Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = metal-free graphitic carbon nitride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 5530 KB  
Review
The Role of Surface Chemistry in Carbon-Supported Metal-Catalyzed Processes of Fine Organic Synthesis
by Linda Zh. Nikoshvili, Elena S. Bakhvalova and Mikhail G. Sulman
Chemistry 2025, 7(6), 198; https://doi.org/10.3390/chemistry7060198 - 11 Dec 2025
Viewed by 859
Abstract
At present, various carbon materials are available as supports for metal-containing catalytic species. Carbon-based materials find application in many industrial heterogeneous catalytic processes, such as selective hydrogenation, oxidation, cross-coupling, etc. The simplicity of preparation, low cost, high stability, and the possibility of tuning [...] Read more.
At present, various carbon materials are available as supports for metal-containing catalytic species. Carbon-based materials find application in many industrial heterogeneous catalytic processes, such as selective hydrogenation, oxidation, cross-coupling, etc. The simplicity of preparation, low cost, high stability, and the possibility of tuning surface composition and porosity cause the widespread use of metal catalysts supported on carbon materials. The surface chemistry of carbon supports plays a crucial role in catalysis, since it allows for control over the sizes of metal particles and their electronic properties. Moreover, metal-free functionalized carbonaceous materials themselves can act as catalysts. In this review, we discuss the recent progress in the field of the application of carbon supports in catalysis by metals, with a focus on the role of carbon surface functionalities and metal-support interactions in catalytic processes used in fine organic synthesis. Among carbon materials, functionalized/doped (O, N, S, P, B) activated carbons, graphenes, carbon nanotubes, graphitic carbon nitride, and carbonizates of polymers are considered supports for mono- and bimetallic nanoparticles. Full article
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)
Show Figures

Graphical abstract

28 pages, 9180 KB  
Article
Optimized Synthesis Strategy of Mxene-Loaded Graphitic Carbon Nitride (g-C3N4) for Enhanced Photocatalytic Degradation of Rhodamine B
by Bayazid Bustami, Parvej Rahman Alif, Md Mahfuzur Rahman, Mohaiminul Islam and Alam S. M. Nur
ChemEngineering 2025, 9(6), 127; https://doi.org/10.3390/chemengineering9060127 - 10 Nov 2025
Viewed by 1669
Abstract
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by [...] Read more.
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by fast recombination of charge carriers and a low surface area. In this study, we report a simple hydrothermal method to synthesize exfoliated porous g-C3N4 (E-PGCN) combined with Ti3C2 MXene to form a heterojunction composite that addresses these issues. Various characterization techniques (FTIR, XRD, XPS, SEM, BET) confirmed that adding MXene improves light absorption, increases surface area (53.7 m2/g for the composite versus 21.4 m2/g for bulk g-C3N4 (BGCN)), and enhances charge separation at the interface. Under UV-visible light irradiation with Rhodamine B (RhB) as the model pollutant, the E-PGCN/Ti3C2 MXene composite containing 3 wt% MXene demonstrated an impressive degradation efficiency of 93.2%. This performance is superior to BGCN (66.6%), E-PGCN (82.5%), and E-PGCN/Ti3C2 MXene-5 wt% composites (81%). This is due to the excess Mxene which caused agglomeration and reduced activity. Scavenger studies identified electron radicals as the dominant reactive species, with optimal activity at pH ~4.5. This enhanced performance, 1.4 times greater than BGCN and 1.13 times higher than E-PGCN, is ascribed to the synergistic interplay between the excellent electrical conductivity of MXene and the porous structural features of E-PGCN. This work highlights the importance of morphological engineering and heterojunction design for advancing metal-free photocatalysts, offering a scalable strategy for sustainable water purification. Full article
Show Figures

