Graphitic Carbon Nitride: A Novel Two-Dimensional Metal-Free Carbon-Based Polymer Material for Electrochemical Detection of Biomarkers
Abstract
:1. Introduction
Road Map from Carbon to g-C3N4
2. Structural Properties of g-C3N4
2.1. Phases of g-C3N4
2.2. Electronic Structure of g-C3N4
3. Construction of g-C3N4
3.1. Precursor Material
3.2. Morphology of g-C3N4:
3.3. Synthesis Route
3.3.1. Top-Down Technique
Exfoliation Technique
Thermal Polymerization
Hydrothermal/Solvothermal Synthesis
3.3.2. Bottom-Up Approach
Templating Technique: Hard and Soft
Template-Free Technique
Supramolecular Preorganization
Microwave-Assisted Process
Ultrasonication
Sol-gel
Chemical Cleavage
Hydrothermal/Solvothermal
4. Biosensing Application of g-C3N4
4.1. Electrochemical Biosensor (ECB)
4.2. Significance of g-C3N4 in Electrochemical Biosensing
4.3. Sensing of Biomarkers
4.3.1. Glucose
4.3.2. Cholesterol
4.3.3. Uric Acid
4.3.4. Tryptophan
4.3.5. 8-HDG
4.3.6. Troponin-I
4.3.7. Dopamine
4.3.8. Serotonin
4.3.9. Noscapine
4.3.10. Epinephrine
4.3.11. Procalcitonin
4.3.12. Riboflavin
4.3.13. Pramipexole
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Klahn, M.; Tian, X.; Dai, X.; Rabeah, J.; Aladin, V.; Corzilius, B.; Bartling, S.; Lund, H.; Steinfeldt, N.; et al. Exfoliated Polymeric Carbon Nitride Nanosheets for Photocatalytic Applications. ACS Appl. Nano Mater. 2024, 7, 7442–7452. [Google Scholar] [CrossRef]
- Aliakbari, A.; Ghamsari, M.S.; Mozdianfard, M.R. β-Carbon Nitride Nanoflake with Enhanced Visible Light Emission. Opt. Mater. 2020, 107, 110036. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Liao, W.C.; Cazelles, R.; Wang, S.; Yu, X.; Gutkin, V.; Willner, I. Mimicking Horseradish Peroxidase Functions Using Cu²⁺-Modified Carbon Nitride Nanoparticles or Cu²⁺-Modified Carbon Dots as Heterogeneous Catalysts. ACS Nano 2017, 11, 3247–3253. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, D.; Ren, S.; Dong, T.; Chi, Y.; Chen, G. Preparation of Graphite-like Carbon Nitride Nanoflake Film with Strong Fluorescent and Electrochemiluminescent Activity. Nanoscale 2013, 5, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, S.; Savateev, A. Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem 2020, 85, 2499–2517. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.O.; Schlögl, R.; Carlsson, J.M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-Free Catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-Triamino-Tri-s-Triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-Ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. J. Am. Chem. Soc. 2003, 125, 10288–10300. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, Y.; Li, Y.; Liu, A.; Liu, S.; Zhang, Y. Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction. ACS Nano 2015, 9, 12480–12487. [Google Scholar] [CrossRef]
- Barrio, J.; Volokh, M.; Shalom, M. Polymeric Carbon Nitrides and Related Metal-Free Materials for Energy and Environmental Applications. J. Mater. Chem. A 2020, 11075–11116. [Google Scholar] [CrossRef]
- Franklin, E.C. The Ammono Carbonic Acids. J. Am. Chem. Soc. 1922, 44, 486–509. [Google Scholar] [CrossRef]
- Chouhan, R.S.; Gačnik, J.; Živković, I.; Vijayakumaran Nair, S.; Van de Velde, N.; Vesel, A.; Šket, P.; Gandhi, S.; Jerman, I.; Horvat, M. Green Synthesis of a Magnetite/Graphitic Carbon Nitride 2D Nanocomposite for Efficient Hg²⁺ Remediation. Environ. Sci. Nano 2023, 10, 2658–2671. [Google Scholar] [CrossRef]
