Advanced Progress of Non-Stoichiometric Transition Metal Sulfides for Sensing, Catalysis, and Energy Storage
Abstract
1. Introduction
2. M2S3 and Their Applications
2.1. Ultrathin Mo2S3 Nanowire Network
2.2. Layered Mo2S3 Nanosheets
2.3. W2S3 Nanosheets
2.4. Mo2S3 Based Composites
3. M6S8 and Their Applications
4. Other Non-Stoichiometric Metal Sulfides
5. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Sun, Y.; Zheng, X.; Aoki, T.; Pattengale, B.; Huang, J.; He, X.; Bian, W.; Younan, S.; Williams, N. Atomically Engineering Activation Sites onto Metallic 1T-MoS2 Catalysts for Enhanced Electrochemical Hydrogen Evolution. Nat. Commun. 2019, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- Fa, Y.; Piacentini, A.; Macco, B.; Kalisch, H.; Heuken, M.; Vescan, A.; Wang, Z.; Lemme, M.C. Contact Resistance Optimization in MoS2 Field-Effect Transistors through Reverse Sputtering-Induced Structural Modifications. ACS Appl. Mater. Interfaces 2025, 17, 24526–24534. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, L.; Huang, J.; Chen, W.; Li, B.; Yang, S.; Yang, R.; Zeng, Z.; Tang, Z.; Gui, X. Controlling Sulfurization of 2D Mo2C Crystal for Mo2C/MoS2-Based Memristor and Artificial Synapse. npj Flex. Electron. 2022, 6, 93. [Google Scholar] [CrossRef]
- Rodrigues Pela, R.; Vona, C.; Lubeck, S.; Alex, B.; Gonzalez Oliva, I.; Draxl, C. Critical Assessment of G0W0 Calculations for 2D Materials: The Example of Monolayer MoS2. npj Comput. Mater. 2024, 10, 77. [Google Scholar] [CrossRef]
- Chen, X.; Park, Y.J.; Kang, M.; Kang, S.-K.; Koo, J.; Shinde, S.M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y. CVD-Grown Monolayer MoS2 in Bioabsorbable Electronics and Biosensors. Nat. Commun. 2018, 9, 1690. [Google Scholar] [CrossRef]
- Chen, X.; Shinde, S.M.; Dhakal, K.P.; Lee, S.W.; Kim, H.; Lee, Z.; Ahn, J.-H. Degradation Behaviors and Mechanisms of MoS2 Crystals Relevant to Bioabsorbable Electronics. NPG Asia Mater. 2018, 10, 810–820. [Google Scholar] [CrossRef]
- Liu, J.; Goswami, A.; Jiang, K.; Khan, F.; Kim, S.; McGee, R.; Li, Z.; Hu, Z.; Lee, J.; Thundat, T. Direct-Current Triboelectricity Generation by a Sliding Schottky Nanocontact on MoS2 Multilayers. Nat. Nanotechnol. 2018, 13, 112–116. [Google Scholar] [CrossRef]
- Lin, M.; Trubyanov, M.; Lee, H.W.; Ivanov, A.S.; Zhou, X.; Zhang, P.; Zhang, Y.; Wang, Q.; Tan, G.S.X.; Novoselov, K.S. Enhanced CO2 Hydrogenation to Methanol Using out-of-Plane Grown MoS2 Flakes on Amorphous Carbon Scaffold. Small 2025, 21, 2408592. [Google Scholar] [CrossRef]
- Onga, M.; Zhang, Y.; Ideue, T.; Iwasa, Y. Exciton Hall Effect in Monolayer MoS2. Nat. Mater. 2017, 16, 1193–1197. [Google Scholar] [CrossRef]
- Fu, X.; Li, T.; Cai, B.; Miao, J.; Panin, G.N.; Ma, X.; Wang, J.; Jiang, X.; Li, Q.; Dong, Y. Graphene/MoS2−xOx/Graphene Photomemristor with Tunable Non-Volatile Responsivities for Neuromorphic Vision Processing. Light Sci. Appl. 2023, 12, 39. [Google Scholar] [CrossRef]
