Ultrahigh UV Responsivity Quasi-Two-Dimensional BixSn1−xO2 Films Achieved through Surface Reaction
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Measurement and Characterization
3. Results and Discussion
Structure and Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35. [Google Scholar] [CrossRef]
- Liu, K.; Sakurai, M.; Aono, M.; Shen, D. Ultrahigh-Gain Single SnO2 Microrod Photoconductor on Flexible Substrate with Fast Recovery Speed. Adv. Funct. Mater. 2015, 25, 3157–3163. [Google Scholar] [CrossRef]
- Wan, Q.; Dattoli, E.; Lu, W. Doping-dependent electrical characteristics of SnO2 nanowires. Small 2008, 4, 451–454. [Google Scholar] [CrossRef]
- Hu, L.; Yan, J.; Liao, M.; Wu, L.; Fang, X. Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 2011, 7, 1613–6810. [Google Scholar] [CrossRef]
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol 2009, 4, 839–843. [Google Scholar] [CrossRef]
- Marimuthu, G.; Saravanakumar, K.; Jeyadheepan, K.; Mahalakshmi, K. Achieving self-powered photoresponse in mono layered SnO2 nanostructure array UV photodetector through the tailoring of electrode configuration. J. Photochem. Photobiol. A-Chem. 2022, 428, 113860. [Google Scholar] [CrossRef]
- Yu, H.; Qu, L.H.; Zhang, M.X.; Wang, Y.X.; Lou, C.Q.; Xu, Y.; Cui, M.Q.; Shao, Z.T.; Liu, X.; Hu, P.A.; et al. Achieving High Responsivity of Photoelectrochemical Solar-Blind Ultraviolet Photodetectors via Oxygen Vacancy Engineering. Adv. Opt. Mater. 2023, 11, 2202341. [Google Scholar] [CrossRef]
- Huang, Z.P.; Zhu, J.; Hu, Y.; Zhu, Y.P.; Zhu, G.H.; Hu, L.P.; Zi, Y.; Huang, W.C. Tin Oxide (SnO2) Nanoparticles: Facile Fabrication, Characterization, and Application in UV Photodetectors. Nanomaterials 2022, 12, 632. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, J.; Yang, K.; Zhao, Z.; Zhou, Z.; Ma, Y.; Shen, L.; Ma, X.; Zhang, F. Highly sensitive, broad-band organic photomultiplication-type photodetectors covering UV-Vis-NIR. J. Mater. Chem. C 2021, 9, 6357–6364. [Google Scholar] [CrossRef]
- Jia, L.; Zheng, W.; Huang, F. Vacuum-ultraviolet photodetectors. PhotoniX 2020, 1, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Cao, J.; Jiang, Y.; Zhang, Y.; Tang, W.; Wu, Z. Improved response speed of β-Ga2O3 solar-blind photodetectors by optimizing illumination and bias. Mater. Des. 2022, 221, 110917. [Google Scholar] [CrossRef]
- Feng, P.; Mönch, I.; Harazim, S.; Huang, G.; Mei, Y.; Schmidt, O.G. Giant persistent photoconductivity in rough silicon nanomembranes. Nano Lett. 2009, 9, 3453–3459. [Google Scholar] [CrossRef]
- Lany, S.; Zunger, A. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Phys. Rev. B 2005, 72, 035215. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Li, Z.; Cao, F.; Su, L.; Shtansky, D.V.; Fang, X. Enhanced response speed in 2D perovskite oxides-based photodetectors for UV imaging through surface/interface carrier-transport modulation. ACS Appl. Mater. Interfaces 2022, 14, 48936–48947. [Google Scholar] [CrossRef]
