Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = metallic oxide filler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 274
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

14 pages, 1452 KiB  
Review
Recent Advances in Liquid Metal-Based Stretchable and Conductive Composites for Wearable Sensor Applications
by Boo Young Kim, Wan Yusmawati Wan Yusoff, Paolo Matteini, Peter Baumli and Byungil Hwang
Biosensors 2025, 15(7), 466; https://doi.org/10.3390/bios15070466 - 19 Jul 2025
Viewed by 520
Abstract
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. [...] Read more.
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. To overcome these limitations, liquid metal particles (LMPs) encapsulated by native oxide shells have gained attention as versatile and stable fillers for stretchable and conductive composites. Recent advances have focused on the development of LM-based hybrid composites that combine LMPs with metal, carbon, or polymeric fillers. These systems offer enhanced electrical and mechanical properties and can form conductive networks without the need for additional sintering processes. They also impart composites with multiple functions such as self-healing, electromagnetic interference shielding, and recyclability. Hence, the present review summarizes the fabrication methods and functional properties of LM-based composites, with a particular focus on their applications in wearable sensing. In addition, recent developments in the use of LM composites for physical motion monitoring (e.g., strain and pressure sensing) and electrophysiological signal recording (e.g., EMG and ECG) are presented, and the key challenges and opportunities for next-generation wearable platforms are discussed. Full article
(This article belongs to the Special Issue The Application of Biomaterials in Electronics and Biosensors)
Show Figures

Figure 1

18 pages, 1812 KiB  
Article
Testing Concrete for the Construction of Winemaking Tanks
by Eleftherios K. Anastasiou, Alexandros Liapis, Eirini-Chrysanthi Tsardaka, Alexandros Chortis and Argyris Gerovassiliou
Appl. Sci. 2025, 15(14), 7816; https://doi.org/10.3390/app15147816 - 11 Jul 2025
Viewed by 217
Abstract
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using [...] Read more.
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using silicate aggregates and quartz sand as filler in order to obtain self-compacting concrete of strength class C 20/25. The optimal mixture was selected and further tests were carried out on the mechanical properties of permeability, durability and thermal conductivity. Three coatings and plain concrete were tested for their leachability of heavy metals in wine. The results show that the selected composition with 20% cement replacement by natural pozzolan has the desired workability and strength and is comparable to a reference concrete without natural pozzolan. The leachability tests show that heavy metals do not leach out upon contact with wine, but only calcium and potassium oxide, which can be easily addressed by coating or treating the surface of the concrete. Also, the optimum coating did not influence the pH of the wine. Full article
(This article belongs to the Special Issue Emerging Concrete Technologies and Applications)
Show Figures

Figure 1

31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1238
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

18 pages, 8036 KiB  
Article
Research on High-Temperature Frictional Performance Optimization and Synergistic Effects of Phosphate-Based Composite Lubricating Coatings
by Yong Ding, Shengjun Wang, Youxin Zhou, Hongmei Lv and Baoping Yang
Coatings 2025, 15(6), 704; https://doi.org/10.3390/coatings15060704 - 11 Jun 2025
Viewed by 497
Abstract
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), [...] Read more.
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), this study developed a phosphate-based composite lubricating coating. Through air-spraying technology and orthogonal experimental optimization, the optimal formulation was determined as follows: binder/filler ratio = 6:4, 5% graphite, 15% MoS2, and 10% aluminum powder. Experimental results demonstrated that at 500 °C, the coating forms an Al–O–P cross-linked network structure, with MoS2 oxidation generating MoO3 and aluminum powder transforming into Al2O3, significantly enhancing density and oxidation resistance. Friction tests revealed that the composite coating achieves a friction coefficient as low as 0.12 at room temperature with a friction time of 260 min. At 500 °C, the friction coefficient stabilizes at 0.24, providing 40 min of effective protection. This technology not only resolves the high-temperature instability of traditional coatings but also ensures an environmentally friendly preparation process with no harmful emissions, offering a technical solution for the protection of high-temperature equipment such as thermal power plant boiler tubes and petrochemical reactors. Full article
Show Figures