- Moradi, K.; Ashrafi, M.; Salimi, A.; Melander, M.M. Hierarchical MoS2@ NiFeCo-Mo (Doped)-Layered Double Hydroxide Heterostructures as Efficient Alkaline Water Splitting (Photo) Electro-catalysts. Small 2025, 21, 2409097. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Kim, K.-H.; Keneipp, R.; Jung, M.; Trainor, N.; Chen, C.; Zheng, J.; Redwing, J.M.; Kang, J.; Drndić, M. High Current and Carrier Densities in 2D MoS2/AlScN Field-Effect Transistors via Ferroelectric Gating and Ohmic Contacts. ACS Nano 2025, 19, 8985–8996. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Choi, M.K.; Liu, S.; Kim, M.; Park, O.K.; Im, C.; Kim, J.; Qin, X.; Lee, G.J.; Cho, K.W. Human Eye-Inspired Soft Optoelectronic Device Using High-Density MoS2-Graphene Curved Image Sensor Array. Nat. Commun. 2017, 8, 1664. [Google Scholar] [CrossRef] [PubMed]
- Bui, M.; Rost, S.; Auge, M.; Tu, J.; Zhou, L.; Aguilera, I.; Blügel, S.; Ghorbani-Asl, M.; Krasheninnikov, A.; Hashemi, A. Low-Energy Se Ion Implantation in MoS2 Monolayers. npj 2D Mater. Appl. 2022, 6, 42. [Google Scholar]
- Zhao, L.; Wang, X.; Zhang, Z.; Ji, Y.; Guo, J.; Du, Z.; Cheng, G. Realizing the Ultrafast Recovery of the Monolayer MoS2-Based NH3 Sensor by Gas-Ion-Gate. ACS Appl. Mater. Interfaces 2025, 17, 17465–17475. [Google Scholar] [CrossRef]
- Torres-Cavanillas, R.; Morant-Giner, M.; Escorcia-Ariza, G.; Dugay, J.; Canet-Ferrer, J.; Tatay, S.; Cardona-Serra, S.; Giménez-Marqués, M.; Galbiati, M.; Forment-Aliaga, A. Spin-Crossover Nanoparticles Anchored on MoS2 Layers for Heterostructures with Tunable Strain Driven by Thermal or Light-Induced Spin Switching. Nat. Chem. 2021, 13, 1101–1109. [Google Scholar] [CrossRef]
- Mondal, S.; Dilly Rajan, K.; Patra, L.; Rathinam, M.; Ganesh, V. Sulfur Vacancy-Induced Enhancement of Piezocatalytic H2 Production in MoS2. Small 2025, 21, 2411828. [Google Scholar] [CrossRef]
- Wu, X.; Yu, X.; Tian, Z.; Li, H.; Xu, J. Thermodynamically Stable Synthesis of the 1T-MoS2/g-CN Superstructure with Rapid Redox Kinetics for Robust Capacitive Energy Storage. ACS Nano 2025, 19, 9292–9303. [Google Scholar] [CrossRef]
- Chhowalla, M.; Amaratunga, G.A. Thin Films of Fullerene-like MoS2 Nanoparticles with Ultra-Low Friction and Wear. Nature 2000, 407, 164–167. [Google Scholar] [CrossRef]
- Das, S.; Wang, Y.; Dai, Y.; Li, S.; Sun, Z. Ultrafast Transient Sub-Bandgap Absorption of Monolayer MoS2. Light Sci. Appl. 2021, 10, 27. [Google Scholar] [CrossRef]
- Verma, A.K.; Rahman, M.A.; Vashishtha, P.; Guo, X.; Sehrawat, M.; Mitra, R.; Giridhar, S.P.; Waqar, M.; Bhoriya, A.; Murdoch, B.J. Oxygen-Passivated Sulfur Vacancies in Monolayer MoS2 for Enhanced Piezoelectricity. ACS Nano 2025, 19, 3478–3489. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Liao, Z.; Duan, Y.; Fu, X.; Huang, Y.; Li, G. Graphene Oxide Wrapped-Silica Microspheres Humidity Sensor with Fast Response/Recovery, High Sensitivity, and Selectivity for Pig Respiratory Rate Monitoring. Sci. China Technol. Sci. 2025, 68, 1220203. [Google Scholar] [CrossRef]