- Redemann, C.E.; Lucas, H.J. Some Derivatives of Cyameluric Acid and Probable Structures of Melam, Melem and Melon. J. Am. Chem. Soc. 1940, 62, 842–846. [Google Scholar] [CrossRef]
- Wang, E.G. Research on Carbon Nitrides. Prog. Mater. Sci. 1997, 41, 241–298. [Google Scholar] [CrossRef]
- Liu, A.Y.; Cohen, M.L. Prediction of New Low Compressibility Solids. Science 1989, 245, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Teter, D.M.; Hemley, R.J. Low-Compressibility Carbon Nitrides. Science 1996, 271, 53–55. [Google Scholar] [CrossRef]
- Alves, I.; Demazeau, G.; Tanguy, B.; Weill, F. On a New Model of the Graphitic Form of C3N4. Solid State Commun. 1999, 109, 697–701. [Google Scholar] [CrossRef]
- Komatsu, T. Prototype Carbon Nitrides Similar to the Symmetric Triangular Form of Melon. J. Mater. Chem. 2001, 11, 802–805. [Google Scholar] [CrossRef]
- Guo, X.; Duan, J.; Wang, W.; Zhang, Z. Modified Graphitic Carbon Nitride as the Photocatalyst for Wastewater Treatment under Visible Light Irradiation. Fuel 2020, 280, 118544. [Google Scholar] [CrossRef]
- Vaya, D.; Kaushik, B.; Surolia, P.K. Recent Advances in Graphitic Carbon Nitride Semiconductor: Structure, Synthesis and Applications. Mater. Sci. Semicond. Process. 2022, 137, 106181. [Google Scholar] [CrossRef]
- Kroke, E.; Schwarz, M. Novel Group 14 Nitrides. Coord. Chem. Rev. 2004, 248, 493–532. [Google Scholar] [CrossRef]
- Chouhan, R.S.; Jerman, I.; Heath, D.; Bohm, S.; Gandhi, S.; Sadhu, V.; Baker, S.; Horvat, M. Emerging Tri-s-triazine-based Graphitic Carbon Nitride: A Potential Signal-transducing Nanostructured Material for Sensor Applications. Nano Sel. 2021, 2, 712–743. [Google Scholar] [CrossRef]
- Fanchini, G.; Tagliaferro, A.; Conway, N.M.J.; Godet, C. Role of Lone-Pair Interactions and Local Disorder in Determining the Interdependency of Optical Constants of (Formula Presented) Thin Films. Phys. Rev. B 2002, 66, 195415. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. J. Photochem. Photobiol. C Photochem. Rev. 2014, 20, 33–50. [Google Scholar] [CrossRef]
- Liu, N.; Li, T.; Zhao, Z.; Liu, J.; Luo, X.; Yuan, X.; Luo, K.; He, J.; Yu, D.; Zhao, Y. From Triazine to Heptazine: Origin of Graphitic Carbon Nitride as a Photocatalyst. ACS Omega 2020, 5, 12557–12567. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Wang, L.; Xing, J. Graphitic Carbon Nitride Emitter: From Structural Modification to Optoelectronics Applications. Adv. Opt. Mater. 2023, 11, 2301547. [Google Scholar] [CrossRef]
- Tahir, M.; Sherryna, A.; Khan, A.A.; Madi, M.; Zerga, A.Y.; Tahir, B. Defect Engineering in Graphitic Carbon Nitride Nanotextures for Energy Efficient Solar Fuels Production: A Review. Energy Fuels 2022, 36, 8948–8977. [Google Scholar] [CrossRef]
- Nabeel, M.I.; Hussain, D.; Ahmad, N.; Najam-ul-Haq, M.; Musharraf, S.G. Recent Advancements in Fabrication and Photocatalytic Applications of Graphitic Carbon Nitride-Tungsten Oxide Nanocomposites. Nanoscale Adv. 2023, 5, 5214–5255. [Google Scholar] [CrossRef]
- Reddy, K.R.; Reddy, C.V.; Nadagouda, M.N.; Shetti, N.P.; Jaesool, S.; Aminabhavi, T.M. Polymeric Graphitic Carbon Nitride (g-C3N4)-Based Semiconducting Nanostructured Materials: Synthesis Methods, Properties and Photocatalytic Applications. J. Environ. Manag. 2019, 238, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Martha, S.; Parida, K.M. An Overview of the Structural, Textural and Morphological Modulations of g-C3N4 towards Photocatalytic Hydrogen Production. RSC Adv. 2016, 6, 46929–46951. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J.; Ismail, A.F.; Goh, P.S.; Vinu, A. Recent Advances in the Application of Carbon Nitrides for Advanced Water Treatment and Desalination Technology. Desalination 2022, 542, 116061. [Google Scholar] [CrossRef]
