Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = metal-semiconductor-metal photodetector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 4230 KiB  
Article
Enhanced UVC Responsivity of Heteroepitaxial α-Ga2O3 Photodetector with Ultra-Thin HfO2 Interlayer
by SiSung Yoon, SeungYoon Oh, GyuHyung Lee, YongKi Kim, SunJae Kim, Ji-Hyeon Park, MyungHun Shin, Dae-Woo Jeon and GeonWook Yoo
Micromachines 2025, 16(7), 836; https://doi.org/10.3390/mi16070836 - 21 Jul 2025
Viewed by 569
Abstract
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby [...] Read more.
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby improving the performance of UVC photodetectors. The fabricated device with a 1 nm HfO2 interlayer exhibited a significantly reduced dark current and higher photocurrent than a conventional metal–semiconductor–metal (MSM). Specifically, the 1 nm HfO2 MISIM device demonstrated a photocurrent of 2.3 μA and a dark current of 6.61 pA at 20 V, whereas the MSM device exhibited a photocurrent of 1.1 μA and a dark current of 73.3 pA. Furthermore, the photodetector performance was comprehensively evaluated in terms of responsivity, response speed, and high-temperature operation. These results suggest that the proposed ultra-thin HfO2 interlayer is an effective strategy for enhancing the performance of α-Ga2O3-based UVC photodetectors by simultaneously suppressing dark currents and increasing photocurrents and ultimately demonstrate its potential for stable operation under extreme environmental conditions. Full article
(This article belongs to the Special Issue Photodetectors and Their Applications)
Show Figures

Figure 1

11 pages, 2010 KiB  
Article
Metasurface-Enhanced Infrared Photodetection Using Layered van der Waals MoSe2
by Jinchun Li, Zhixiang Xie, Tianxiang Zhao, Hongliang Li, Di Wu and Xuechao Yu
Nanomaterials 2025, 15(12), 913; https://doi.org/10.3390/nano15120913 - 12 Jun 2025
Viewed by 469
Abstract
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the [...] Read more.
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the bandgap, resulting in a significant attenuation of photoresponse in spectral regions beyond the bandgap. This inherently restricts their broadband photodetection performance. By introducing metasurface structures consisting of subwavelength optical elements, localized plasmon resonance effects can be exploited to overcome this absorption limitation, significantly enhancing the light absorption of TMD films. Additionally, the heterogeneous integration process between the metasurface and two-dimensional materials offers low-temperature compatibility advantages, effectively avoiding the limitations imposed by high-temperature doping processes in traditional semiconductor devices. Here, we systematically investigate metasurface-enhanced two-dimensional MoSe2 photodetectors, demonstrating broadband responsivity extension into the mid-infrared spectrum via precise control of metasurface structural dimensions. The optimized device possesses a wide spectrum response ranging from 808 nm to 10 μm, and the responsivity (R) and specific detection rate (D*) under 4 μm illumination achieve 7.1 mA/W and 1.12 × 108 Jones, respectively. Distinct metasurface configurations exhibit varying impacts on optical absorption characteristics and detection spectral ranges, providing experimental foundations for optimizing high-performance photodetectors. This work establishes a practical pathway for developing broadband optoelectronic devices through nanophotonic structure engineering. Full article
Show Figures