- Zang, W.; Li, P.; Fu, Y.; Xing, L.; Xue, X. Hydrothermal Synthesis of Co–ZnO Nanowire Array and Its Application as Piezo-Driven Self-Powered Humidity Sensor with High Sensitivity and Repeatability. RSC Adv. 2015, 5, 84343–84349. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, P.; Yu, Z.; Yang, X.; Zhang, Y.; Yuan, A.; Liu, H.; Du, J.; Chen, L. Modulation of the Multiphase Phosphorus/Sulfide Heterogeneous Interface via Rare Earth for Solar-enhanced Water Splitting at Industrial-level Current Densities. Carbon Neutralization 2024, 3, 873–887. [Google Scholar] [CrossRef]
- Majumder, S.; Sett, A.; Goswami, D.K.; Bhattacharyya, T.K. Pseudo Electron Injection in Amine-Modified MoS2-Based Sensor for Humidity Monitoring. IEEE Trans. Electron Devices 2021, 68, 5173–5178. [Google Scholar] [CrossRef]
- Zhao, C.; Fang, Y.; Chen, H.; Zhang, S.; Wan, Y.; Riaz, M.S.; Zhang, Z.; Dong, W.; Diao, L.; Ren, D.; et al. Ultrathin Mo2S3 Nanowire Network for High-Sensitivity Breathable Piezoresistive Electronic Skins. ACS Nano 2023, 17, 4862–4870. [Google Scholar] [CrossRef]
- Tan, J.; Feng, L.; Shao, J.; Zhang, W.; Qin, H.; Liu, H.; Shu, Y.; Yang, L.; Meng, Y.; Tang, Y. In Situ Li+ Intercalation into Nanosized Chevrel Phase Mo6S8 toward Efficient Electrochemical Nitroarene Reduction. J. Am. Chem. Soc. 2025, 147, 10118–10128. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, T.; Li, D. Why Does a Transition Metal Dichalcogenide Nanoribbon Narrow into a Nanowire under Electron Irradiation? J. Am. Chem. Soc. 2024, 146, 33874–33882. [Google Scholar] [CrossRef]
- Lin, Z.; Carvalho, B.R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M.A.; Terrones, M. Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides. 2D Mater. 2016, 3, 022002. [Google Scholar] [CrossRef]
- Qin, N.; Dai, F.; Xue, Y.; Gao, D.; Liu, Y.; Zhang, Y.; Chen, J.; Yang, Q. Acanthosphere-like Bimetallic Sulfide Cu9S5/Mo2S3/NF as Bifunctional Catalyst for Water Splitting. J. Electroanal. Chem. 2024, 964, 118338. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, Y.; Zhao, L. Co9S8/Mo2S3 Nanorods on CoS2 Laminar Arrays as Advanced Electrode with Superior Rate Properties and Long Cycle Life for Asymmetric Supercapacitors. Chem. Eng. J. 2018, 351, 603–612. [Google Scholar] [CrossRef]
- Huang, X.; Sha, W.; He, S.; Zhao, L.; Li, S.; Lv, C.; Lou, C.; Xu, X.; Wang, J.; Pan, H. Defect-Rich Mo2S3 Loaded Wood-Derived Carbon Acts as a Spacer in Lithium–Sulfur Batteries: Forming a Polysulfide Capture Net and Promoting Fast Lithium Flux. Nanoscale 2023, 15, 7870–7876. [Google Scholar] [CrossRef]
- Schutte, W.; Disselborg, F.; De Boer, J. Determination of the Two-Dimensional Incommensurately Modulated Structure of Mo2S3. Struct. Sci. 1993, 49, 787–794. [Google Scholar] [CrossRef]