Figure 1

11 pages, 1827 KB  
Article
Synergistic Enhancement of Photocatalytic H2O2 Production over Carbon Nitride Oxide/Biochar Composites
by Ruolin Cheng, Yue Wang and Shijian Lu
Molecules 2025, 30(22), 4323; https://doi.org/10.3390/molecules30224323 - 7 Nov 2025
Viewed by 844
Abstract
The green synthesis of hydrogen peroxide (H2O2) is crucial for sustainable chemical production, but pristine graphitic carbon nitride (g-C3N4) suffers from low H2O2 yield owing to limited visible light absorption and swift [...] Read more.
The green synthesis of hydrogen peroxide (H2O2) is crucial for sustainable chemical production, but pristine graphitic carbon nitride (g-C3N4) suffers from low H2O2 yield owing to limited visible light absorption and swift charge recombination. Herein, a novel metal-free carbon nitride oxide/biochar photocatalytic system (CNO-B) was developed via a simple low-temperature calcination without post-treatment. The synergistic effect of carbonyl functionalization and biochar integration significantly enhanced light harvesting capabilities and charge carrier separation efficiency, achieving an exceptional H2O2 production rate of 2483 μmol g−1 h−1 upon irradiation (five times higher compared with pure g-C3N4). This work provides valuable insights into minimalist synthesis strategies for designing functional materials and demonstrates a practical approach for valorizing biomass waste in sustainable photocatalytic applications. Full article
(This article belongs to the Special Issue Recent Research on Photocatalysis for Energy Storage and Conversion)
Show Figures

Graphical abstract

15 pages, 1737 KB  
Article
Comparative Thermal and Supramolecular Hydrothermal Synthesis of g-C3N4 Toward Efficient Photocatalytic Degradation of Gallic Acid
by Fernando Cantor Pérez, Julia Liliana Rodríguez Santillán, Ricardo Santillán Peréz, Iliana Fuentes Camargo, Issis C. Romero Ibarra, Jesús I. Guzmán Castañeda, Jorge L. Vazquez-Arce, Hugo Tiznado and Hugo Martínez Gutiérrez
Catalysts 2025, 15(9), 858; https://doi.org/10.3390/catal15090858 - 5 Sep 2025
Viewed by 1154
Abstract
Gallic acid (GA), a polyphenol extensively used in the food, wine, and pharmaceutical industries, is known for its inhibitory effects on soil microbial activity. Photocatalytic degradation offers an environmentally friendly solution for GA removal from water. In this work, graphitic carbon nitride (g-C [...] Read more.
Gallic acid (GA), a polyphenol extensively used in the food, wine, and pharmaceutical industries, is known for its inhibitory effects on soil microbial activity. Photocatalytic degradation offers an environmentally friendly solution for GA removal from water. In this work, graphitic carbon nitride (g-C3N4) photocatalysts were synthesized by two methods: thermal exfoliation (CN-E) and supramolecular assembly via hydrothermal processing (HCN-II). Structural analyses by XRD, FTIR, and XPS confirmed the formation of the g-C3N4 framework, while SEM revealed that CN-E consisted of folded and curled nanosheets, whereas HCN-II displayed a polyhedral–nanosheet hybrid architecture with internal channels. Both materials achieved approximately 80% GA degradation within 180 min under visible-light irradiation, yet HCN-II exhibited a superior apparent rate constant (k = 0.01156 min−1) compared with CN-E. Radical trapping experiments demonstrated that O2 and h+ were the primary reactive oxygen species involved, with OH• making a minor contribution. The enhanced performance of HCN-II is attributed to its higher surface area, improved light harvesting, and efficient charge separation derived from supramolecular assembly. These findings highlight the potential of engineered g-C3N4 nanostructures as efficient, metal-free photocatalysts for the degradation of recalcitrant organic pollutants in water treatment applications. Full article
Show Figures