Figure 1

20 pages, 7945 KiB  
Review
Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors
by Jiarui Zhang and Chi Ma
Nanomaterials 2025, 15(11), 816; https://doi.org/10.3390/nano15110816 - 28 May 2025
Viewed by 522
Abstract
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of [...] Read more.
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of perovskite gradually fails to meet the evolving requirements attributed to the escalating demand for low-cost, lightweight, flexible, and highly integrated photodetection. Direct manipulation of electrons and photons with differentiation of local electronic field through predesigned optical nanostructures is a promising strategy to reinforce the detectivity. This review provides a concise overview of the optical manipulation strategy in perovskite photodetector through various optical nanostructures, such as isolated metallic nanoparticles and continuous metallic gratings. Furthermore, the special light detection techniques involving more intricate nanostructure designs have been summarized and discussed. Reviewing these optical manipulation strategies could be beneficial to the next design of perovskite photodetector with high performance and special light recognition. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 4893 KiB  
Article
Wideband Near-Infrared Hot-Electron Photodetector Based on Metal Grating Structure
by Hao Huang, Fei Liu, Zidong Chen, Bowen Zhang and Ailing Zhang
Photonics 2025, 12(5), 518; https://doi.org/10.3390/photonics12050518 - 21 May 2025
Viewed by 374
Abstract
The generation of hot electrons through non-radiative decay processes of surface plasmons (SPs) has been extensively demonstrated, enabling the preparation of high-performance hot-electron photodetectors without limitations imposed by material band gap widths. In this paper, a near-infrared wideband hot-electron metal semiconductor photodetector (WHEMSPD) [...] Read more.
The generation of hot electrons through non-radiative decay processes of surface plasmons (SPs) has been extensively demonstrated, enabling the preparation of high-performance hot-electron photodetectors without limitations imposed by material band gap widths. In this paper, a near-infrared wideband hot-electron metal semiconductor photodetector (WHEMSPD) is proposed based on a metal grating plasmonic structure, and its optical and electrical properties are numerically verified. This structure exhibits excellent broadband characteristics within the long-wave near-infrared range (LW-NIR) of 1200–1800 nm, achieving an absorption of approximately 0.7 between 1200 and 1700 nm, with a peak of 0.98 at 1400 nm. The metal grating structure can effectively enhance the excitation of plasmons on the surface and thus increase the absorption within a larger bandwidth. In terms of electrical performance, the responsivity of the WHEMSPD reaches over 20 mA/W within the wavelength range of 1200–1500 nm, with the peak responsivity reaching 28.3 mA/W around 1320 nm. WHEMSPDs in the LW-NIR can be widely used in military, remote sensing, communication, and other related fields. Full article
(This article belongs to the Special Issue Thermal Radiation and Micro-/Nanophotonics)
Show Figures

Figure 1

13 pages, 4097 KiB  
Article
Optical Properties of GePb Alloy Realized by Ion Beam Technology
by Shuyu Wen, Yuan-Hao Zhu, Oliver Steuer, Mohd Saif Shaikh, Slawomir Prucnal, René Hübner, Andreas Worbs, Li He, Manfred Helm, Shengqiang Zhou, Jun-Wei Luo and Yonder Berencén
Materials 2025, 18(10), 2258; https://doi.org/10.3390/ma18102258 - 13 May 2025
Viewed by 395
Abstract
Incorporating lead (Pb) into the germanium (Ge) lattice emerges as a promising approach for bandgap engineering, enabling luminescence at longer wavelengths and paving the way for enhanced applications in short-wave infrared (SWIR) light sources and photodetectors. In this work, we report on optical [...] Read more.
Incorporating lead (Pb) into the germanium (Ge) lattice emerges as a promising approach for bandgap engineering, enabling luminescence at longer wavelengths and paving the way for enhanced applications in short-wave infrared (SWIR) light sources and photodetectors. In this work, we report on optical properties of GePb alloys fabricated by a complementary metal-oxide semiconductor (CMOS)-compatible process that includes Pb ion implantation followed by solid-phase epitaxial regrowth via flash-lamp annealing. Optical characterization, including photoluminescence spectroscopy and Fourier-transform infrared reflectance spectroscopy, reveals that GePb alloys exhibit a reduced bandgap compared to pure Ge, resulting in longer-wavelength emission, while also providing broadband antireflective properties below 1800 nm wavelengths due to the surface subwavelength nanostructure. These findings position nanostructured GePb as a highly promising candidate for SWIR optoelectronic applications. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

14 pages, 4821 KiB  
Article
Controllable Hydrothermal Synthesis of 1D β-Ga2O3 for Solar-Blind Ultraviolet Photodetection
by Lingfeng Mao, Xiaoxuan Wang, Chaoyang Huang, Yi Ma, Feifei Qin, Wendong Lu, Gangyi Zhu, Zengliang Shi, Qiannan Cui and Chunxiang Xu
Nanomaterials 2025, 15(5), 402; https://doi.org/10.3390/nano15050402 - 6 Mar 2025
Viewed by 977
Abstract
Gallium oxide (Ga2O3), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga2O3 nanorods were designed to achieve high [...] Read more.
Gallium oxide (Ga2O3), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga2O3 nanorods were designed to achieve high photodetection performance due to their effective light absorption and light field confinement. Through modulating source concentration, pH value, temperature, and reaction time, 1D β-Ga2O3 nanorods were controllably fabricated using a cost-effective hydrothermal method, followed by post-annealing. The nanorods had a diameter of ~500 nm, length from 0.5 to 3 μm, and structure from nanorods to spindles, indicating that different β-Ga2O3 nanorods can be utilized controllably through tuning reaction parameters. The 1D β-Ga2O3 nanorods with a high length-to-diameter ratio were chosen to construct metal-semiconductor-metal type photodetectors. These devices exhibited a high responsivity of 8.0 × 10−4 A/W and detectivity of 4.58 × 109 Jones under 254 nm light irradiation. The findings highlighted the potential of 1D Ga2O3 nanostructures for high-performance solar-blind ultraviolet photodetectors, paving the way for future integrable deep ultraviolet optoelectronic devices. Full article
Show Figures