- Yang, B.; Jin, F.; Pan, X.; Jin, X.; Jin, Z. Directional Electron Transfer in CuInS2/Mo2S3 S-Scheme Heterojunctions for Efficient Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2024, 16, 36333–36342. [Google Scholar] [CrossRef]
- Gemming, S.; Seifert, G.; Vilfan, I. Li Doped Mo6S6 Nanowires: Elastic and Electronic Properties. Phys. Status Solidi B 2006, 243, 3320–3324. [Google Scholar] [CrossRef]
- Xu, K.; Lin, Y.; Shi, Q.; Fu, Y.; Yang, Y.; Zhang, Z.; Wu, J. Mechanical Enhancement and Weakening in Mo6S6 Nanowire by Twisting. Chin. Phys. B 2023, 32, 046204. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, Y.; Lei, Q.; Zhang, W.; Zhao, Y.; Yao, Z.; Si, J.; Li, Z.; Ren, X.; Sun, X. Accumulative Delocalized Mo 4d Electrons to Bound the Volume Expansion and Accelerate Kinetics in Mo6S8 Cathode for High-Performance Aqueous Cu2+ Storage. ACS Nano 2023, 17, 19144–19154. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, Y.; Zuo, Q.; Shi, J.; Wu, X.; Liu, L.; Sheng, J.; Jiang, P.; Ben-Gal, A. Evaluating and Improving Soil Water and Salinity Stress Response Functions for Root Water Uptake. Agric. Water Manag. 2023, 287, 108451. [Google Scholar] [CrossRef]
- Sun, D.; Lu, W.; Le, D.; Ma, Q.; Aminpour, M.; Alcántara Ortigoza, M.; Bobek, S.; Mann, J.; Wyrick, J.; Rahman, T.S. An MoSx Structure with High Affinity for Adsorbate Interaction. Angew. Chem.-Ger. Ed. 2012, 124, 10430. [Google Scholar] [CrossRef]
- Niu, S.; Zheng, J. Mo2S3@ Ni3S2 Nanowries on Nickel Foam as a Highly-Stable Supercapacitor Material. J. Alloys Compd. 2018, 737, 809–814. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, W.; Pan, J.; Fang, Y.; Wang, F.; Huang, F. Urchin-like Mo2S3 Prepared via a Molten Salt Assisted Method for Efficient Hydrogen Evolution. Chem. Commun. 2018, 54, 12714–12717. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jankowski, P.; Njel, C.; Bauer, W.; Li, Z.; Meng, Z.; Dasari, B.; Vegge, T.; Lastra, J.M.G.; Zhao-Karger, Z. Dual Role of Mo6S8 in Polysulfide Conversion and Shuttle for Mg–S Batteries. Adv. Sci. 2022, 9, 2104605. [Google Scholar] [CrossRef]
- Paskach, T.J.; Hilsenbeck, S.J.; Thompson, R.K.; McCarley, R.E.; Schrader, G.L. Synthesis and Characterization of a Novel Platinum Molybdenum Sulfide Containing the Mo6S8 Cluster. J. Alloys Compd. 2000, 311, 169–180. [Google Scholar] [CrossRef]
- Xu, K.; Deng, S.; Liang, T.; Cao, X.; Han, M.; Zeng, X.; Zhang, Z.; Yang, N.; Wu, J. Efficient Mechanical Modulation of the Phonon Thermal Conductivity of Mo6S6 Nanowires. Nanoscale 2022, 14, 3078–3086. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhu, F.; Cheng, H.; Komarneni, S.; Ma, J. In-Situ Growth of Ni3S2@ Mo2S3 Catalyst on Mo-Ni Foam for Degradation of p-Nitrophenol with a Good Synergetic Effect by Using Ozone. J. Environ. Chem. Eng. 2023, 11, 111477. [Google Scholar] [CrossRef]