- Patel, M.R.; Kailasa, S.K. Carbon Nitride Nanomaterials: Properties, Synthetic Approaches and New Insights in Fluorescence Spectrometry for Assaying of Metal Ions, Organic and Biomolecules. ChemistrySelect 2022, 7, e202201849. [Google Scholar] [CrossRef]
- Liang, S.; Wang, Z.; Zhou, Z.; Liang, G.; Zhang, Y. Polymeric Carbon Nitride-Based Materials: Rising Stars in Bioimaging. Biosens. Bioelectron. 2022, 211, 114370. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Todi, K.; Narayan, T.; Malhotra, B.D. Graphitic Carbon Nitride-Based Nanoplatforms for Biosensors: Design Strategies and Applications. Mater. Today Chem. 2022, 24, 100770. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Ma, J.; Liu, Z.; Ma, L.; Lei, S.; Fang, J.; Long, C. Pt-Decorated Zinc Oxide Nanorod Arrays with Graphitic Carbon Nitride Nanosheets for Highly Efficient Dual-Functional Gas Sensing. J. Hazard. Mater. 2018, 341, 102–111. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Rajabzadeh-Khosroshahi, M.; Saeidi Tabar, F.; Ajalli, N.; Samadi, A.; Yazdani, M.; Yazdian, F.; Rahdar, A.; Díez-Pascual, A.M. Two-Dimensional Graphitic Carbon Nitride (g-C3N4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J. Funct. Biomater. 2022, 13, 204. [Google Scholar] [CrossRef]
- Wu, H.; Meng, F.; Liu, X.; Yu, B. Carbon Nanotubes as Electronic Mediators Combined with Bi2MoO₆ and g-C3N4 to Form Z-Scheme Heterojunctions to Enhance Visible Light Photocatalysis. Nanotechnology 2022, 33, 115203. [Google Scholar] [CrossRef]
- Fu, L.; Xiao, X.; Wang, A. Reduced Graphene Oxide Coupled with g-C3N4 Nanodots as 2D/0D Nanocomposites for Enhanced Photocatalytic Activity. J. Phys. Chem. Solids 2018, 122, 104–108. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Ma, J.; Ma, L.; Dong, G. Noble Metal-Free Modified Electrode of Exfoliated Graphitic Carbon Nitride/ZnO Nanosheets for Highly Efficient Hydrogen Peroxide Sensing. Electrochim. Acta 2017, 247, 787–794. [Google Scholar] [CrossRef]
- Desalegn, B.Z.; Jadhav, H.S.; Seo, J.G. Highly Efficient g-C3N4 Nanorods with Dual Active Sites as an Electrocatalyst for the Oxygen Evolution Reaction. ChemCatChem 2019, 11, 2870–2878. [Google Scholar] [CrossRef]
- Lei, L.; Wang, W.; Yu, W.; Wang, C.; Fan, H. 1D-2D Ag Nanowire/g-C3N4 Hybrid Obtained via a Post-Mechanical-Mixing Route for Photocatalytic Rhodamine B Degradation. Res. Chem. Intermed. 2020, 46, 4673–4684. [Google Scholar] [CrossRef]
- Jing, Y.; Chen, Z.; Ding, E.; Yuan, R.; Liu, B.; Xu, B.; Zhang, P. High-Yield Production of g-C3N4 Quantum Dots as Photocatalysts for the Degradation of Organic Pollutants and Fluorescent Probes for Detection of Fe³⁺ Ions with Live Cell Application. Appl. Surf. Sci. 2022, 586, 152812. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, X. A Review on Quantum Dots Modified g-C3N4-Based Photocatalysts with Improved Photocatalytic Activity. Catalysts 2020, 10, 142. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, J.; Dong, Z.; Li, Z.; Wu, Y.; Cheng, Z.; Cao, X.; Wang, Y.; Liu, Y.; Zhang, Z. Synthesis of High Crystallinity G-C3N4 Hollow Spheres for Efficient Photocatalytic Removal of U(VI) under Visible Light. Sep. Purif. Technol. 2023, 324, 124235. [Google Scholar] [CrossRef]