Figure 1

35 pages, 3619 KB  
Review
Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis
by Mengyang Li, Liuqing Yang, Yizhe Song, Hongru Hou, Yujie Fang, Yucheng Liu, Lihao Xie and Dingze Lu
Inorganics 2025, 13(9), 300; https://doi.org/10.3390/inorganics13090300 - 5 Sep 2025
Viewed by 2048
Abstract
The metal-free polymeric semiconductor graphitic carbon nitride (g-C3N4) has emerged as a promising material for photocatalytic applications due to its responsiveness to visible light, adjustable electronic structure, and stability. This review systematically summarizes recent advances in preparation strategies, including [...] Read more.
The metal-free polymeric semiconductor graphitic carbon nitride (g-C3N4) has emerged as a promising material for photocatalytic applications due to its responsiveness to visible light, adjustable electronic structure, and stability. This review systematically summarizes recent advances in preparation strategies, including thermal polycondensation, solvothermal synthesis, and template methods. Additionally, it discusses modification approaches such as heterojunction construction, elemental doping, defect engineering, morphology control, and cocatalyst loading. Furthermore, it explores the diverse applications of g-C3N4-based materials in photocatalysis, including hydrogen (H2) evolution, carbon dioxide (CO2) reduction, pollutant degradation, and the emerging field of piezoelectric photocatalysis. Particular attention is given to g-C3N4 composites that are rationally designed to enhance charge separation and light utilization. Additionally, the synergistic mechanism of photo–piezocatalysis is examined, wherein a mechanically induced piezoelectric field facilitates carrier separation and surface reactions. Despite significant advancements, challenges persist, including limited visible-light absorption, scalability issues, and uncertainties in the multi-field coupling mechanisms. The aim of this review is to provide guidelines for future research that may lead to the development of high-performance and energy-efficient catalytic systems in the context of environmental and energy applications. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Figure 1

26 pages, 4438 KB  
Review
Carbon Nitride Gels: Synthesis, Modification, and Water Decontamination Applications
by Qinglan Tang, Zhen Zhang, Yuwei Pan, Michael K. H. Leung, Yizhen Zhang and Keda Chen
Gels 2025, 11(9), 685; https://doi.org/10.3390/gels11090685 - 27 Aug 2025
Cited by 2 | Viewed by 1004
Abstract
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor [...] Read more.
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor recyclability, and limited exposure of active sites. Structuring g-C3N4 into hydrogels or aerogels—three-dimensional porous networks offering high surface area, rapid mass transport, and tunable porosity—represents a transformative solution. This review comprehensively examines recent advances in g-C3N4-based gels, covering synthesis strategies such as crosslinking (physical/chemical), in situ polymerization, and the sol–gel and template method. Modification approaches including chemical composition and structural engineering are systematically categorized to elucidate their roles in optimizing catalytic activity, stability, and multifunctionality. Special emphasis is placed on environmental applications, including the removal of emerging contaminants and heavy metal ions, as well as solar-driven interfacial evaporation for desalination. Throughout, the critical interplay between gel structure/composition and performance is evaluated to establish design principles for next-generation materials. Finally, this review identifies current challenges regarding scalable synthesis, long-term stability, in-depth mechanistic understanding, and performance in complex real wastewater matrices. This work aims to provide valuable insights and guidance for advancing g-C3N4-based hydrogel and aerogel technologies in environmental applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

12 pages, 2284 KB  
Article
Metal-Free Cellulose Carbon Nanofiber Supported Graphitic Carbon Nitride for High-Efficient BPA Degradation by Photcatalytic Peroxymonosulfate Activation
by Jingjing Liu, Guilong Gao and Lu Gan
Catalysts 2025, 15(8), 788; https://doi.org/10.3390/catal15080788 - 18 Aug 2025
Viewed by 883
Abstract
Herein, carbon nanofiber (CNF) was prepared by pyrolyzing electrospun cellulose nanofiber, which was further used to incorporate with graphitic carbon nitride (g-C3N4) to prepare metal-free photocatalyst (CNF/g-C3N4). CNF/g-C3N4 was then used to [...] Read more.
Herein, carbon nanofiber (CNF) was prepared by pyrolyzing electrospun cellulose nanofiber, which was further used to incorporate with graphitic carbon nitride (g-C3N4) to prepare metal-free photocatalyst (CNF/g-C3N4). CNF/g-C3N4 was then used to degrade bisphenol A (BPA) under visible light with the assistance of peroxymonosulfate (PMS). It was illustrated from the results that CNF with conjugated aromatic structure could significantly enhance the light absorption range and capability. At the existence of PMS, 0.5 g/L of CNF/g-C3N4 could efficiently degrade 0.05 mM of BPA within 45 min with a high total organic carbon removal rate of >70% under visible light. It was found that the reaction system could generate various reactive oxygen species (ROSs) including hydroxyl radical, superoxide radical and singlet oxygen for BPA degradation. Due to the existence of these species, the reaction system exhibited high performance adaptability towards abundant water matrices and high stability under consecutive runs. This work prospects a new strategy to develop a high-performance advanced oxidation system for quick organic pollutant degradation and mineralization. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

