Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = metal-oxide nanowires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2480 KiB  
Article
Interface Design in Bimetallic PdNi Nanowires for Boosting Alcohol Oxidation Performances
by Zhen He, Huangxu Li and Lingwen Liao
Nanomaterials 2025, 15(13), 1047; https://doi.org/10.3390/nano15131047 - 5 Jul 2025
Viewed by 317
Abstract
The rational design of a bimetallic nanostructure with a phase separation and interface is of great importance to enhance electrocatalytic performance. Herein, PdNi heterostructures with controlled elemental distributions were constructed via a seeded growth strategy. Partially coated Ni islands in the Pd-Ni nanowire [...] Read more.
The rational design of a bimetallic nanostructure with a phase separation and interface is of great importance to enhance electrocatalytic performance. Herein, PdNi heterostructures with controlled elemental distributions were constructed via a seeded growth strategy. Partially coated Ni islands in the Pd-Ni nanowire and strained Pd branches in the Pd-NiPd nanowires are revealed, respectively. Impressively, Pd-NiPd nanowires with abundant branches exhibit a superior mass current density and cycling stability toward an ethanol oxidation reaction (EOR) and ethylene glycol oxidation reaction (EGOR). The highest mass activities of 8.63 A mgPd−1 and 12.53 A mgPd−1 for EOR and EGOR, respectively, are realized on the Pd-NiPd nanowires. Theoretical calculations indicate that the Pd (100)-PdNi (111) interface stands out as an active site for enhancing OH adsorption and the decreasing CO bonding interaction. This study not only puts forward a simple method to construct bimetallic nanostructures with desired elemental distributions and interfaces but also demonstrates the significance of interface engineering in regulating the catalytic activity of metallic nanomaterials. Full article
Show Figures

Figure 1

21 pages, 8232 KiB  
Article
Investigation of Complex ZnO-Porous Silicon Structures with Different Dimensions Obtained by Low-Temperature Synthesis
by Rashid Zhapakov, Danatbek Murzalinov, Mikhail Begunov, Tatyana Seredavina, Alena Gagarina, Yulia Spivak, Vyacheslav Moshnikov, Elena A. Dmitriyeva, Petr Osipov and Ainagul Kemelbekova
Processes 2025, 13(7), 2099; https://doi.org/10.3390/pr13072099 - 2 Jul 2025
Viewed by 385
Abstract
The study of the processes of low-temperature synthesis of one-dimensional particles, which are the basis for two- and three-dimensional structures, is relevant for materials science. The modified metal-stimulated electrochemical etching method made it possible to synthesize silicon nanowires with an average thickness of [...] Read more.
The study of the processes of low-temperature synthesis of one-dimensional particles, which are the basis for two- and three-dimensional structures, is relevant for materials science. The modified metal-stimulated electrochemical etching method made it possible to synthesize silicon nanowires with an average thickness of about 292.6 nm. Scanning electron microscopy has shown the formation of nanowires, flower-like structures, and clusters of matter after the deposition of zinc oxide on the porous surface. The hexagonal structure of ZnO crystallites was determined by X-ray diffraction spectroscopy. Studies of the initial sample by electron paramagnetic resonance (EPR) spectroscopy revealed a narrow signal in the center of the spectrum. The subtraction of the EPR spectra with a sequential increase in microwave power up to 8 mW shows the absence of saturation of the signal. This indicates an almost free flow of charges through the surface nanostructures under the influence of an external field. Heat treatment in an air atmosphere at 300 °C caused a significant increase in the intensity of the EPR spectrum. This led to an increase in the intensity of charge transfer through paramagnetic centers. Full article
Show Figures