- Jeon, S.; Ahn, S.-E.; Song, I.; Kim, C.J.; Chung, U.I.; Lee, E.; Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 2012, 11, 1476–4660. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, X.; Xiao, H.; Wang, C.; Yang, C.; Yin, H.; Deng, Q.; Li, J.; Wang, Z.; Hou, X. Influence of electric field on persistent photoconductivity in unintentionally doped n-type GaN. Appl. Phys. Lett. 2011, 98, 102104. [Google Scholar] [CrossRef]
- Xu, J.; You, D.; Tang, Y.; Kang, Y.; Li, X.; Li, X.; Gong, H. Electric-field effects on persistent photoconductivity in undoped n-type epitaxial GaN. Appl. Phys. Lett. 2006, 88, 072106. [Google Scholar] [CrossRef]
- Huang, Y.; Zhuge, F.; Hou, J.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Van der Waals Coupled Organic Molecules with Monolayer MoS2 for Fast Response Photodetectors with Gate-Tunable Responsivity. ACS Nano 2018, 12, 4062–4073. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liao, Z.L.; She, G.W.; Mu, L.X.; Chen, D.M.; Shi, W.S. Optical modulation of persistent photoconductivity in ZnO nanowires. Appl. Phys. Lett. 2011, 98, 203108. [Google Scholar] [CrossRef]
- Zhou, H.; Cong, L.; Ma, J.; Li, B.; Chen, M.; Xu, H.; Liu, Y. High gain broadband photoconductor based on amorphous Ga2O3 and suppression of persistent photoconductivity. J. Mater. Chem. C 2019, 7, 13149–13155. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, S.; Zhan, T.; Liu, Z.; Wang, J.; Yi, X.; Li, J.; Sarro, P.M.; Zhang, G. A high responsivity and controllable recovery ultraviolet detector based on a WO3 gate AlGaN/GaN heterostructure with an integrated micro-heater. J. Mater. Chem. C 2020, 8, 5409–5416. [Google Scholar] [CrossRef]
- Pinto, R.M.; Gouveia, W.; Neves, A.I.S.; Alves, H. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures. Appl. Phys. Lett. 2015, 107, 223301. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, C.; Cao, M.; Wang, T. Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes. Nanotechnology 2007, 18, 285502. [Google Scholar] [CrossRef]
- Mathur, S.; Barth, S.; Shen, H.; Pyun, J.C.; Werner, U. Size-dependent photoconductance in SnO2 nanowires. Small 2005, 1, 713–717. [Google Scholar] [CrossRef]
- Chen, H.; Hu, L.F.; Fang, X.S.; Wu, L.M. General Fabrication of Monolayer SnO2 Nanonets for High-Performance Ultraviolet Photodetectors. Adv. Funct. Mater. 2012, 22, 1229–1235. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, R.-S.; Chen, T.-T.; Chen, H.-Y.; Chen, Y.-F.; Chen, K.-H.; Chen, L.-C. High photocurrent gain in SnO2 nanowires. Appl. Phys. Lett. 2008, 93, 112115. [Google Scholar] [CrossRef]
- Muraoka, Y.; Takubo, N.; Hiroi, Z. Photoinduced conductivity in tin dioxide thin films. J. Appl. Phys. 2009, 105, 103702. [Google Scholar] [CrossRef]
- Viana, E.R.; González, J.C.; Ribeiro, G.M.; De Oliveira, A.G. Photoluminescence and high-temperature persistent photoconductivity experiments in SnO2 nanobelts. J. Phys. Chem. C 2013, 117, 7844–7849. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, C.; Zhai, T.; Li, S.-L.; Wang, X.; Liao, M.; Tsukagoshi, K.; Golberg, D.; Bando, Y. Flexible SnO2 hollow nanosphere film based high-performance ultraviolet photodetector. Chem. Commun. 2013, 49, 3739–3741. [Google Scholar] [CrossRef] [PubMed]