- Faisal, M.; Jalalah, M.; Harraz, F.A.; El-Toni, A.M.; Khan, A.; Al-Assiri, M.S. Au Nanoparticles-Doped g-C3N4 Nanocomposites for Enhanced Photocatalytic Performance under Visible Light Illumination. Ceram. Int. 2020, 46, 22090–22101. [Google Scholar] [CrossRef]
- Phoon, B.L.; Lai, C.W.; Pan, G.T.; Yang, T.C.K.; Juan, J.C. Highly Mesoporous g-C3N4 with Uniform Pore Size Distribution via the Template-Free Method to Enhanced Solar-Driven Tetracycline Degradation. Nanomaterials 2021, 11, 2041. [Google Scholar] [CrossRef]
- Low, S.S.; Chen, Z.; Li, Y.; Lu, Y.; Liu, Q. Design Principle in Biosensing: Critical Analysis Based on Graphitic Carbon Nitride (g-C3N4) Photoelectrochemical Biosensor. TrAC Trends Anal. Chem. 2021, 145, 116454. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, H.; Dong, X. The Amphoteric Property of g-C3N4 Nanosheets and Its Relevant Photocatalysts by an Electrostatic Re-Assembly Route. Chem. Commun. 2015, 51, 7176–7179. [Google Scholar] [CrossRef]
- Cheng, F.; Yan, J.; Zhou, C.; Chen, B.; Li, P.; Chen, Z.; Dong, X. An Alkali Treating Strategy for the Colloidization of Graphitic Carbon Nitride and Its Excellent Photocatalytic Performance. J. Colloid Interface Sci. 2016, 468, 103–109. [Google Scholar] [CrossRef]
- Yan, J.; Han, X.; Qian, J.; Liu, J.; Dong, X.; Xi, F. Preparation of 2D Graphitic Carbon Nitride Nanosheets by a Green Exfoliation Approach and the Enhanced Photocatalytic Performance. J. Mater. Sci. 2017, 52, 13091–13102. [Google Scholar] [CrossRef]
- Yang, S.; Liu, C.; Wang, J.; Lin, X.; Hong, Y.; Guo, F.; Shi, J. Enhanced Photocatalytic Activity of g-C3N4 Quantum Dots/Bi3.64Mo0.36O6.55 Nanospheres Composites. J. Solid State Chem. 2020, 287, 121347. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P.M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution under Visible Light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, Á.; Pastrana-Martínez, L.M.; Morales-Torres, S.; Maldonado-Hódar, F.J. Photodegradation of Cytostatic Drugs by g-C3N4: Synthesis, Properties and Performance Fitted by Selecting the Appropriate Precursor. Catal. Today 2023, 418, 114068. [Google Scholar] [CrossRef]
- Soni, S.; Teli, S.; Teli, P.; Agarwal, S. Empowering Sustainability: Charting the Seven Years of Progress in g-C3N4 Based Materials and Their Crucial Role in Building a Greener Future. Sustain. Chem. Pharm. 2024, 41, 101693. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, Y.; Fan, J.; Xue, Y.; Chang, H.; Masubuchi, Y.; Yin, S. Synthesis of Graphitic Carbon Nitride from Different Precursors by Fractional Thermal Polymerization Method and Their Visible Light Induced Photocatalytic Activities. J. Alloys Compd. 2018, 735, 1297–1305. [Google Scholar] [CrossRef]
- Gajurel, S.; Sarkar, R.; Sarkar, F.K.; Kyndiah, L.; Pal, A.K. Versatile and Sustainable Approach to Access Biologically Relevant Chromeno [2,3-b] Pyridine and Benzylpyrazolyl Coumarin Derivatives Using Graphitic Carbon Nitride as a Reusable Heterogeneous Catalyst. ACS Omega 2022, 7, 48087–48099. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, W.; Wang, N.; Zhang, K.; Wen, X.; Xing, Y.; Li, Y. Preparation of Structure Vacancy Defect Modified Diatomic-Layered g-C3N4 Nanosheet with Enhanced Photocatalytic Performance. Adv. Sci. 2023, 10, e2302503. [Google Scholar] [CrossRef]
- Florentino-Madiedo, L.; Díaz-Faes, E.; Barriocanal, C. Relationship between g-CN Structure and Photocatalytic Water Splitting Efficiency. Carbon 2022, 187, 462–476. [Google Scholar] [CrossRef]