Figure 1

16 pages, 2872 KiB  
Article
Formulating Graphite-Filled PU Dispersions with Extended Shelf Life Using the Capillary Suspension Concept
by Katrin Dyhr and Norbert Willenbacher
Colloids Interfaces 2025, 9(3), 26; https://doi.org/10.3390/colloids9030026 - 2 May 2025
Viewed by 649
Abstract
Stabilizing micron-sized particles in low-viscosity polymer dispersions is challenging when density differences are present. This study demonstrates that graphite particles in aqueous polyurethane dispersions can be efficiently prevented from sedimentation using the capillary suspension concept. Capillary suspensions are solid/liquid/liquid systems and the capillary [...] Read more.
Stabilizing micron-sized particles in low-viscosity polymer dispersions is challenging when density differences are present. This study demonstrates that graphite particles in aqueous polyurethane dispersions can be efficiently prevented from sedimentation using the capillary suspension concept. Capillary suspensions are solid/liquid/liquid systems and the capillary forces inferred from adding a second immiscible fluid can lead to drastic changes in texture and flow. Here, both spherical and flake-shaped graphite particles were used as fillers, with octanol as the secondary liquid. At low graphite concentrations, octanol increases the low-shear viscosity significantly attributed to the formation of loose particle aggregates immobilizing part of the continuous phase. Above a critical graphite concentration, capillary forces induce a self-assembling, percolating particle network, leading to a sharp yield stress increase (>100 Pa). The corresponding percolating particle network efficiently suppresses sedimentation; for the system including 28 vol% spherical particles, a shelf life of at least six months was achieved. Capillary forces do not affect the high-shear viscosity of suspensions; here, a hydrophobically modified polyether thickener can be used. Transfer of the stabilization concept presented here to other high-density particles like silver or metal oxides suspended in other polymer dispersions is straightforward and is applicable in various fields like flexible printed electronics. Full article
Show Figures

Graphical abstract

16 pages, 8409 KiB  
Article
Amino-Terminated Poly(propylene oxide) as an Interfacial Dispersant for Low-Conductivity Silica/Carbon Black Hybrid-Filled Natural Rubber Composites
by Jiahui Mei, Ying Liu, Youliang Zhou, Depeng Gong, Lili Wu and Chaocan Zhang
Polymers 2025, 17(8), 1023; https://doi.org/10.3390/polym17081023 - 10 Apr 2025
Viewed by 450
Abstract
Natural rubber is widely used in various engineering fields due to its excellent properties, particularly as an anti-corrosion and wear-resistant lining for metal pipelines. The defects in rubber linings are typically detected using the electrical spark test. Carbon black can enhance the strength, [...] Read more.
Natural rubber is widely used in various engineering fields due to its excellent properties, particularly as an anti-corrosion and wear-resistant lining for metal pipelines. The defects in rubber linings are typically detected using the electrical spark test. Carbon black can enhance the strength, modulus, and wear resistance of natural rubber. However, conventional carbon black-filled natural rubber composites exhibit a certain level of electrical conductivity, making them unsuitable for defect detection via the electrical spark test. In this study, a silica/carbon black hybrid filler system was selected, and different types of amino-terminated poly(propylene oxide) were employed as novel interfacial dispersants to develop a low-conductivity natural rubber composite suitable for electrical spark testing while meeting general industrial mechanical performance requirements. The role of amino-terminated poly(propylene oxide) was first explored in a pure carbon black system, and then the optimized types and dosages of amino-terminated poly(propylene oxide) were added into a mixed filler system of silica and carbon black to explore the silica dosage that could balance the resistivity and mechanical properties. The results showed that the amino-terminated poly(propylene oxide) could improve the dispersion of carbon black and silica, thus increasing the mechanical properties of natural rubber composites. In the pure carbon black system, the tensile strength of natural rubber composites increased by 18.2%, the 300% modulus increased by 74.6%, and the Akron abrasion decreased by 42.7%. In the mixed filler system, the tensile strength of the natural rubber composites with 20 phr of silica and 30 phr of carbon black was 24.03 MPa, the 300% modulus was 15.16 MPa, and the Akron abrasion was 0.223 cm3. In addition, the volume resistivity was 5.52 × 109 Ω·cm, which is suitable for detecting defects with the spark test. Full article
Show Figures