- Panchu, S.; Dhani, S.; Chuturgoon, A.; Swart, H.; Moodley, M. Neodymium YAG Laser Chemical Vapor Deposition Growth of Luminescent Mo2S3 Nanocrystals Using Bulk MoS2 and Its Structural, Optical Properties and Caspase-Mediated Apoptosis in THP-1 Monocytic Cells. Mater. Today Chem. 2020, 17, 100315. [Google Scholar] [CrossRef]
- Lv, Z.; Zhao, C.; Xie, M.; Cai, M.; Peng, B.; Ren, D.; Fang, Y.; Dong, W.; Zhao, W.; Lin, T. 1D Insertion Chains Induced Small-Polaron Collapse in MoS2 2D Layers Toward Fast-Charging Sodium-Ion Batteries. Adv. Mater. 2024, 36, 2309637. [Google Scholar] [CrossRef]
- Nishanthi, S.; Yadav, K.K.; Baruah, A.; Ganguli, A.K.; Jha, M. New Sustainable and Environmental Friendly Process of Synthesis of Highly Porous Mo2S3 Nanoflowers in Cooking Oil and Their Electrochemical Properties. Electrochim. Acta 2019, 300, 177–185. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, Y.; Zhang, G.; Li, R.; Sun, X. Site-Controlled Synthesis and Mechanism of Three-Dimensional Mo2S3 Flowers. Appl. Surf. Sci. 2012, 263, 410–415. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, F.; Chen, Z.; Shi, Z.; Wang, J.; Wang, X. Stabilized Mo2S3 by FeS2 Based Porous Solar Evaporation Systems for Highly Efficient Clean Freshwater Collection. Sol. Energy Mater. Sol. Cells 2020, 211, 110531. [Google Scholar] [CrossRef]
- Chen, C.; Li, S.; Liu, J.; Yu, H.; Sun, S.; Xu, Y.; Li, H. Hierarchical NiCo-LDHs/Metal Sulfides (V3S4, CuS, Mo2S3) Heterostructures with Improved Electrochemical Properties for Asymmetric Supercapacitors: A Comparative Study. J. Alloys Compd. 2024, 981, 173682. [Google Scholar] [CrossRef]
- Kozlova, M.N.; Enyashin, A.N.; Grayfer, E.D.; Kuznetsov, V.A.; Plyusnin, P.E.; Nebogatikova, N.A.; Zaikovskii, V.I.; Fedorov, V.E. A DFT Study and Experimental Evidence of the Sonication-Induced Cleavage of Molybdenum Sulfide Mo2S3 in Liquids. J. Mater. Chem. C 2017, 5, 6601–6610. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Yang, J.; Saeys, M.; Joachim, C. Surface Reconstruction of MoS2 to Mo2S3. Surf. Sci. 2008, 602, 2628–2633. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Zha, X.; Luo, Y.; Hu, Y.; Chen, G.; He, X. Interfacial Chemical Bond and Oxygen Vacancies Modulated Mo2S3/BiOBr High-Low Junctions for Enhanced Photocatalysis Gatifloxacin Degradation. Appl. Surf. Sci. 2023, 641, 158548. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, M.; Du, X.; Zhang, X. Synthesis of M-NiS/Mo2S3 (M=Co, Fe, Ce and Bi) Nanoarrays as Efficient Electrocatalytic Hydrogen Evolution Reaction Catalyst in Fresh and Seawater. Int. J. Hydrogen Energy 2024, 62, 532–540. [Google Scholar] [CrossRef]
- Wu, S.; Yang, X.; Cui, T.; Feng, Q.; Zhou, S.; Xu, X.; Zhao, H.; Wu, L.; He, Y.; Yang, Q. Tubular-like NiS/Mo2S3 Microspheres as Electrode Material for High-Energy and Long-Life Asymmetric Supercapacitors. Colloids Surf. Physicochem. Eng. Asp. 2021, 628, 127332. [Google Scholar] [CrossRef]