- Huang, Q.S.; Wood, T.; Jelley, L.; Jennings, T.; Jefferies, S.; Daniells, K.; Nesdale, A.; Dowell, T.; Turner, N.; Campbell-Stokes, P.; et al. Impact of the COVID-19 Nonpharmaceutical Interventions on Influenza and Other Respiratory Viral Infections in New Zealand. Nat. Commun. 2021, 12, 1001. [Google Scholar] [CrossRef]
- Sun, P.; Liu, H.; Feng, M.; Zhai, Z.; Fang, Y.; Zhang, X.; Sharma, V.K. Strategic Combination of N-Doped Graphene and g-C3N4: Efficient Catalytic Peroxymonosulfate-Based Oxidation of Organic Pollutants by Non-Radical-Dominated Processes. Appl. Catal. B 2020, 272, 119005. [Google Scholar] [CrossRef]
- Li, J.; Wu, D.; Iocozzia, J.; Du, H.; Liu, X.; Yuan, Y.; Zhou, W.; Li, Z.; Xue, Z.; Lin, Z. Achieving Efficient Incorporation of π-Electrons into Graphitic Carbon Nitride for Markedly Improved Hydrogen Generation. Angew. Chem. Int. Ed. 2019, 58, 1985–1989. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. A Critical Review on Graphitic Carbon Nitride (g-C3N4)-Based Materials: Preparation, Modification and Environmental Application. Coord. Chem. Rev. 2022, 453, 214338. [Google Scholar] [CrossRef]
- Shi, Y.; Wan, Y.; Zhao, D. Ordered Mesoporous Non-Oxide Materials. Chem. Soc. Rev. 2011, 40, 3854–3878. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Song, J. Tailored Graphitic Carbon Nitride Nanostructures: Synthesis, Modification, and Sensing Applications. Adv. Funct. Mater. 2017, 27, 1702695. [Google Scholar] [CrossRef]
- Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices. Adv. Mater. 2005, 17, 1789–1792. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Shen, Y.; Zhou, Z.; Yu, J.; Li, Y.; Wei, W.; Liu, S.; Zhang, Y. Environment-Friendly Preparation of Porous Graphite-Phase Polymeric Carbon Nitride Using Calcium Carbonate as Templates, and Enhanced Photoelectrochemical Activity. J. Mater. Chem. A 2015, 3, 5126–5131. [Google Scholar] [CrossRef]
- Han, Q.; Wang, B.; Zhao, Y.; Hu, C.; Qu, L. A Graphitic-C3N4 “Seaweed” Architecture for Enhanced Hydrogen Evolution. Angew. Chem. 2015, 127, 11595–11599. [Google Scholar] [CrossRef]
- Gu, Q.; Liao, Y.; Yin, L.; Long, J.; Wang, X.; Xue, C. Template-Free Synthesis of Porous Graphitic Carbon Nitride Microspheres for Enhanced Photocatalytic Hydrogen Generation with High Stability. Appl. Catal. B 2015, 165, 503–510. [Google Scholar] [CrossRef]
- Xie, M.; Wei, W.; Jiang, Z.; Xu, Y.; Xie, J. Carbon Nitride Nanowires/Nanofibers: A Novel Template-Free Synthesis from a Cyanuric Chloride-Melamine Precursor towards Enhanced Adsorption and Visible-Light Photocatalytic Performance. Ceram. Int. 2016, 42, 4158–4170. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Wang, T.; Zhang, P.; Li, A.; Gong, J. Controllable Synthesis of Nanotube-Type Graphitic C3N4 and Their Visible-Light Photocatalytic and Fluorescent Properties. J. Mater. Chem. A 2014, 2, 2885–2890. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Y.; Wu, H.; Xue, J.; Ding, L.; Wang, R.; Wang, H. Fast Hydrogen Purification through Graphitic Carbon Nitride Nanosheet Membranes. Nat. Commun. 2022, 13, 5852. [Google Scholar] [CrossRef] [PubMed]
- Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.S.; Lee, E.Z.; Wang, X.; Hong, W.H.; Stucky, G.D.; Thomas, A. From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. Adv. Funct. Mater. 2013, 23, 3661–3667. [Google Scholar] [CrossRef]