Figure 1

13 pages, 2182 KiB  
Article
Electronically Coupled Heterojunctions Based on Graphene and Cu2−xS Nanocrystals: The Effect of the Surface Ligand
by Ju Y. Shang, Mariangela Giancaspro, Adriana Grandolfo, Rafique A. Lakho, Elisabetta Fanizza, Suraj K. Patel, Giuseppe Valerio Bianco, Marinella Striccoli, Chiara Ingrosso, Oscar Vazquez-Mena and M. Lucia Curri
Molecules 2025, 30(1), 67; https://doi.org/10.3390/molecules30010067 - 27 Dec 2024
Viewed by 1076
Abstract
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly [...] Read more.
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as Cu2−xS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG. This study investigates the photoresponse of an SLG/Cu2−xS NCs heterojunction, comparing the effect of two short molecules—tetrabutylammonium iodide (TBAI) and 3,4-dimethylbenzenethiol (DMBT)—as surface ligands on the resulting structures. We have analysed charge transfer at the heterojunctions between SLG and the Cu2−xS NCs before and after modification with TBAI and DMBT using Raman spectroscopy and transconductance measurements under thermal equilibrium. The photoresponse of two hybrid devices based on three layers of Cu2xS NCs, deposited in one case on SLG/Cu2−xS/TBAI (“TBAI-only” device) and in the other on SLG/Cu2−xS/DMBT (“DMBT + TBAI” device), with a TBAI treatment applied, for both, after each layer deposition, has been evaluated under 450 nm laser diode illumination. The results indicate that the TBAI-only device exhibited a significant increase in photocurrent (4 μA), with high responsivity (40 mA/W) and fast response times (<1 s), while the DMBT + TBAI device had lower photocurrent (0.2 μA) and responsivity (2.4 μA), despite similar response speeds. The difference is attributed to DMBT’s π–π interactions with SLG, which enhances electronic coupling but reduces SLG’s mobility and responsivity. Full article
Show Figures

Figure 1

12 pages, 2780 KiB  
Article
Fabrication and Characterization of Flexible CuI-Based Photodetectors on Mica Substrates by a Low-Temperature Solution Process
by Chien-Yie Tsay, Yun-Chi Chen, Hsuan-Meng Tsai and Kai-Hsiang Liao
Materials 2024, 17(20), 5011; https://doi.org/10.3390/ma17205011 - 14 Oct 2024
Cited by 1 | Viewed by 1302
Abstract
Both CuI and CuI:Zn semiconductor thin films, along with MSM-structured UV photodetectors, were prepared on flexible mica substrates at low temperature (150 °C) by a wet chemical method. The two CuI-based films exhibited a polycrystalline phase with an optical bandgap energy close to [...] Read more.
Both CuI and CuI:Zn semiconductor thin films, along with MSM-structured UV photodetectors, were prepared on flexible mica substrates at low temperature (150 °C) by a wet chemical method. The two CuI-based films exhibited a polycrystalline phase with an optical bandgap energy close to 3.0 eV. Hall effect measurements indicated that the CuI thin film sample had p-type conductivity, while the CuI:Zn thin film sample exhibited n-type conductivity, with the latter showing a higher carrier mobility of 14.78 cm2/Vs compared to 7.67 cm2/Vs for the former. The I-V curves of both types of photodetectors showed asymmetric rectification characteristics with rectification ratios at ±3 V of 5.23 and 14.3 for the CuI and CuI:Zn devices, respectively. Flexible CuI:Zn devices exhibited significantly better sensitivity, responsivity, and specific detectivity than CuI devices both before and after static bending tests. It was found that, while the optoelectronic performance of flexible CuI-based photodetectors degraded under tensile stress during static bending tests, they still exhibited good reproducibility and repeatability in their photoresponses. Full article
Show Figures