Figure 1

15 pages, 10067 KiB  
Article
Effects of a Welding Wire Containing Er or Sc on the Microstructure, Mechanical Properties, and Corrosion Resistance of the 5xxx Aluminum Alloy MIG Joint
by Cunwei Zou, Ruizhi Wu, Xinhe Yang, Zhikun Ma and Legan Hou
Metals 2025, 15(3), 287; https://doi.org/10.3390/met15030287 - 6 Mar 2025
Viewed by 737
Abstract
The development of MIG (metal inert gas) welding for five-series aluminum alloys primarily involves the improvement and optimization of welding processes. Building upon research findings regarding the enhancement of aluminum alloy properties through the use of scandium (Sc) and erbium (Er), our study [...] Read more.
The development of MIG (metal inert gas) welding for five-series aluminum alloys primarily involves the improvement and optimization of welding processes. Building upon research findings regarding the enhancement of aluminum alloy properties through the use of scandium (Sc) and erbium (Er), our study incorporates Sc and Er into the welding wire to examine their impact on welding quality. The results show that the introduction of Er and Sc results in grain refinement from 47 µm to 29 µm and 31 µm, respectively. Grain refinement is mainly attributed to the heterogeneous nucleation of submicron-sized, coherent Al3Er and Al3Sc phases with L12 structure. The ultimate tensile strength (UTS), fracture elongation EI [%], and microhardness of joints welded with Er-containing and Sc-containing filler wires exhibit significant enhancements due to the refinement strengthening and dispersion strengthening. Joints welded with the filler wires containing Er and Sc display reduced corrosion current density and higher corrosion potential. The enhanced corrosion resistance comes from the formation of a denser oxide film and the equilibrium in the potential difference between the precipitated phases (Al3Er and Al3Sc) and the matrix. Filler wires containing Er and Sc have almost similar effects on improvements of the MIG welding joints. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

15 pages, 10273 KiB  
Article
Electrical Properties of Semiconductor/Conductor Composites: Polypyrrole-Coated Tungsten Microparticles
by Jaroslav Stejskal, Marek Jurča, Miroslava Trchová and Jan Prokeš
J. Compos. Sci. 2025, 9(3), 98; https://doi.org/10.3390/jcs9030098 - 22 Feb 2025
Viewed by 554
Abstract
Tungsten microparticles were coated with globular or nanotubular polypyrrole in situ during the oxidation of pyrrole in aqueous medium with ammonium peroxydisulfate or iron(III) chloride, respectively. The resulting core–shell composites with various contents of tungsten were obtained as powders composed of metal particles [...] Read more.
Tungsten microparticles were coated with globular or nanotubular polypyrrole in situ during the oxidation of pyrrole in aqueous medium with ammonium peroxydisulfate or iron(III) chloride, respectively. The resulting core–shell composites with various contents of tungsten were obtained as powders composed of metal particles embedded in a semiconducting polymer matrix. The coating of tungsten with polypyrrole was analysed by FTIR and Raman spectroscopies. The resistivity of composite powders was determined by the four-point van der Pauw method as a function of pressure applied up to 10 MPa. The degree of compression was also recorded and its relation to electrical properties is discussed on the basis of the percolation concept. The electrical properties of composites are afforded by polypyrrole matrix and they are independent of tungsten content. As the conducting tungsten particles are separated by polypyrrole shells, they cannot produce conducting pathways and behave similarly as a nonconducting filler. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

14 pages, 8059 KiB  
Article
The Effect of Through-Silicon-Via Thermal Stress on Metal-Oxide-Semiconductor Field-Effect Transistor Properties Under Cooling to Ultra-Low Temperatures
by Wenting Xie, Xiaoting Chen, Liting Zhang, Xiangjun Lu, Bing Ding and An Xie
Micromachines 2025, 16(2), 221; https://doi.org/10.3390/mi16020221 - 15 Feb 2025
Viewed by 842
Abstract
The thermal through-silicon-via (TTSV) has a serious thermal stress problem due to the mismatch of the coefficient of thermal expansion between the Si substrate and filler metal. At present, the thermal stress characteristics and strain mechanism of TTSV are mainly concerned with increases [...] Read more.
The thermal through-silicon-via (TTSV) has a serious thermal stress problem due to the mismatch of the coefficient of thermal expansion between the Si substrate and filler metal. At present, the thermal stress characteristics and strain mechanism of TTSV are mainly concerned with increases in temperature, and its temperature range is concentrated between 173 and 573 K. By employing finite element analysis and a device simulation method based on temperature-dependent material properties, the impact of TTSV thermal stress on metal-oxide-semiconductor field-effect transistor (MOSFET) properties is investigated under cooling down from room temperature to the ultra-low temperature (20 mK), where the magnitude of thermal stress in TTSV is closely associated with the TTSV diameter and results in significant tension near the Cu-Si interface and consequently increasing the likelihood of delamination and cracking. Considering the piezoresistive effect of the Si substrate, both the TTSV diameter and the distance between TTSV and MOSFET are found to have more pronounced effects on electron mobility along [100] crystal orientation and hole mobility along [110] crystal orientation. Applying a gate voltage of 3 V, the saturation current for the 45 nm-NMOS transistor oriented along channel [100] experiences a variation as high as 34.3%. Moreover, the TTSV with a diameter of 25 μm generates a change in MOSFET threshold voltage up to −56.65 mV at a distance as short as 20 μm. The influences exerted by the diameter and distance are consistent across carrier mobility, saturation current, and threshold voltage parameters. Full article
Show Figures