Figure 1

29 pages, 8644 KiB  
Review
Recent Advances in Resistive Gas Sensors: Fundamentals, Material and Device Design, and Intelligent Applications
by Peiqingfeng Wang, Shusheng Xu, Xuerong Shi, Jiaqing Zhu, Haichao Xiong and Huimin Wen
Chemosensors 2025, 13(7), 224; https://doi.org/10.3390/chemosensors13070224 - 21 Jun 2025
Cited by 1 | Viewed by 832
Abstract
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing [...] Read more.
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing on their fundamental working mechanisms, sensing material design, device architecture optimization, and intelligent system integration. These sensors primarily operate based on changes in electrical resistance induced by interactions between gas molecules and sensing materials, including physical adsorption, charge transfer, and surface redox reactions. In terms of materials, metal oxide semiconductors, conductive polymers, carbon-based nanomaterials, and their composites have demonstrated enhanced sensitivity and selectivity through strategies such as doping, surface functionalization, and heterojunction engineering, while also enabling reduced operating temperatures. Device-level innovations—such as microheater integration, self-heated nanowires, and multi-sensor arrays—have further improved response speed and energy efficiency. Moreover, the incorporation of artificial intelligence (AI) and Internet of Things (IoT) technologies has significantly advanced signal processing, pattern recognition, and long-term operational stability. Machine learning (ML) algorithms have enabled intelligent design of novel sensing materials, optimized multi-gas identification, and enhanced data reliability in complex environments. These synergistic developments are driving resistive gas sensors toward low-power, highly integrated, and multifunctional platforms, particularly in emerging applications such as wearable electronics, breath diagnostics, and smart city infrastructure. This review concludes with a perspective on future research directions, emphasizing the importance of improving material stability, interference resistance, standardized fabrication, and intelligent system integration for large-scale practical deployment. Full article
Show Figures

Figure 1

18 pages, 4392 KiB  
Article
Trimethylamine Gas Sensor Based on Electrospun In2O3 Nanowires with Different Grain Sizes for Fish Freshness Monitoring
by Xiangrui Dong, Bo Zhang, Mengyao Shen, Qi Lu, Hao Shen, Yi Ni, Yuechen Liu and Haitao Song
Chemosensors 2025, 13(6), 218; https://doi.org/10.3390/chemosensors13060218 - 14 Jun 2025
Viewed by 2647
Abstract
Seafood, especially marine fish, is highly prone to spoilage during processing, transportation, and storage. It releases pungent trimethylamine (TMA) gas, which severely affects food quality and safety. Metal–oxide–semiconductor (MOS) gas sensors for TMA detection offer a rapid, convenient, and accurate method for assessing [...] Read more.
Seafood, especially marine fish, is highly prone to spoilage during processing, transportation, and storage. It releases pungent trimethylamine (TMA) gas, which severely affects food quality and safety. Metal–oxide–semiconductor (MOS) gas sensors for TMA detection offer a rapid, convenient, and accurate method for assessing fish freshness. Indium oxide (In2O3) has shown potential as an effective sensing material for the detection of TMA. In this work, one-dimensional In2O3 nanowires with different grain sizes and levels of crystallinity were synthetized using the electrospinning technique and underwent different thermal calcination processes. Gas-sensing tests showed that the In2O3–3 °C/min–500 °C gas sensor exhibited an outstanding performance, including a high response (Ra/Rg = 47.0) to 100 ppm TMA, a short response time (6 s), a low limit of detection (LOD, 0.0392 ppm), and an excellent long-term stability. Furthermore, the sensor showed promising experimental results in monitoring the freshness of Larimichthys crocea (L. crocea). By analyzing the relationship between the grain size and crystallinity of the In2O3 samples, a mechanism for the enhanced gas-sensing performance was proposed. This work provides a novel strategy for designing and fabricating gas sensors for TMA detection and highlights their potential for broad applications in real-time fish freshness monitoring. Full article
Show Figures