Figure 1

9 pages, 3131 KiB  
Article
Improved-Performance Amorphous Ga2O3 Photodetectors Fabricated by Capacitive Coupled Plasma-Assistant Magnetron Sputtering
by Yiming Liu, Chong Peng, Chang Liu, Cong Yu, Jiarui Guo, Yiyang Chang and Yi Zhao
Coatings 2024, 14(9), 1204; https://doi.org/10.3390/coatings14091204 - 19 Sep 2024
Cited by 1 | Viewed by 1356
Abstract
Ga2O3 has received increasing interest for its potential in various applications relating to solar-blind photodetectors. However, attaining a balanced performance with Ga2O3-based photodetectors presents a challenge due to the intrinsic conductive mechanism of Ga2O [...] Read more.
Ga2O3 has received increasing interest for its potential in various applications relating to solar-blind photodetectors. However, attaining a balanced performance with Ga2O3-based photodetectors presents a challenge due to the intrinsic conductive mechanism of Ga2O3 films. In this work, we fabricated amorphous Ga2O3 (a-Ga2O3) metal–semiconductor–metal photodetectors through capacitive coupled plasma assisted magnetron sputtering at room temperature. Substantial enhancement in the responsivity is attained by regulating the capacitance-coupled plasma power during the deposition of a-Ga2O3. The proposed plasma energy generated by capacitive coupled plasma (CCP) effectively improved the disorder of amorphous Ga2O3 films. The results of X-ray photoelectron spectroscopy (XPS) and current-voltage tests demonstrate that the additional plasma introduced during the sputtering effectively adjust the concentration of oxygen vacancy effectively, exhibiting a trade-off effect on the performance of a-Ga2O3 photodetectors. The best overall performance of a-Ga2O3 photodetectors exhibits a high responsivity of 30.59 A/W, a low dark current of 4.18 × 10−11, and a decay time of 0.12 s. Our results demonstrate that the introduction of capacitive coupled plasma during deposition could be a potential approach for modifying the performance of photodetectors. Full article
(This article belongs to the Collection Feature Paper Collection in Thin Films)
Show Figures

Figure 1

10 pages, 3227 KiB  
Article
Growth of a Sub-Centimeter-Sized CsPbBr3 Bulk Single Crystal Using an Anti-Solvent Precipitation Method
by Longxing Su
Symmetry 2024, 16(3), 332; https://doi.org/10.3390/sym16030332 - 9 Mar 2024
Cited by 7 | Viewed by 2382
Abstract
A facile and low-cost strategy to fabricate CsPbBr3 single crystals is essential for developing perovskite optoelectronic devices. Herein, we have presented a room temperature anti-solvent precipitate method for growing sub-centimeter-sized CsPbBr3 single crystals. The as-prepared CsPbBr3 single crystal has an [...] Read more.
A facile and low-cost strategy to fabricate CsPbBr3 single crystals is essential for developing perovskite optoelectronic devices. Herein, we have presented a room temperature anti-solvent precipitate method for growing sub-centimeter-sized CsPbBr3 single crystals. The as-prepared CsPbBr3 single crystal has an orthorhombic structure, and phase transition occurs as the measured temperature increases. The as-grown CsPbBr3 single crystal also shows abundant surface morphologies including footsteps, precipitated crystals, cracks, and pits. Subsequently, a metal–semiconductor–metal (MSM)-structured photodetector was fabricated based on the CsPbBr3 single crystal. Under 525 nm green light illumination, the photodetector exhibits an obvious response and the photocurrent linearly increases with the increase in the light intensity. The rise time of the photodetector increases from 0.82 s to 2.19 s as the light intensity is enhanced from 15 mW/cm2 to 160 mW/cm2, indicating that more time is required to reach to a stable photocurrent. However, the decay time is as fast as ~0.82 ms, irrelevant of the light intensity. The photocurrent, under continuous light illumination, was further studied and this indicates that a stronger light intensity can accelerate the attenuation of the device. Full article
Show Figures