- Xia, H.; Qin, H.; Zhang, Y.; Yin, H.; Li, Q.; Pan, F.; Xia, D.; Li, D.; Xu, H. Modulate 1O2 by Passivate Oxygen Vacancy to Boosting the Photocatalytic Performance of Z-Scheme Mo2S3/BiOCl Heterostructure. Sep. Purif. Technol. 2021, 266, 118547. [Google Scholar] [CrossRef]
- Canadell, E.; LeBeuze, A.; El Khalifa, M.A.; Chevrel, R.; Whangbo, M.H. Origin of Metal Clustering in Transition-Metal Chalcogenide Layers MX2 (M = Nb, Ta, Mo, Re; X = S, Se). J. Am. Chem. Soc. 1989, 111, 3778–3782. [Google Scholar] [CrossRef]
- Xie, L.; Wang, L.; Liu, X.; Zhao, W.; Liu, S.; Huang, X.; Zhao, Q. Tetra-Coordinated W2S3 for Efficient Dual-pH Hydrogen Production. Angew. Chem. Int. Ed. 2024, 63, e202316306. [Google Scholar] [CrossRef]
- Occelli, M.; Rennard, R. Hydrotreating Catalysts Containing Pillared Clays. Catal. Today 1988, 2, 309–319. [Google Scholar] [CrossRef]
- Schellenberger, A.; Jaegermann, W.; Pettenkofer, C.; Kamaratos, M.; Papageorgopoulos, C. Li Insertion into 2H—WS2: Electronic Structure and Reactivity of the UHV In-situ Prepared Interface. Berichte Bunsenges. Für Phys. Chem. 1994, 98, 833–841. [Google Scholar] [CrossRef]
- Mendoza, I.; Camardo, J.; Moleiro, F.; Castellanos, A.; Medina, V.; Gomez, J.; Acquatella, H.; Casal, H.; Tortoledo, F.; Puigbo, J. Sustained Ventricular Tachycardia in Chronic Chagasic Myocarditis: Electrophysiologic and Pharmacologic Characteristics. Am. J. Cardiol. 1986, 57, 423–427. [Google Scholar] [CrossRef]
- Gong, Y.; Duan, R.; Hu, Y.; Wu, Y.; Zhu, S.; Wang, X.; Wang, Q.; Lau, S.P.; Liu, Z.; Tay, B.K. Reconfigurable and Nonvolatile Ferroelectric Bulk Photovoltaics Based on 3R-WS2 for Machine Vision. Nat. Commun. 2025, 16, 230. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, X.; Li, W.; Guo, Q.; Feng, Z.; Huang, C.; Ren, Y.; Cai, Y.; Zhou, X.; Wang, J. Remote Epitaxy of Single-Crystal Rhombohedral WS2 Bilayers. Nat. Commun. 2024, 15, 4130. [Google Scholar] [CrossRef]
- Wu, T.; Xu, S.; Zhang, Z.; Luo, M.; Wang, R.; Tang, Y.; Wang, J.; Huang, F. Bimetal Modulation Stabilizing a Metallic Heterostructure for Efficient Overall Water Splitting at Large Current Density. Adv. Sci. 2022, 9, 2202750. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, M.; Sheng, W.; Yan, Y. Hollow Chevrel-phase NiMo3S4 for Hydrogen Evolution in Alkaline Electrolytes. Angew. Chem. 2016, 128, 15466–15471. [Google Scholar] [CrossRef]
- Guillevic, J.; Bars, O.; Grandjean, D. Structural Study of Molybdenum Sulfides and Selenides. 3: Crystal Structure of Nickel Molybdenum Sulfide (NiMo3S4). J. Solid State Chem. Fr. 1976, 7, 158–162. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y.; Von Lim, Y.; Huang, S.; Zhang, J.; Liu, B.; Chen, T.; Yang, H.Y. 3D Hierarchical Defect-Rich NiMo3S4 Nanosheet Arrays Grown on Carbon Textiles for High-Performance Sodium-Ion Batteries and Hydrogen Evolution Reaction. Nano Energy 2018, 49, 460–470. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y.; Huang, S.; Von Lim, Y.; Wang, M.; Xu, T.; Zang, J.; Li, X.; Yang, H.Y. Defect-Engineered 3D Hierarchical NiMo3S4 Nanoflowers as Bifunctional Electrocatalyst for Overall Water Splitting. J. Colloid Interface Sci. 2022, 607, 1876–1887. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Ma, T.; Hu, Z.; Liu, Q.; Zhan, C.; Li, Y.; Bowen, C.; Lu, H.; Liu, Y. Delocalization of D-Electrons Induced by Cation Coupling in Ultrathin Chevrel-Phase NiMo3S4 Nanosheets for Efficient Electrochemical Water Splitting. Appl. Catal. B Environ. 2023, 338, 123007. [Google Scholar] [CrossRef]
- Guillevic, J.; Bars, M.O.; Grandjean, D. Etude Structurale de Combinaisons Sulfurées et Séleniées Du Molybdène. III. Structure Cristalline de NiMo3S4. J. Solid State Chem. 1973, 7, 158–162. [Google Scholar] [CrossRef]
- Pallavolu, M.R.; Vallem, S.; Nallapureddy, R.R.; Adem, S.; Joo, S.W. Self-Assembled Hierarchical Silkworm-Type Bimetallic Sulfide (NiMo3S4) Nanostructures Developed on Sg-C3N4 Sheets: Promising Electrode Material for Supercapacitors. ACS Appl. Energy Mater. 2023, 6, 812–821. [Google Scholar] [CrossRef]
- Wu, T.; Xu, Z.; Wang, X.; Luo, M.; Xia, Y.; Zhang, X.; Li, J.; Liu, J.; Wang, J.; Wang, H.-L. Surface-Confined Self-Reconstruction to Sulfate-Terminated Ultrathin Layers on NiMo3S4 toward Biomass Molecule Electro-Oxidation. Appl. Catal. B Environ. 2023, 323, 122126. [Google Scholar] [CrossRef]
- Geng, L.; Lv, G.; Xing, X.; Guo, J. Reversible Electrochemical Intercalation of Aluminum in Mo6S8. Chem. Mater. 2015, 27, 4926–4929. [Google Scholar] [CrossRef]
- Elgendy, A.; Papaderakis, A.A.; Cai, R.; Polus, K.; Haigh, S.J.; Walton, A.S.; Lewis, D.J.; Dryfe, R.A. Nanocubes of Mo6S8 Chevrel Phase as Active Electrode Material for Aqueous Lithium-Ion Batteries. Nanoscale 2022, 14, 10125–10135. [Google Scholar] [CrossRef]
- Paskach, T.J.; Schrader, G.L.; McCarley, R.E. Synthesis of Methanethiol from Methanol over Reduced Molybdenum Sulfide Catalysts Based on the Mo6S8 Cluster. J. Catal. 2002, 211, 285–295. [Google Scholar] [CrossRef]
- Tong, Y.; Gao, A.; Zhang, Q.; Gao, T.; Yue, J.; Meng, F.; Gong, Y.; Xi, S.; Lin, Z.; Mao, M. Cation-Synergy Stabilizing Anion Redox of Chevrel Phase Mo6S8 in Aluminum Ion Battery. Energy Storage Mater. 2021, 37, 87–93. [Google Scholar] [CrossRef]
- Mao, M.; Lin, Z.; Tong, Y.; Yue, J.; Zhao, C.; Lu, J.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y.-S. Iodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo6S8 Nanosheets for Advanced Multivalent Batteries. ACS Nano 2019, 14, 1102–1110. [Google Scholar] [CrossRef]
- Lu, K.; Liu, Y.; Chen, J.; Zhang, Z.; Cheng, Y. Redox Catalytic and Quasi-Solid Sulfur Conversion for High-Capacity Lean Lithium Sulfur Batteries. ACS Nano 2019, 13, 14540–14548. [Google Scholar] [CrossRef]
- Liu, C.; Liu, P. Mechanistic Study of Methanol Synthesis from CO2 and H2 on a Modified Model Mo6S8 Cluster. ACS Catal. 2015, 5, 1004–1012. [Google Scholar] [CrossRef]