Figure 1

63 pages, 12842 KiB  
Review
Advances in One-Dimensional Metal Sulfide Nanostructure-Based Photodetectors with Different Compositions
by Jing Chen, Mingxuan Li, Haowei Lin, Chenchen Zhou, Wenbo Chen, Zhenling Wang and Huiying Li
J. Compos. Sci. 2025, 9(6), 262; https://doi.org/10.3390/jcs9060262 - 26 May 2025
Cited by 1 | Viewed by 1045
Abstract
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates [...] Read more.
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates for high-efficiency photodetectors due to their abundant surface vacancies and trap states, which facilitate oxygen adsorption and dissociation on their surfaces, thereby suppressing intrinsic carrier recombination while achieving enhanced optoelectronic performance. This review focuses on recent advancements in the performance of photodetectors fabricated using 1D binary metal sulfides as primary photosensitive layers, including nanowires, nanorods, nanotubes, and their heterostructures. Initially, the working principles of photodetectors are outlined, along with the key parameters and device types that influence their performance. Subsequently, the synthesis methods, device fabrication, and photoelectric properties of several extensively studied 1D metal sulfides and their composites, such as ZnS, CdS, SnS, Bi2S3, Sb2S3, WS2, and SnS2, are examined. Additionally, the current research status of 1D nanostructures of MoS2, TiS3, ReS2, and In2S3, which are predominantly utilized as 2D materials, is explored and summarized. For systematic performance evaluation, standardized metrics encompassing responsivity, detectivity, external quantum efficiency, and response speed are comprehensively tabulated in dedicated sub-sections. The review culminates in proposing targeted research trajectories for advancing photodetection systems employing 1D binary metal sulfides. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

17 pages, 9301 KiB  
Review
Recent Progress in Copper Nanowire-Based Flexible Transparent Conductors
by Jiaxin Shi, Mingyang Zhang, Su Ding and Ge Cao
Coatings 2025, 15(4), 465; https://doi.org/10.3390/coatings15040465 - 15 Apr 2025
Viewed by 1119
Abstract
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical [...] Read more.
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical applications. This review discusses the development and challenges associated with Cu NW-based flexible transparent conductors (FTCs). Cu NWs are considered a promising alternative to traditional materials like ITO, thanks to their high electrical conductivity and low cost. This paper explores various synthesis methods for Cu NWs, including template-assisted synthesis, hydrazine reduction, and hydrothermal processes, while highlighting the advantages and limitations of each approach. The key challenges, such as contact resistance, oxidation, and the need for protective coatings, are also addressed. Several strategies to enhance the conductivity and stability of Cu NW-based FTCs are proposed, including thermal sintering, laser sintering, acid treatment, and photonic sintering. Additionally, protective coatings like noble metal core–shell layers, electroplated layers, and conductive polymers like PEDOT:PSS are discussed as effective solutions. The integration of graphene with Cu NWs is explored as a promising method to improve oxidation resistance and overall performance. The review concludes with an outlook on the future of Cu NWs in flexible electronics, emphasizing the need for scalable, cost-effective solutions to overcome current challenges and improve the practical application of Cu NW-based FTCs in advanced technologies such as displays, solar cells, and flexible electronics. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