Figure 1

14 pages, 4915 KiB  
Article
Development and Evaluation of Steel Component Coatings for Substations/Converter Stations with Both Fire and Corrosion Prevention Functions
by Yu Liu, Baohui Chen, Chuanping Wu, Tiannian Zhou and Bichen Pan
Fire 2025, 8(1), 1; https://doi.org/10.3390/fire8010001 - 24 Dec 2024
Viewed by 1080
Abstract
There are a large number of steel components in substations/converter stations whose performance is seriously affected by being exposed to environmental corrosion and fire, endangering the operation of the substation/converter station. The current protective measures for steel components in substations/converter stations primarily involve [...] Read more.
There are a large number of steel components in substations/converter stations whose performance is seriously affected by being exposed to environmental corrosion and fire, endangering the operation of the substation/converter station. The current protective measures for steel components in substations/converter stations primarily involve the application of anti-corrosion and fireproof coatings. However, these coatings can easily peel off, resulting in a significant loss of their protective effectiveness. In response to this challenge, a new type of silicone-modified epoxy resin substrate has been synthesized by chemically grafting silicone resin onto epoxy resin segments, which retains the high adhesion of epoxy resin while enhancing its weather resistance. The use of synthesized nano zinc oxide-modified graphene oxide as a fireproof filler significantly improves the physical barrier effect and corrosion resistance of the coating. Additionally, the innovative addition of new metal anti-corrosion active pigments improves the adhesion and impermeability of the coating. Therefore, a steel structure coating for substations/converter stations with both fire and corrosion prevention functions has been developed. Standard tests conducted by national institutions have shown that the coating meets the performance requirements. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

22 pages, 4197 KiB  
Review
Material Aspects of Thin-Film Composite Membranes for CO2/N2 Separation: Metal–Organic Frameworks vs. Graphene Oxides vs. Ionic Liquids
by Na Yeong Oh, So Youn Lee, Jiwon Lee, Hyo Jun Min, Seyed Saeid Hosseini, Rajkumar Patel and Jong Hak Kim
Polymers 2024, 16(21), 2998; https://doi.org/10.3390/polym16212998 - 25 Oct 2024
Cited by 1 | Viewed by 2418
Abstract
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability–selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, [...] Read more.
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability–selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, diverse additives such as metal–organic frameworks (MOFs), graphene oxides (GOs), and ionic liquids (ILs) have been integrated into the polymer matrix to enhance performance. However, achieving desirable interfacial compatibility between these additives and the host polymer matrix, particularly in TFC structures, remains a significant challenge. This review discusses recent advancements in TFC membranes for CO2/N2 separation, focusing on material structure, polymer–additive interaction, interface and separation properties. Specifically, we examine membranes operating under dry conditions to clearly assess the impact of additives on membrane properties and performance. Additionally, we provide a perspective on future research directions for designing high-performance membrane materials. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

14 pages, 5279 KiB  
Article
3D Binder-Free Mo@CoO Electrodes Directly Manufactured in One Step via Electric Discharge Machining for In-Plane Microsupercapacitor Application
by Shunqi Yang, Ri Chen, Fu Huang, Wenxia Wang and Igor Zhitomirsky
Micromachines 2024, 15(11), 1294; https://doi.org/10.3390/mi15111294 - 24 Oct 2024
Cited by 2 | Viewed by 1052
Abstract
Cobalt oxide-based in-plane microsupercapacitors (IPMSCs) stand out as a favorable choice for various applications in energy sources for the Internet of Things (IoT) and other microelectronic devices due to their abundant natural resources and high theoretical specific capacitance. However, the low electronic conductivity [...] Read more.
Cobalt oxide-based in-plane microsupercapacitors (IPMSCs) stand out as a favorable choice for various applications in energy sources for the Internet of Things (IoT) and other microelectronic devices due to their abundant natural resources and high theoretical specific capacitance. However, the low electronic conductivity of cobalt oxide greatly hinders its further application in energy storage devices. Herein, a new manufacturing method of electric discharging machining (EDM), which is simple, safe, efficient, and environment-friendly, has been developed for synthesizing Mo-doped and oxygen-vacancy-enriched Co-CoO (Mo@Co-CoO) integrated microelectrodes for efficiently constructing Mo@Co-CoO IPMSCs with customized structures in a single step for the first time. The Mo@Co-CoO IPMSCs with three loops (IPMSCs3) exhibited a maximum areal capacitance of 30.4 mF cm−2 at 2 mV s−1. Moreover, the Mo@Co-CoO IPMSCs3 showed good capacitive behavior at a super-high scanning rate of 100 V s−1, which is around 500–1000 times higher than most reported CoO-based electrodes. It is important to note that the IPMSCs were fabricated using a one-step EDM process without any assistance of other material processing techniques, toxic chemicals, low conductivity binders, exceptional current collectors, and conductive fillers. This novel fabrication method developed in this research opens a new avenue to simplify material synthesis, providing a novel way for realizing intelligent, digital, and green manufacturing of various metal oxide materials, microelectrodes, and microdevices. Full article
(This article belongs to the Special Issue Microelectrodes and Microdevices for Electrochemical Applications)
Show Figures