12 pages, 2577 KB  
Article
Single-Atom Catalysts Dispersed on Graphitic Carbon Nitride (g-CN): Eley–Rideal-Driven CO-to-Ethanol Conversion
by Jing Wang, Qiuli Song, Yongchen Shang, Yuejie Liu and Jingxiang Zhao
Nanomaterials 2025, 15(14), 1111; https://doi.org/10.3390/nano15141111 - 17 Jul 2025
Cited by 2 | Viewed by 936
Abstract
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol [...] Read more.
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol conversion on single metal atoms anchored on graphitic carbon nitride (TM/g–CN). We showed that these metal atoms stably coordinate with edge N sites of g–CN to form active catalytic centers. Screening 20 TM/g–CN candidates, we identified V/g–CN and Zn/g–CN as optimal catalysts: both exhibit low free-energy barriers (<0.50 eV) for the key *CO hydrogenation steps and facilitate C–C coupling via an Eley–Rideal mechanism with a negligible kinetic barrier (~0.10 eV) to yield ethanol at low limiting potentials, which explains their superior COER performance. An analysis of d-band centers, charge transfer, and bonding–antibonding orbital distributions revealed the origin of their activity. This work provides theoretical insights and useful guidelines for designing high-performance single-atom COER catalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

29 pages, 3423 KB  
Review
A Review on Biomedical Applications of Plant Extract-Mediated Metallic Ag, Au, and ZnO Nanoparticles and Future Prospects for Their Combination with Graphitic Carbon Nitride
by Priyanka Panchal, Protima Rauwel, Satya Pal Nehra, Priyanka Singh, Mamta Karla, Glemarie Hermosa and Erwan Rauwel
Pharmaceuticals 2025, 18(6), 820; https://doi.org/10.3390/ph18060820 - 29 May 2025
Cited by 6 | Viewed by 3211
Abstract
Since the publication of the 12 principles of green chemistry in 1998 by Paul Anastas and John Warner, the green synthesis of metal and metal oxide nanoparticles has emerged as an eco-friendly and sustainable alternative to conventional chemical methods. Plant-based synthesis utilizes natural [...] Read more.
Since the publication of the 12 principles of green chemistry in 1998 by Paul Anastas and John Warner, the green synthesis of metal and metal oxide nanoparticles has emerged as an eco-friendly and sustainable alternative to conventional chemical methods. Plant-based synthesis utilizes natural extracts as reducing and stabilizing agents, minimizing harmful chemicals and toxic by-products. Ag nanoparticles (Ag-NPs) exhibit strong antibacterial activity; Au nanoparticles (Au-NPs) are seen as a promising carrier for drug delivery and diagnostics because of their easy functionalization and biocompatibility; and ZnO nanoparticles (ZnO-NPs), on the other hand, produce reactive oxygen species (ROS) that kill microorganisms effectively. These nanoparticles also demonstrate antioxidant properties by scavenging free radicals, reducing oxidative stress, and preventing degenerative diseases. Green syntheses based on plant extracts enhance biocompatibility and therapeutic efficacy, making them suitable for antimicrobial, anticancer, and antioxidant applications. Applying a similar “green synthesis” for advanced nanostructures like graphitic carbon nitride (GCN) is an environmentally friendly alternative to the traditional ways of doing things. GCN exhibits exceptional photocatalytic activity, pollutant degradation efficiency, and electronic properties, with applications in environmental remediation, energy storage, and biomedicine. This review highlights the potential of green-synthesized hybrid nanocomposites combining nanoparticles and GCN as sustainable solutions for biomedical and environmental challenges. The review also highlights the need for the creation of a database using a machine learning process that will enable providing a clear vision of all the progress accomplished till now and identify the most promising plant extracts that should be used for targeted applications. Full article
Show Figures