17 pages, 4841 KiB  
Article
Fabricating Silver Nanowire–IZO Composite Transparent Conducting Electrodes at Roll-to-Roll Speed for Perovskite Solar Cells
by Justin C. Bonner, Bishal Bhandari, Garrett J. Vander Stouw, Geethanjali Bingi, Kurt A. Schroder, Julia E. Huddy, William J. Scheideler and Julia W. P. Hsu
Nanomanufacturing 2025, 5(2), 5; https://doi.org/10.3390/nanomanufacturing5020005 - 29 Mar 2025
Viewed by 700
Abstract
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag [...] Read more.
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag metal bus lines (Ag MBLs) coated with silver nanowires (AgNWs) and indium zinc oxide (IZO) layers. All materials are solutions deposited at speeds exceeding 10 m/min using gravure printing. We conduct a systematic study to optimize coating parameters and tune solvent composition to achieve a uniform AgNW network. The entire stack undergoes photonic curing, a low-energy annealing method that can be completed at high speeds and will not damage the plastic substrates. The resulting hybrid TCEs exhibit a transmittance of 92% averaged from 400 nm to 1100 nm and a sheet resistance of 11 Ω/sq. Mechanical durability is tested by bending the hybrid TCEs to a strain of 1% for 2000 cycles. The results show a minimal increase (<5%) in resistance. The high-throughput potential is established by showing that each hybrid TCE fabrication step can be completed at 30 m/min. We further fabricate methylammonium lead iodide solar cells to demonstrate the practical use of these TCEs, achieving an average power conversion efficiency (PCE) of 13%. The high-performance hybrid TCEs produced using R2R-compatible processes show potential as a viable choice for replacing vacuum-deposited indium tin oxide films on PET. Full article
Show Figures

Figure 1

24 pages, 6826 KiB  
Article
Preparation of NiO NWs by Thermal Oxidation for Highly Selective Gas-Sensing Applications
by Marwa Ben Arbia, Sung-Ho Kim, Jun-Bo Yoon and Elisabetta Comini
Sensors 2025, 25(7), 2075; https://doi.org/10.3390/s25072075 - 26 Mar 2025
Cited by 2 | Viewed by 837
Abstract
This paper presents a novel approach for fabricating porous NiO films decorated with nanowires, achieved through sputtering followed by thermal oxidation of a metallic layer. Notably, we successfully fabricate NiO nanowires using this simple and cost-effective method, demonstrating its potential applicability in the [...] Read more.
This paper presents a novel approach for fabricating porous NiO films decorated with nanowires, achieved through sputtering followed by thermal oxidation of a metallic layer. Notably, we successfully fabricate NiO nanowires using this simple and cost-effective method, demonstrating its potential applicability in the gas-sensing field. Furthermore, by using the film of our nanowires, we are able to easily prepare NiO sensors and deposit the required Pt electrodes directly on the film. This is a key advantage, as it simplifies the fabrication process and makes it easier to integrate the sensors into practical gas-sensing devices without the need for nanostructure transfer or intricate setups. Scanning electron microscopy (SEM) reveals the porous structure and nanowire formation, while X-ray diffraction (XRD) confirms the presence of the NiO phase. As a preliminary investigation, the gas-sensing properties of NiO films with varying thicknesses were evaluated at different operating temperatures. The results indicate that thinner layers exhibit superior performances. Gas measurements confirm the p-type nature of the NiO samples, with sensors showing high responsiveness and selectivity toward NO2 at an optimal temperature of 200 °C. However, incomplete recovery is observed due to the high binding energy of NO2 molecules. At higher temperatures, sufficient activation energy enables a full sensor recovery but with reduced response. The paper discusses the adsorption–desorption reaction mechanisms on the NiO surface, examines how moisture impacts the enhanced responsiveness of Pt-NiO (2700%) and Au-NiO (400%) sensors, and highlights the successful fabrication of NiO nanowires through a simple and cost-effective method, presenting a promising alternative to more complex approaches. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Sensors 2023)
Show Figures