- Giebelhaus, I.; Varechkina, E.; Fischer, T.; Rumyantseva, M.; Ivanov, V.; Gaskov, A.; Morante, J.R.; Arbiol, J.; Tyrra, W.; Mathur, S. One-dimensional CuO–SnO2 p–n heterojunctions for enhanced detection of H2S. J. Mater. Chem. A 2013, 1, 11261–11268. [Google Scholar] [CrossRef]
- Hyeon, D.Y.; Park, K.-I. Piezoelectric flexible energy harvester based on BaTiO3 thin film enabled by exfoliating the mica substrate. Energy Technol. 2019, 7, 1900638. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Poole, V.M.; Jesenovec, J.; Dutton, B.L.; McCloy, J.S.; McCluskey, M.D. Room-Temperature Persistent Photoconductivity in Barium Calcium Titanate. J. Electron. Mater. 2023, 52, 2499–2504. [Google Scholar] [CrossRef]
- Zhao, J.; Niu, G.; Ren, W.; Wang, L.; Zhang, N.; Sun, Y.; Wang, Q.; Shi, P.; Liu, M.; Zhao, Y. Polarization behavior oflead-free 0.94 (Bi0.5Na0.5) TiO3-0.06 BaTiO3 thin films with enhanced ferroelectric properties. J. Eur. Ceram. Soc. 2020, 40, 3928–3935. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Niu, G.; Zhang, N.; Zheng, K.; Quan, Y.; Wang, L.; Zhuang, J.; Wang, G.; Li, X. Ultra-high strain responses in lead-free (Bi0.5Na0.5) TiO3-BaTiO3-NaNbO3 ferroelectric thin films. J. Eur. Ceram. Soc. 2023, 43, 5511–5520. [Google Scholar] [CrossRef]
- Pan, S.S.; Liu, Q.W.; Zhao, J.G.; Li, G.H. Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on BixSn1-xO2 Intermediate Band. Semiconductor. ACS Appl. Mater. Interfaces 2017, 9, 28737–28742. [Google Scholar] [CrossRef]
- Dai, Z.R.; Pan, Z.W.; Wang, Z.L. Growth and structure evolution of novel tin oxide diskettes. J. Am. Chem. Soc. 2002, 124, 8673–8680. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, Z.B.; Li, H.R.; Li, S.; Zhi, Y.S.; Yan, Z.Y.; Huang, X.; Wei, X.H.; Tang, W.H.; Wu, Z.P. Ultrasensitive Flexible Solar-Blind Photodetectors Based on Graphene/Amorphous Ga2O3 van der Waals Heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 47714–47720. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yao, L.; Zhang, G.S.; Dionysiou, D.D.; Li, J.; Du, X.H. One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI). Appl. Catal. B-Environ. 2014, 144, 730–738. [Google Scholar] [CrossRef]
- Zhao, S.S.; Zhang, J.Q.; Fu, L. Liquid Metals: A Novel Possibility of Fabricating 2D Metal Oxides. Adv. Mater. 2021, 33, 2005544. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.H.; Zhu, M.; Pan, S.S.; Ge, J.; Hu, L. Giant photoresponse enhancement in Cr2O3 films by Ni doping-induced insulator-to-semiconductor transition. Ceram. Int. 2021, 47, 13655–13659. [Google Scholar] [CrossRef]
- Bai, K.L.; Fan, Z.H.; Zhao, G.C.; He, X.Y.; Zhu, Z.B.; Pan, S.S.; Ge, J.; He, C.G. Water engineering in lead free CsCu2I3 perovskite for high performance planar heterojunction photodetector applications. Ceram. Int. 2023, 49, 1970–1979. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, J. Photodetectors Based on Organic-Inorganic Hybrid Lead Halide Perovskites. Adv. Sci. 2018, 5, 1700256. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yan, F. Flexible Photodetectors Based on Novel Functional Materials. Small 2017, 13, 1701822. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Shi, H. Boosting Separation of Charge Carriers in 2D/0D BiOBr Nanoflower Sheets/BN Quantum Dots with the Lorentz Force via Magnetic Field. Energy Fuels 2022, 36, 11495–11502. [Google Scholar] [CrossRef]