- Wang, D.; Du, X.; Chen, G.; Song, F.; Du, J.; Zhao, J.; Ma, Y.; Wang, J.; Du, A.; Cui, Z. Cathode Electrolyte Interphase (CEI) Endows Mo6S8 with Fast Interfacial Magnesium-Ion Transfer Kinetics. Angew. Chem. Int. Ed. 2023, 62, e202217709. [Google Scholar] [CrossRef]
- Saito, T.; Yamamoto, N.; Yamagata, T.; Imoto, H. Synthesis of [Mo6S8(PEt3)6] by Reductive Dimerization of a Trinuclear Molybdenum Chloro Sulfido Cluster Complex Coordinated with Triethylphosphine and Methanol: A Molecular Model for Superconducting Chevrel Phases. J. Am. Chem. Soc. 1988, 110, 1646–1647. [Google Scholar] [CrossRef]
- Pu, M.; Peng, R.-J.; Yuan, J.-H.; Wang, J. One-Dimensional Mo6S6 Nanowire for Potential Application in Gas Sensing. Mater. Sci. Semicond. Process 2025, 188, 109239. [Google Scholar] [CrossRef]
- Yang, W.-D.; Zhao, R.-D.; Guo, F.-Y.; Xiang, J.; Loy, S.; Liu, L.; Dai, J.-Y.; Wu, F.-F. Interface Engineering of Hybrid ZnCo2O4@ Ni2.5Mo6S6.7 Structures for Flexible Energy Storage and Alkaline Water Splitting. Chem. Eng. J. 2023, 454, 140458. [Google Scholar] [CrossRef]
- Teng, J.; Cao, J.; Ouyang, T.; Yao, Y.; Chen, C.; Wei, X. Stability and Electronic Properties of α/β-Mo6S6 Nanowires Encapsulated inside Carbon Nanotubes. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114891. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Tuxen, A.; Levisen, M.; Lægsgaard, E.; Gemming, S.; Seifert, G.; Lauritsen, J.V.; Besenbacher, F. Atomic-Scale Structure of Mo6S6 Nanowires. Nano Lett. 2008, 8, 3928–3931. [Google Scholar] [CrossRef]
- Popov, I.; Gemming, S.; Okano, S.; Ranjan, N.; Seifert, G. Electromechanical Switch Based on Mo6S6 Nanowires. Nano Lett. 2008, 8, 4093–4097. [Google Scholar] [CrossRef]
- Gentili, D.; Calabrese, G.; Lunedei, E.; Borgatti, F.; Mirshokraee, S.A.; Benekou, V.; Tseberlidis, G.; Mezzi, A.; Liscio, F.; Candini, A. Tuning Electronic and Functional Properties in Defected MoS2 Films by Surface Patterning of Sulphur Atomic Vacancies. Small Methods 2025, 9, 2401486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, M.; Wu, J.; Shen, Z.; Liu, Y.; Wang, L. Advanced Progress of Non-Stoichiometric Transition Metal Sulfides for Sensing, Catalysis, and Energy Storage. Nanomaterials 2025, 15, 1237. https://doi.org/10.3390/nano15161237
Xu X, Zhang M, Wu J, Shen Z, Liu Y, Wang L. Advanced Progress of Non-Stoichiometric Transition Metal Sulfides for Sensing, Catalysis, and Energy Storage. Nanomaterials. 2025; 15(16):1237. https://doi.org/10.3390/nano15161237
Chicago/Turabian StyleXu, Xuyang, Mengyang Zhang, Jincheng Wu, Ziyan Shen, Yang Liu, and Longlu Wang. 2025. "Advanced Progress of Non-Stoichiometric Transition Metal Sulfides for Sensing, Catalysis, and Energy Storage" Nanomaterials 15, no. 16: 1237. https://doi.org/10.3390/nano15161237
APA StyleXu, X., Zhang, M., Wu, J., Shen, Z., Liu, Y., & Wang, L. (2025). Advanced Progress of Non-Stoichiometric Transition Metal Sulfides for Sensing, Catalysis, and Energy Storage. Nanomaterials, 15(16), 1237. https://doi.org/10.3390/nano15161237