Figure 1

33 pages, 8045 KiB  
Review
A Review of Readout Circuit Schemes Using Silicon Nanowire Ion-Sensitive Field-Effect Transistors for pH-Sensing Applications
by Jungho Joo, Hyunsun Mo, Seungguk Kim, Seonho Shin, Ickhyun Song and Dae Hwan Kim
Biosensors 2025, 15(4), 206; https://doi.org/10.3390/bios15040206 - 22 Mar 2025
Viewed by 801
Abstract
This paper reviews various design approaches for sensing schemes that utilize silicon nanowire (SiNW) ion-sensitive field-effect transistors (ISFETs) for pH-sensing applications. SiNW ISFETs offer advantageous characteristics, including a high surface-to-volume ratio, fast response time, and suitability for integration with complementary metal oxide semiconductor [...] Read more.
This paper reviews various design approaches for sensing schemes that utilize silicon nanowire (SiNW) ion-sensitive field-effect transistors (ISFETs) for pH-sensing applications. SiNW ISFETs offer advantageous characteristics, including a high surface-to-volume ratio, fast response time, and suitability for integration with complementary metal oxide semiconductor (CMOS) technology. This review focuses on SiNW ISFET-based biosensors in three key aspects: (1) major fabrication processes and device structures; (2) theoretical analysis of key performance parameters in readout circuits such as sensitivity, linearity, noise immunity, and output range in different system configurations; and (3) an overview of existing readout circuits with quantitative evaluations of N-type and P-type current-mirror-based circuits, highlighting their strengths and limitations. Finally, this paper proposes a modified N-type readout scheme integrating an operational amplifier with a negative feedback network to overcome the low sensitivity of conventional N-type circuits. This design enhances gain control, linearity, and noise immunity while maintaining stability. These advancements are expected to contribute to the advancement of the current state-of-the-art SiNW ISFET-based readout circuits. Full article
(This article belongs to the Special Issue Biosensors Based on Transistors)
Show Figures

Figure 1

11 pages, 2161 KiB  
Article
P-Doped Metal–Organic Framework (MOF)-Derived Co3O4 Nanowire Arrays Supported on Nickle Foam: An Efficient Urea Electro-Oxidation Catalyst
by Yong Liu, Junqing Ma, Yifei Pei, Xinyue Han, Xinyuan Ren, Yanfang Liang, Can Li, Tingting Liang, Fang Wang and Xianming Liu
Coatings 2025, 15(2), 226; https://doi.org/10.3390/coatings15020226 - 14 Feb 2025
Viewed by 931
Abstract
The urea electro-oxidation reaction (UOR) is emerging as a new energy conversion technology and a promising method for alleviating water eutrophication problems. However, a rationally designed structure of the electrode materials is urgently required to achieve high UOR performance. Herein, P-doped MOF-derived Co [...] Read more.
The urea electro-oxidation reaction (UOR) is emerging as a new energy conversion technology and a promising method for alleviating water eutrophication problems. However, a rationally designed structure of the electrode materials is urgently required to achieve high UOR performance. Herein, P-doped MOF-derived Co3O4 nanowire arrays grown on nickel foam (P-Co3O4/NF) are successfully synthesized via the growth of Co-MOF and subsequent calcination followed by phosphorization treatment. Owing to the optimized electronic structure, the as-prepared P-Co3O4/NF composite exhibits much higher UOR electrocatalytic performance than the undoped Co3O4/NF sample. Beyond this, the meticulous structure of the one-dimensional nanowire arrays and the three-dimensional skeleton structure of nickel foam contribute to the enhanced electrocatalytic activity and stability toward UOR. As a result, the P-Co3O4/NF composite displays a low overpotential of 1.419 V vs. RHE at 50 mA cm−2, a small Tafel slope of 82 mV dec−1, as well as favorable long-term stability over 65,000 s in 1.0 M KOH with 1.0 M urea. This work opens a new avenue in designing non-precious electrocatalysts for high-performance urea electro-oxidation reactions. Full article
Show Figures

Figure 1

44 pages, 11801 KiB  
Review
Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures
by Katsuhiko Ariga
Materials 2025, 18(3), 654; https://doi.org/10.3390/ma18030654 - 1 Feb 2025
Cited by 9 | Viewed by 1597
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related [...] Read more.
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol–gel materials, layered double hydroxides, metal–organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics. Full article
Show Figures