Graphical abstract

12 pages, 1594 KB  
Communication
Theoretical Insights into Hydrogen Production from Formic Acid Catalyzed by Pt-Group Single-Atom Catalysts
by Tao Jin, Sen Liang, Jiahao Zhang, Yaru Li, Yukun Bai, Hangjin Wu, Ihar Razanau, Kunming Pan and Fang Wang
Materials 2025, 18(10), 2328; https://doi.org/10.3390/ma18102328 - 16 May 2025
Viewed by 1085
Abstract
The rational development of single-atom catalysts (SACs) for selective formic acid dehydrogenation (FAD) requires an atomic-scale understanding of metal–support interactions and electronic modulation. In this study, spin-polarized density functional theory (DFT) calculations were performed to systematically examine platinum-group SACs anchored on graphitic carbon [...] Read more.
The rational development of single-atom catalysts (SACs) for selective formic acid dehydrogenation (FAD) requires an atomic-scale understanding of metal–support interactions and electronic modulation. In this study, spin-polarized density functional theory (DFT) calculations were performed to systematically examine platinum-group SACs anchored on graphitic carbon nitride (g-C3N4). The findings reveal that Pd and Au SACs exhibit superior selectivity toward the dehydrogenation pathway, lowering the free energy barrier by 1.42 eV and 1.39 eV, respectively, compared to the competing dehydration route. Conversely, Rh SACs demonstrate limited selectivity due to nearly equivalent energy barriers for both reaction pathways. Stability assessments indicate robust metal–support interactions driven by d–p orbital hybridization, while a linear correlation is established between the d-band center position relative to the Fermi level and catalytic selectivity. Additionally, charge transfer (ranging from 0.029 to 0.467 e) substantially modulates the electronic structure of the active sites. These insights define a key electronic descriptor for SAC design and offer a mechanistic framework for optimizing selective hydrogen production. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

32 pages, 6990 KB  
Review
Graphitic Carbon Nitride Nanomaterials-Based Electrochemical Sensing Interfaces for Monitoring Heavy Metal Ions in Aqueous Environments
by Cheng Yin, Yao Liu, Tingting Hu and Xing Chen
Nanomaterials 2025, 15(7), 564; https://doi.org/10.3390/nano15070564 - 7 Apr 2025
Cited by 8 | Viewed by 1959
Abstract
The persistent threat of heavy metal ions (e.g., Pb2+, Hg2+, Cd2+) in aqueous environments to human health underscores an urgent need for advanced sensing platforms capable of rapid and precise pollutant monitoring. Graphitic carbon nitride (g-C3 [...] Read more.
The persistent threat of heavy metal ions (e.g., Pb2+, Hg2+, Cd2+) in aqueous environments to human health underscores an urgent need for advanced sensing platforms capable of rapid and precise pollutant monitoring. Graphitic carbon nitride (g-C3N4), a metal-free polymeric semiconductor, has emerged as a revolutionary material for constructing next-generation environmental sensors due to its exceptional physicochemical properties, including tunable electronic structure, high chemical/thermal stability, large surface area, and unique optical characteristics. This review systematically explores the integration of g-C3N4 with functional nanomaterials (e.g., metal nanoparticles, metal oxide nanomaterials, carbonaceous materials, and conduction polymer) to engineer high-performance sensing interfaces for heavy metal detection. The structure-property relationship is critically analyzed, emphasizing how morphology engineering (nanofibers, nanosheets, and mesoporous) and surface functionalization strategies enhance sensitivity and selectivity. Advanced detection mechanisms are elucidated, including electrochemical signal amplification, and photoinduced electron transfer processes enabled by g-C3N4’s tailored bandgap and surface active sites. Furthermore, this review addresses challenges in real-world deployment, such as scalable nanomaterial synthesis, matrix interference mitigation, and long-term reliable detection. This work provides valuable insights for advancing g-C3N4-based electrochemical sensing technologies toward sustainable environmental monitoring and intelligent pollution control systems. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