Figure 1

15 pages, 5597 KiB  
Article
Effects of Oxide Powders as Activating Flux on AMIG 304L Welds
by Kamel Touileb, Rachid Djoudjou, Abousoufiane Ouis, Abdeljlil Chihaoui Hedhibi, Hussein Alrobei, Ibrahim Abdullah Alnaser, Rizwan Ahmed Malik and Ubair Abdus Samad
Crystals 2024, 14(10), 902; https://doi.org/10.3390/cryst14100902 - 18 Oct 2024
Cited by 1 | Viewed by 1089
Abstract
Activating metal inert gas (AMIG) welding was designed to address difficulties with MIG welding, such as the limitation on workpiece thickness that may be welded in a single pass. This investigation was carried out on 304L stainless steel using ER 308L as a [...] Read more.
Activating metal inert gas (AMIG) welding was designed to address difficulties with MIG welding, such as the limitation on workpiece thickness that may be welded in a single pass. This investigation was carried out on 304L stainless steel using ER 308L as a filler metal. Five oxides (SiO2, TiO2, Fe2O3, Mn2O3, and Cr2O3) have been investigated without edge preparation. The welded joints were evaluated for weld morphology, microstructure, mechanical properties, and corrosion, and the findings were compared. The depth of the AMIG weld was determined to be greater than that of the MIG weld. The microstructure is composed of austenitic and retained delta ferrite with 3.3% for MIG and up to 8% for AMIG weld carried out with Cr2O3 oxide flux, the tensile strength is up to 604 MPa when using Cr2O3 oxide against MIG weld (532 MPa), and the resistance to sudden load in AMIG welds (189 J/cm2) is higher than that of MIG weld (149 J/cm2). The corrosion resistance of the weld made with Fe2O3 oxide flux is greater than that of the other AMIG and MIG welds, as well as the parent metal. The AMIG welding technique variant enhances productivity and decreases the cost and energy consumption of the welding material compared to the traditional MIG process. This allows for joining the same thickness without affecting mechanical properties and corrosion resistance, meeting the industry’s requirements. Full article
Show Figures

Figure 1

13 pages, 3673 KiB  
Article
Design and Computational Validation of γ-Ray Shielding Effectiveness in Heavy Metal/Rare Earth Oxide–Natural Rubber Composites
by Yongkang Liu, Xiaopeng Li, Yilin Yin, Zhen Li, Huisheng Yao, Zenghe Li and Heguo Li
Polymers 2024, 16(15), 2130; https://doi.org/10.3390/polym16152130 - 26 Jul 2024
Cited by 4 | Viewed by 1652
Abstract
This study involved the preparation of natural rubber-based composites incorporating varying proportions of heavy metals and rare earth oxides (Sm2O3, Ta2O5, and Bi2O3). The investigation analyzed several parameters of the samples, [...] Read more.
This study involved the preparation of natural rubber-based composites incorporating varying proportions of heavy metals and rare earth oxides (Sm2O3, Ta2O5, and Bi2O3). The investigation analyzed several parameters of the samples, including mass attenuation coefficients (general, photoelectric absorption, and scattering), linear attenuation coefficients (μ), half-value layers (HVLs), tenth-value layers (TVLs), mean free paths (MFPs), and radiation protection efficiencies (RPEs), utilizing the Monte Carlo simulation software Geant4 and the WinXCom database across a gamma-ray energy spectrum of 40–150 keV. The study also compared the computational discrepancies among these measurements. Compared to rubber composites doped with single-component fillers, multi-component mixed shielding materials significantly mitigate the shielding deficiencies observed with single-component materials, thereby broadening the γ-ray energy spectrum for which the composites provide effective shielding. Subsequently, the simulation outcomes were juxtaposed with experimental data derived from a 133Ba (80 keV) γ-source. The findings reveal that the simulated results align closely with the experimental observations. When compared to the WinXCom database, the Geant4 software demonstrates superior accuracy in deriving radiation shielding parameters and notably enhances experimental efficiency. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

Back to TopTop