Graphical abstract

19 pages, 2712 KiB  
Article
Implementing an Analytical Model to Elucidate the Impacts of Nanostructure Size and Topology of Morphologically Diverse Zinc Oxide on Gas Sensing
by Sanju Gupta and Haiyang Zou
Chemosensors 2025, 13(2), 38; https://doi.org/10.3390/chemosensors13020038 - 26 Jan 2025
Cited by 3 | Viewed by 3027
Abstract
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly [...] Read more.
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly influenced the gas sensors by means of surface catalytic activities. This work examines the impact of morphological and topological networked assembly of zinc oxide (ZnO) nanostructures, including microparticles and nanoparticles (0D), nanowires and nanorods (1D), nanodisks (2D), and hierarchical networks of tetrapods (3D). Gas sensors consisting of vertically aligned ZnO nanorods (ZnO–NR) and topologically interconnected tetrapods (T–ZnO) of varying diameter and arm thickness synthesized using aqueous phase deposition and flame transport method on interdigitated Pt electrodes are evaluated for methane detection. Smaller-diameter nanorods and tetrapod arms (nanowire-like), having higher surface-to-volume ratios with reasonable porosity, exhibit improved sensing behavior. Interestingly, when the nanorods’ diameter and interconnected tetrapod arm thickness were comparable to the width of the depletion layer, a significant increase in sensitivity (from 2 to 30) and reduction in response/recovery time (from 58 s to 5.9 s) resulted, ascribed to rapid desorption of analyte species. Additionally, nanoparticles surface-catalyzed with Pd (~50 nm) accelerated gas sensing and lowered operating temperature (from 200 °C to 50 °C) when combined with UV photoactivation. We modeled the experimental findings using a modified general formula for ZnO methane sensors derived from the catalytic chemical reaction between methane molecules and oxygen ions and considered the structural surface-to-volume ratios (S/V) and electronic depletion region width (Ld) applicable to other gas sensors (e.g., SnO2, TiO2, MoO3, and WO3). Finally, the effects of UV light excitation reducing detection temperature help to break through the bottleneck of ZnO-based materials as energy-saving chemiresistors and promote applications relevant to environmental and industrial harmful gas detection. Full article
Show Figures

Figure 1

11 pages, 2505 KiB  
Article
Enhanced Photocatalytic Oxidative Coupling of Methane over Metal-Loaded TiO2 Nanowires
by Shuang Song, Jiongcan Xiang, Hui Kang and Fengming Yang
Molecules 2025, 30(2), 206; https://doi.org/10.3390/molecules30020206 - 7 Jan 2025
Viewed by 1172
Abstract
The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO2 nanowires (TiO2 NWs) was performed. With metal loading, the electric and optical properties of TiO2 NWs were adjusted, contributing to the improvement of the activity and selectivity of the [...] Read more.
The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO2 nanowires (TiO2 NWs) was performed. With metal loading, the electric and optical properties of TiO2 NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.0 Au/TiO2 NW catalyst exhibits an outstanding C2H6 production rate (4901 μmol g−1 h−1) and selectivity (70%), alongside the minor production of C3H8 and C2H4, achieving a total C2–C3 hydrocarbon selectivity of 75%. In contrast, catalysts loaded with Ag, Pd, and Pt show significantly lower activity, with Pt/TiO2 NWs producing only CO2, indicating a propensity for the deep oxidation of methane. The O2-TPD analyses reveal that Au facilitates mild O2 adsorption and activation, whereas Pt triggers excessive oxidation. Spectroscopic and kinetic studies demonstrate that Au loading not only enhances the separation efficiency of photogenerated electron–hole pairs, but also promotes the generation of active oxygen species in moderate amounts, which facilitates the formation of methyl radicals and their coupling into C2H6 while suppressing over-oxidation to CO2. This work provides novel insights and design strategies for developing efficient photocatalysts. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Storage and Conversion)
Show Figures

