jul 2025
Viewed by 523
Abstract
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials [...] Read more.
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials such as reduced graphene oxide (rGO), carbon nanotubes (CNTs), layered double hydroxides (LDH), metal sulfides, and hybrid composites were extensively utilized in the fabrication of HQ sensors. The electrochemical performance, including limit of detection, linearity, sensitivity, selectivity, stability, reproducibility, repeatability, and recovery for real-time sensing of the HQ sensors have been discussed. The limitations, challenges, and future directions are also discussed in the conclusion section. It is believed that the present review article may benefit researchers who are involved in the development of HQ sensors and catalyst preparation for electrochemical sensing of other toxic substances. Full article
Show Figures

Figure 1

19 pages, 7447 KB  
Article
Research on the Size and Distribution of TiN Inclusions in High-Titanium Steel Cast Slabs
by Min Zhang, Xiangyu Li, Zhijie Guo and Yanhui Sun
Materials 2025, 18(15), 3527; https://doi.org/10.3390/ma18153527 - 28 Jul 2025
Viewed by 333
Abstract
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately [...] Read more.
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately compromising product performance and service reliability. Therefore, stringent control over the size, distribution, and population density of inclusions is imperative during the smelting of high-titanium steel to minimize their detrimental effects. In this paper, samples of high titanium steel (0.4% Ti, 0.004% N) casting billets were analyzed by industrial test sampling and full section comparative analysis of the samples at the center and quarter position. Using the Particle X inclusions, as well as automatic scanning and analyzing equipment, the number, size, location distribution, type and morphology of inclusions in different positions were systematically and comprehensively investigated. The results revealed that the primary inclusions in the steel consisted of TiN, TiS, TiC and their composite forms. TiN inclusions exhibited a size range of 1–5 µm on the slab surface, while larger particles of 2–10 μm were predominantly observed in the interior regions. Large-sized TiN inclusions (5–10 μm) are particularly detrimental, and this problematic type of inclusion predominantly concentrates in the interior regions of the steel slab. A gradual decrease in TiN inclusion number density was identified from the surface toward the core of the slab. Thermodynamic and kinetic calculations incorporating solute segregation effects demonstrated that TiN precipitates primarily in the liquid phase. The computational results showed excellent agreement with experimental data regarding the relationship between TiN size and solidification rate under different cooling conditions, confirming that increased cooling rates lead to reduced TiN particle sizes. Both enhanced cooling rates and reduced titanium content were found to effectively delay TiN precipitation, thereby suppressing the formation of large-sized TiN inclusions in high-titanium steels. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

8 pages, 3432 KB  
Proceeding Paper
Enhanced Electrochemical Energy Storage via FeCoS/RGO Composites
by Muhammad Tariq and Mohsin Ali Marwat
Mater. Proc. 2025, 23(1), 2; https://doi.org/10.3390/materproc2025023002 - 25 Jul 2025
Viewed by 201
Abstract
Supercapacitors are considered a bridge between batteries and capacitors due to their significant energy density, as well as power density. Herein, we prepared two novel electrodes of Fe0.8Co0.2S and Fe0.8Co0.2S/rGO composites and analyzed their supercapacitor [...] Read more.
Supercapacitors are considered a bridge between batteries and capacitors due to their significant energy density, as well as power density. Herein, we prepared two novel electrodes of Fe0.8Co0.2S and Fe0.8Co0.2S/rGO composites and analyzed their supercapacitor performance. The results indicated that Fe0.8Co0.2S/rGO, prepared through co-precipitation and annealing, exhibited a higher specific capacitance value and improved electrochemical properties in comparison to Fe0.8Co0.2S due to the synergistic effect of rGO with Fe0.8Co0.2S. X-ray diffraction (XRD) confirmed the desired phases of Fe0.8Co0.2S, while scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) verified the microstructures and desired elements. Cyclic voltammetry (CV) confirmed an enhanced oxidation current from +25 mA to +49 mA at 10 mV/s, while galvanometric charge–discharge (GCD) showed an enhanced discharge time from 78 s to 300 s. As a result, the specific capacitance and energy density were enhanced from 74.3 F/g to 285.7 F/g and 2.84 Wh/kg to 10.9 Wh/kg, respectively. This contributed to a more than 283% increase in specific capacitance, as well as energy density. Overall, Fe0.8Co0.2S/rGO shows great potential for small-scale energy storage devices. Full article
Show Figures

Figure 1

21 pages, 2430 KB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 299
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

Back to TopTop