- Dutta, R.; Bala, A.; Sen, A.; Spinazze, M.R.; Park, H.; Choi, W.; Yoon, Y.; Kim, S. Optical Enhancement of Indirect Bandgap Two-Dimensional Transition Metal Dichalcogenides for Multi-Functional Optoelectronic Sensors. Adv. Mater. 2023, 2303272. [Google Scholar] [CrossRef]
- Rao, H.; Chmidt, L.C.S.; Bonin, J.; Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017, 548, 74–77. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Wu, J.-M.; Kuo, C.-H. Ultraviolet photodetectors made from SnO2 nanowires. Thin Solid Film. 2009, 517, 3870–3873. [Google Scholar] [CrossRef]
- Kim, D.; Shin, G.; Yoon, J.; Jang, D.; Lee, S.-J.; Zi, G.; Ha, J.S. High performance stretchable UV sensor arrays of SnO2 nanowires. Nanotechnology 2013, 24, 315502. [Google Scholar] [CrossRef] [PubMed]
Solution | β | IDark | IΔ5min (μA) | |
---|---|---|---|---|
None | 1.65 × 103 | 6.98 × 10−1 | 15.6 μA | ─ |
Ethanol (99.5%) | 5.71 | 1.48 × 10−1 | 17.3 μA | 12.2 |
Methanol (99.85%) | 1.22 × 10−1 | 3.7 × 10−2 | 15.3 μA | 6.2 |
Propylene glycol (99%) | 9.41 × 10−2 | 5.44 × 10−2 | 20.3 μA | 4.0 |
Sodium sulfite (99.9%) | 2.53 × 10−2 | 4.79 × 10−2 | 12.1 μA | 1.5 |
Sodium nitrite (99.5%) | 4.69 × 10−2 | 5.40 × 10−2 | 11.8 μA | 0.9 |
Photodetector | Dark Current | Responsivity | Recovery Time | Refs. |
---|---|---|---|---|
SnO2 monolayer nanofilm | 60–90 μA/1 V | Not mentioned | >50 s | [28] |
SnO2 nanowire array | 77 µA/12 V | Not mentioned | >150 s | [51] |
Sb-doped SnO2 nanowire | 2 pA/1 V | 6250 A/W | ≈1 | [5] |
SnO2 nanowire | 19.4 nA/1 V | Not mentioned | >50 s | [6] |
SnO2 nanowire array | 2 pA/1 V | Not mentioned | 10 s | [52] |
SnO2 microrod | 13 µA/1 V | 3 × 105 A/W | <1 s | [4] |
BixSn1−xO2 (2D-BTO) (0.017 < x < 0.041) | 0.25 nA | 60 A/W | 1 s | [38] |
This work | 15.6 µA/5 V | 589 A/W | 5.71 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Xu, M.; Chen, F.; Zhai, R.; Wu, Y.; Zhao, Z.; Pan, S. Ultrahigh UV Responsivity Quasi-Two-Dimensional BixSn1−xO2 Films Achieved through Surface Reaction. Materials 2023, 16, 6988. https://doi.org/10.3390/ma16216988
Xu Z, Xu M, Chen F, Zhai R, Wu Y, Zhao Z, Pan S. Ultrahigh UV Responsivity Quasi-Two-Dimensional BixSn1−xO2 Films Achieved through Surface Reaction. Materials. 2023; 16(21):6988. https://doi.org/10.3390/ma16216988
Chicago/Turabian StyleXu, Zhihao, Miao Xu, Fang Chen, Rui Zhai, You Wu, Zhuan Zhao, and Shusheng Pan. 2023. "Ultrahigh UV Responsivity Quasi-Two-Dimensional BixSn1−xO2 Films Achieved through Surface Reaction" Materials 16, no. 21: 6988. https://doi.org/10.3390/ma16216988
APA StyleXu, Z., Xu, M., Chen, F., Zhai, R., Wu, Y., Zhao, Z., & Pan, S. (2023). Ultrahigh UV Responsivity Quasi-Two-Dimensional BixSn1−xO2 Films Achieved through Surface Reaction. Materials, 16(21), 6988. https://doi.org/10.3390/ma16216988