Figure 1

11 pages, 3016 KiB  
Article
Enhancement of the Visible Light Photodetection of Inorganic Photodiodes via Additional Quantum Dots Layers
by Seong Jae Kang, Jun Hyung Jeong, Jin Hyun Ma, Min Ho Park, Hyoun Ji Ha, Jung Min Yun, Yu Bin Kim and Seong Jun Kang
Micromachines 2024, 15(3), 318; https://doi.org/10.3390/mi15030318 - 25 Feb 2024
Viewed by 1753
Abstract
Visible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of [...] Read more.
Visible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of this study was to improve the visible light detection of NiO/ZnO photodiodes by introducing an additional quantum dot (QD) layer between the NiO and ZnO layers. Utilizing the unique property of QDs, we could select different sizes of QDs and responsive light wavelength ranges. The resulting red QDs utilized device that could detect light starting at 635 nm to UV (Ultra-violet) light wavelength and exhibited a photoresponsivity and external quantum efficiency (EQE) of 14.99 mA/W and 2.92% under 635 nm wavelength light illumination, respectively. Additionally, the green QDs, which utilized a device that could detect light starting at 520 nm, demonstrated photoresponsivity values of 8.34 mA/W and an EQE of 1.99% under 520 nm wavelength light illumination, respectively. In addition, we used X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to investigate the origin of the photocurrents and the enhancement of the device’s performance. This study suggests that incorporating QDs with metal oxide semiconductors is an effective approach for detecting visible light wavelengths in transparent optoelectronic devices. Full article
(This article belongs to the Special Issue Fabrication and Application of Optoelectronics Based on Nanomaterials)
Show Figures

Figure 1

12 pages, 3347 KiB  
Brief Report
High-Performance ε-Ga2O3 Solar-Blind Photodetectors Grown by MOCVD with Post-Thermal Annealing
by Zeyuan Fei, Zimin Chen, Weiqu Chen, Tiecheng Luo, Shujian Chen, Jun Liang, Xinzhong Wang, Xing Lu, Gang Wang and Yanli Pei
Coatings 2023, 13(12), 1987; https://doi.org/10.3390/coatings13121987 - 23 Nov 2023
Cited by 4 | Viewed by 1972
Abstract
High-temperature annealing has been regarded as an effective technology to improve the performance of Ga2O3-based solar-blind photodetectors (SBPDs). However, as a metastable phase, ε-Ga2O3 thin film may undergo phase transformation during post-annealing. Therefore, it is necessary [...] Read more.
High-temperature annealing has been regarded as an effective technology to improve the performance of Ga2O3-based solar-blind photodetectors (SBPDs). However, as a metastable phase, ε-Ga2O3 thin film may undergo phase transformation during post-annealing. Therefore, it is necessary to investigate the effect of the phase transition and the defect formation or desorption on the performance of photodetectors during post-annealing. In this work, the ε-Ga2O3 thin films were grown on c-plane sapphire with a two-step method, carried out in a metal-organic chemical vapor deposition (MOCVD) system, and the ε-Ga2O3 metal-semiconductor-metal (MSM)-type SBPDs were fabricated. The effects of post-annealing on ε-Ga2O3 MSM SBPDs were investigated. As a metastable phase, ε-Ga2O3 thin film undergoes phase transition when the annealing temperature is higher than 700 °C. As result, the decreased crystal quality makes an SBPD with high dark current and long response time. In contrast, low-temperature annealing at 640 °C, which is the same as the growth temperature, reduces the oxygen-related defects, as confirmed by X-ray photoelectron spectroscopy (XPS) measurement, while the good crystal quality is maintained. The performance of the SBPD with the post-annealing temperature of 640 °C is overall improved greatly compared with the ones fabricated on the other films. It shows the low dark current of 0.069 pA at 10 V, a rejection ratio (Rpeak/R400) of 2.4 × 104 (Rpeak = 230 nm), a higher photo-to-dark current ratio (PDCR) of 3 × 105, and a better time-dependent photoresponse. These results indicate that, while maintaining no phase transition, post-annealing is an effective method to eliminate point defects such as oxygen vacancies in ε-Ga2O3 thin films and improve the performance of SBPDs. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