40 pages, 16257 KB  
Review
Synthesis, Characterization, and Roles of Vacancy Defects in Polymer and Graphitized Carbon Nitride Photocatalysts: A Comprehensive Review
by Arul Pundi and Chi-Jung Chang
Polymers 2025, 17(3), 334; https://doi.org/10.3390/polym17030334 - 26 Jan 2025
Cited by 4 | Viewed by 3307
Abstract
Vacancy defect graphitic carbon nitride (g-C3N4) and conjugated polyimide (PI) polymer photocatalysts have become increasingly recognized as metal-free photocatalysts featuring an appropriate bandgap. The narrow absorption spectrum of visible light and the rapid recombination rate of the photoexcited charge [...] Read more.
Vacancy defect graphitic carbon nitride (g-C3N4) and conjugated polyimide (PI) polymer photocatalysts have become increasingly recognized as metal-free photocatalysts featuring an appropriate bandgap. The narrow absorption spectrum of visible light and the rapid recombination rate of the photoexcited charge carriers in PI polymers and g-C3N4 impede its photocatalytic performance. The presence of oxygen vacancies (OVs) in PI polymer photocatalysts, as well as nitrogen vacancies (NVs) and carbon vacancies (CVs) in g-C3N4, can significantly enhance the migration of photogenerated electrons. Adding vacancies to improve the electronic structure and band gap width can greatly enhance the photocatalytic efficiency of PI polymers and g-C3N4. Defect engineering is important for increasing the photocatalytic ability of PI-polymer and g-C3N4. There remains a notable absence of thorough review papers covering the synthesis, characterization, and applications of vacancy-rich PI-polymer and g-C3N4 in photocatalysis. This review paper examines the roles of OVs in PI-polymer, NVs, and CVs in g-C3N4 and thoroughly summarizes the preparation approaches employed before and after, as well as during polymerization. This review scrutinizes spectroscopic characterization techniques, such as EPR, XPS, PAS, XRD, FTIR, and NMR, for vacancy defect analysis. We also reviewed the role of vacancies, which include light absorption, photogenerated charge carrier separation, and transfer dynamics. This review could serve as a comprehensive understanding, a vacancy-engineered design framework, and a practical guide for synthesizing and characterizing. Full article
Show Figures

Figure 1

19 pages, 2204 KB  
Review
Bibliometric Analysis on Graphitic Carbon Nitride (g-C3N4) as Photocatalyst for the Remediation of Water Polluted with Contaminants of Emerging Concern
by José M. Veiga-del-Baño, Gabriel Pérez-Lucas, Pedro Andreo-Martínez and Simón Navarro
Catalysts 2025, 15(2), 115; https://doi.org/10.3390/catal15020115 - 24 Jan 2025
Cited by 3 | Viewed by 1969
Abstract
Carbon nitrides are polymeric materials with a broad range of applications, including photocatalysis. Among them, graphitic carbon nitride (g-C3N4), a low-cost material, is an excellent photocatalyst under visible light irradiation owing to its features such as correct band positions, [...] Read more.
Carbon nitrides are polymeric materials with a broad range of applications, including photocatalysis. Among them, graphitic carbon nitride (g-C3N4), a low-cost material, is an excellent photocatalyst under visible light irradiation owing to its features such as correct band positions, high stability and non-toxicity. g-C3N4 is a metal-free material that is easily synthesized by polymerizing nitrogen-rich compounds and is an efficient heterogeneous catalyst for many reaction procedures due to its distinctive electronic structure and the benefits of the mesoporous texture. In addition, in situ or post-modification of g-C3N4 can further improve catalytic performance or expand its application for remediating environmental pollution. Water pollution from organic compounds such as pesticides and pharmaceuticals is increasing dramatically and is becoming a serious problem around the world. These pollutants enter water supplies in a variety of ways, including industrial and hospital wastewater, agricultural runoff, and chemical use. To solve this problem, photocatalysis is a promising technology. Without the use of other oxidative chemicals, g-C3N4 uses renewable solar energy to transform harmful pollutants into harmless products. As a result, much recent research has focused on the photocatalytic activity of g-C3N4 for wastewater treatment. For this reason, the main objective of this paper is to contribute a chronological overview of the bibliometrics on g-C3N4 for the removal of pesticides and pharmaceuticals from water using the tools BibExcel, Bibliometrix and R-Studio IDE. A bibliometric analysis was performed using the Science Citation Index Expanded (WoS©) database to analyze the scientific literature published in the field over the last 10 years. The results were used to identify limitations and guide future research. Full article
Show Figures