Figure 1

17 pages, 6438 KiB  
Article
Synthesis and Study of Oxide Semiconductor Nanoheterostructures in SiO2/Si Track Template
by Alma Dauletbekova, Diana Junisbekova, Zein Baimukhanov, Aivaras Kareiva, Anatoli I. Popov, Alexander Platonenko, Abdirash Akilbekov, Ainash Abdrakhmetova, Gulnara Aralbayeva, Zhanymgul Koishybayeva and Jonibek Khamdamov
Crystals 2024, 14(12), 1087; https://doi.org/10.3390/cryst14121087 - 18 Dec 2024
Cited by 1 | Viewed by 1222
Abstract
In this study, chemical deposition was used to synthesize structures of Ga2O3 -NW/SiO2/Si (NW—nanowire) at 348 K and SnO2-NW/SiO2/Si at 323 K in track templates SiO2/Si (either n- or p-type). The resulting [...] Read more.
In this study, chemical deposition was used to synthesize structures of Ga2O3 -NW/SiO2/Si (NW—nanowire) at 348 K and SnO2-NW/SiO2/Si at 323 K in track templates SiO2/Si (either n- or p-type). The resulting crystalline nanowires were δ-Ga2O3 and orthorhombic SnO2. Computer modeling of the delta phase of gallium oxide yielded a lattice parameter of a = 9.287 Å, which closely matched the experimental range of 9.83–10.03 Å. The bandgap is indirect with an Eg = 5.5 eV. The photoluminescence spectra of both nanostructures exhibited a complex band when excited by light with λ = 5.16 eV, dominated by luminescence from vacancy-type defects. The current–voltage characteristics of δ-Ga2O3 NW/SiO2/Si-p showed one-way conductivity. This structure could be advantageous in devices where a reverse current is undesirable. The p-n junction with a complex structure was formed. This junction consists of a polycrystalline nanowire base exhibiting n-type conductivity and a monocrystalline Si substrate with p-type conductivity. The I–V characteristics of SnO2-NW/SiO2/Si suggested near-metallic conductivity due to the presence of metallic tin. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 2121 KiB  
Article
Facile Hydrothermal Synthesis and Resistive Switching Mechanism of the α-Fe2O3 Memristor
by Zhiqiang Yu, Qingcheng Wang, Jinhao Jia, Wenbo Kang, Meilian Ou and Zhimou Xu
Molecules 2024, 29(23), 5604; https://doi.org/10.3390/molecules29235604 - 27 Nov 2024
Viewed by 1122
Abstract
Among the transition metal oxides, hematite (α-Fe2O3) has been widely used in the preparation of memristors because of its excellent physical and chemical properties. In this paper, α-Fe2O3 nanowire arrays with a preferred orientation along the [...] Read more.
Among the transition metal oxides, hematite (α-Fe2O3) has been widely used in the preparation of memristors because of its excellent physical and chemical properties. In this paper, α-Fe2O3 nanowire arrays with a preferred orientation along the [110] direction were prepared by a facile hydrothermal method and annealing treatment on the FTO substrate, and then α-Fe2O3 nanowire array-based Au/α-Fe2O3/FTO memristors were obtained by plating the Au electrodes on the as-prepared α-Fe2O3 nanowire arrays. The as-prepared α-Fe2O3 nanowire array-based Au/α-Fe2O3/FTO memristors have demonstrated stable nonvolatile bipolar resistive switching behaviors with a high resistive switching ratio of about two orders of magnitude, good resistance retention (up to 103 s), and ultralow set voltage (Vset = +2.63 V) and reset voltage (Vreset = −2 V). In addition, the space charge-limited conduction (SCLC) mechanism has been proposed to be in the high resistance state, and the formation and destruction of the conductive channels modulated by oxygen vacancies have been suggested to be responsible for the nonvolatile resistive switching behaviors of the Au/α-Fe2O3/FTO memristors. Our results show the potential of the Au/α-Fe2O3/FTO memristors in nonvolatile memory applications. Full article
Show Figures

Figure 1

Back to TopTop