32 pages, 3014 KiB  
Review
Hybrid Perovskites and 2D Materials in Optoelectronic and Photocatalytic Applications
by Shuo Feng, Benxuan Li, Bo Xu and Zhuo Wang
Crystals 2023, 13(11), 1566; https://doi.org/10.3390/cryst13111566 - 2 Nov 2023
Cited by 13 | Viewed by 4362
Abstract
Metal halide perovskites, emerging innovative and promising semiconductor materials with notable properties, have been a great success in the optoelectronic and photocatalytic fields. At the same time, two-dimensional (2D) materials, including graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP) and so on, have [...] Read more.
Metal halide perovskites, emerging innovative and promising semiconductor materials with notable properties, have been a great success in the optoelectronic and photocatalytic fields. At the same time, two-dimensional (2D) materials, including graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP) and so on, have attracted significant interest due to their remarkable attributes. While substantial advancements have been made in recent decades, there are still hurdles in enhancing the performance of devices made from perovskites or 2D materials and in addressing their stability for reliable use. Recently, heterostructures combining perovskites with cost-effective 2D materials have exhibited significant advancements in both efficiency and stability, attributed to the unique properties at the heterointerface. In this review, we provide a thorough overview of perovskite and 2D material heterostructures, spanning from synthesis to application. We begin by detailing the diverse fabrication techniques, categorizing them into solid-state and solution-processed methods. Subsequently, we delve into the applications of perovskite and 2D material heterostructures, elaborating on their use in photodetectors, solar cells, and photocatalysis. We conclude by spotlighting existing challenges in developing perovskite and 2D material heterostructures and suggesting potential avenues for further advancements in this research area. Full article
Show Figures

Figure 1

14 pages, 4859 KiB  
Article
Ultrahigh UV Responsivity Quasi-Two-Dimensional BixSn1−xO2 Films Achieved through Surface Reaction
by Zhihao Xu, Miao Xu, Fang Chen, Rui Zhai, You Wu, Zhuan Zhao and Shusheng Pan
Materials 2023, 16(21), 6988; https://doi.org/10.3390/ma16216988 - 31 Oct 2023
Cited by 1 | Viewed by 1201
Abstract
In this study, quasi-two-dimensional BixSn1−xO2 (BTO) thin films were fabricated using a liquid metal transfer method. The ultraviolet (UV) photodetector based on BTO thin films was constructed, and the ultrahigh responsivity of 589 A/W was observed at 300 [...] Read more.
In this study, quasi-two-dimensional BixSn1−xO2 (BTO) thin films were fabricated using a liquid metal transfer method. The ultraviolet (UV) photodetector based on BTO thin films was constructed, and the ultrahigh responsivity of 589 A/W was observed at 300 nm UV light illumination. Interestingly, by dropping ethanol during light-off period, the recovery time induced by the persistent photoconductivity (PPC) effect is reduced from 1.65 × 103 s to 5.71 s. Furthermore, the recovery time can also be reduced by dropping methanol, propylene glycol, NaNO2, and Na2SO3 after light termination. The working mechanisms are attributed to the rapid consumption of holes stored in BTO thin films by reaction with those solutions. This work demonstrates that the BTO thin films have potential applications in high-performance UV detectors and present an innovation route to weaken the PPC effects in semiconductors by introducing chemical liquids on their surface. Full article
Show Figures

Figure 1

18 pages, 7064 KiB  
Review
Recent Progress in Source/Drain Ohmic Contact with β-Ga2O3
by Lin-Qing Zhang, Wan-Qing Miao, Xiao-Li Wu, Jing-Yi Ding, Shao-Yong Qin, Jia-Jia Liu, Ya-Ting Tian, Zhi-Yan Wu, Yan Zhang, Qian Xing and Peng-Fei Wang
Inorganics 2023, 11(10), 397; https://doi.org/10.3390/inorganics11100397 - 11 Oct 2023
Cited by 7 | Viewed by 5050
Abstract
β-Ga2O3, with excellent bandgap, breakdown field, and thermal stability properties, is considered to be one of the most promising candidates for power devices including field-effect transistors (FETs) and for other applications such as Schottky barrier diodes (SBDs) and solar-blind [...] Read more.
β-Ga2O3, with excellent bandgap, breakdown field, and thermal stability properties, is considered to be one of the most promising candidates for power devices including field-effect transistors (FETs) and for other applications such as Schottky barrier diodes (SBDs) and solar-blind ultraviolet photodetectors. Ohmic contact is one of the key steps in the β-Ga2O3 device fabrication process for power applications. Ohmic contact techniques have been developed in recent years, and they are summarized in this review. First, the basic theory of metal–semiconductor contact is introduced. After that, the representative literature related to Ohmic contact with β-Ga2O3 is summarized and analyzed, including the electrical properties, interface microstructure, Ohmic contact formation mechanism, and contact reliability. In addition, the promising alternative schemes, including novel annealing techniques and Au-free contact materials, which are compatible with the CMOS process, are discussed. This review will help our theoretical understanding of Ohmic contact in β-Ga2O3 devices as well as the development trends of Ohmic contact schemes. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials)
Show Figures

Graphical abstract

Back to TopTop