Figure 1

24 pages, 2843 KB  
Review
Graphitic Carbon Nitride: A Novel Two-Dimensional Metal-Free Carbon-Based Polymer Material for Electrochemical Detection of Biomarkers
by Ganesan Kausalya Sasikumar, Pitchai Utchimahali Muthu Raja, Peter Jerome, Rathinasamy Radhamani Shenthilkumar and Putrakumar Balla
C 2024, 10(4), 98; https://doi.org/10.3390/c10040098 - 27 Nov 2024
Cited by 7 | Viewed by 4340
Abstract
Graphitic carbon nitride (g-C3N4) has gained significant attention due to its unique physicochemical properties as a metal-free, two-dimensional, carbon-based polymeric fluorescent substance composed of tris-triazine-based patterns with a slight hydrogen content and a carbon-to-nitrogen ratio of 3:4. It forms [...] Read more.
Graphitic carbon nitride (g-C3N4) has gained significant attention due to its unique physicochemical properties as a metal-free, two-dimensional, carbon-based polymeric fluorescent substance composed of tris-triazine-based patterns with a slight hydrogen content and a carbon-to-nitrogen ratio of 3:4. It forms layered structures like graphite and demonstrates exciting and unusual physicochemical properties, making g-C3N4 widely used in nanoelectronic devices, spin electronics, energy storage, thermal conductivity materials, and many others. The biomedical industry has greatly benefited from its excellent optical, electrical, and physicochemical characteristics, such as abundance on Earth, affordability, vast surface area, and fast synthesis. Notably, the heptazine phase of g-C3N4 displays stable electronic bands. Another significant quality of this semiconductor material is its excellent fluorescence property, which is also helpful in preparing biosensors. Based on g-C3N4, electrochemical biosensors have provided better biocompatibility, higher sensitivity, low detection limits, nontoxicity, excellent selectivity, and surface versatility of functionalization for the delicate identification of target analytes. This review covers the latest studies on using efflorescent graphitic carbon nitride to fabricate electrochemical biosensors for various biomarkers. Carbon nitrides have been reported to possess excellent electroactivity properties, a massive surface-to-volume ratio, and hydrogen-bonding functionality, thus allowing electrochemical-based, highly sensitive, and selective detection platforms for an entire array of analytes. Considering the preceding information, this review addresses the fundamentals and background of g-C3N4 and its numerous synthesis pathways. Furthermore, the importance of electrochemical sensing of diverse biomarkers is emphasized in this review article. It also discusses the current status of the challenges and future perspectives of graphitic carbon nitride-based electrochemical sensors, which open paths toward their practical application in aspects of clinical diagnostics. Full article
Show Figures

Graphical abstract

14 pages, 4772 KB  
Article
Potassium and Boron Co-Doping of g-C3N4 Tuned CO2 Reduction Mechanism for Enhanced Photocatalytic Performance: A First-Principles Investigation
by Gang Fu, Wenqing Zhen, Hongyi Wang, Xin Zhou, Li Yang and Jiaxu Zhang
Molecules 2024, 29(22), 5339; https://doi.org/10.3390/molecules29225339 - 13 Nov 2024
Cited by 6 | Viewed by 2029
Abstract
Graphitic phase carbon nitride (g-C3N4, abbreviated as CN) can be used as a photocatalyst to reduce the concentration of atmospheric carbon dioxide. However, there is still potential for improvement in the small band gap and carrier migration properties of [...] Read more.
Graphitic phase carbon nitride (g-C3N4, abbreviated as CN) can be used as a photocatalyst to reduce the concentration of atmospheric carbon dioxide. However, there is still potential for improvement in the small band gap and carrier migration properties of intrinsic materials. K-B co-doped CN (KBCN) was investigated as a promising photocatalyst for carbon dioxide reduction via the Density Functional Theory (DFT) method. The electronic and optical properties of CN and KBCN indicate that doping K and B can improve the catalytic performance of CN by promoting charge migration and separation. In terms of the Gibbs free energy change, the CO2 reduction reaction catalysed by KBCN results in CH3OH, and its optimal pathway is CO2 → *CO2 → *COOH → CO → *OCH → HCHO → *OCH3 → CH3OH. Compared with CN, the doping elements K and B shift the rate-determining step from CO2 → *CO2 to *CO2 → *COOH. The K and B elements co-doping tuned the charge distribution between the catalyst and the adsorbate and reduced the Gibbs free energy of the rate-determining step from 1.571 to 0.861 eV, suggesting that the CO2 reduction activity of KBCN is superior to that of CN. Our work provides useful insights for the design of metallic–nonmetallic co-doped CN for photocatalytic CO2 reduction (CO2PR) reactions. Full article
Show Figures

Graphical abstract

Back to TopTop