- Ishida, Y.; Chabanne, L.; Antonietti, M.; Shalom, M. Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors. Langmuir 2014, 30, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammad-Zadeh, H.; Rahimpour, E. A Novel Chemosensor Based on Graphitic Carbon Nitride Quantum Dots and Potassium Ferricyanide Chemiluminescence System for Hg(II) Ion Detection. Sens. Actuators B Chem. 2016, 225, 258–266. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Ji, J.; Wen, J.; Shen, Y.; Lv, Y.; Chen, Y.; Liu, S.; Ma, H.; Zhang, Y. Simultaneous Noncovalent Modification and Exfoliation of 2D Carbon Nitride for Enhanced Electrochemiluminescent Biosensing. J. Am. Chem. Soc. 2017, 139, 11698–11701. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Dong, F.; Zhao, Z. The Multiple Effects of Precursors on the Properties of Polymeric Carbon Nitride. Int. J. Photoenergy 2013, 2013, 685038. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Liu, Y.; Lei, J.; Zhang, J. Mesoporous Graphitic Carbon Nitride Materials: Synthesis and Modifications. Res. Chem. Intermed. 2016, 42, 3979–3998. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Shen, Y.; Zhou, Q.; Wang, J.; Liu, A.; Liu, S.; Zhang, Y. Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration. ACS Nano 2016, 10, 9036–9043. [Google Scholar] [CrossRef]
- Xiao, D.; Li, S.; Liu, S.; He, H.; Lu, J. One-Step Hydrothermal Synthesis of Photoluminescent Carbon Nitride Dots Derived from Ionic Liquids. New J. Chem. 2016, 40, 320–324. [Google Scholar] [CrossRef]
- Lu, Y.C.; Chen, J.; Wang, A.J.; Bao, N.; Feng, J.J.; Wang, W.; Shao, L. Facile Synthesis of Oxygen and Sulfur Co-Doped Graphitic Carbon Nitride Fluorescent Quantum Dots and Their Application for Mercury (II) Detection and Bioimaging. J. Mater. Chem. C 2015, 3, 73–78. [Google Scholar] [CrossRef]
- Zhao, P.; Jin, B.; Zhang, Q.; Peng, R. High-Quality Carbon Nitride Quantum Dots on Photoluminescence: Effect of Carbon Sources. Langmuir 2021, 37, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, X.; Shao, C.; Liu, Y. Hydrothermal Synthesis of Carbon-Rich Graphitic Carbon Nitride Nanosheets for Photoredox Catalysis. J. Mater. Chem. A 2015, 3, 3281–3284. [Google Scholar] [CrossRef]
- Kamble, B.B.; Sharma, K.K.; Sonawane, K.D.; Tayade, S.N.; Grammatikos, S.; Reddy, Y.V.M.; Reddy, S.L.; Shin, J.H.; Park, J.P. Graphitic Carbon Nitride-Based Electrochemical Sensors: A Comprehensive Review of Their Synthesis, Characterization, and Applications. Adv. Colloid Interface Sci. 2024, 333, 103284. [Google Scholar] [CrossRef]
- Vinoth, S.; Shalini Devi, K.S.; Pandikumar, A. A Comprehensive Review on Graphitic Carbon Nitride Based Electrochemical and Biosensors for Environmental and Healthcare Applications. TrAC-Trends Anal. Chem. 2021, 143, 116274. [Google Scholar] [CrossRef]
- Xiong, M.; Rong, Q.; Meng, H.; Zhang, X. Two-Dimensional Graphitic Carbon Nitride Nanosheets for Biosensing Applications. Biosens. Bioelectron. 2017, 87, 212–223. [Google Scholar] [CrossRef]
- Bai, B.; Bai, F.; Sun, C.; Nie, Q.; Sun, S. Adsorption Mechanism of Shell Powders on Heavy Metal Ions Pb²⁺/Cd²⁺ and the Purification Efficiency for Contaminated Soils. Front. Earth Sci. 2023, 10, 1071228. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Yu, B.; Yin, K.; Zhang, Z.-Y. Hierarchically Structured Black Gold Film with Ultrahigh Porosity for Solar Steam Generation. Adv. Mater. 2022, 34, 2200108. [Google Scholar] [CrossRef]
- Boolakee, T.; Heide, C.; Garzón-Ramírez, A.J.; Weber, H.B.; Franco, I.; Hommelhoff, P. Light-Field Control of Real and Virtual Charge Carriers. Nature 2022, 605, 251–255. [Google Scholar] [CrossRef]
- Chen, L.; Maigbay, M.A.; Li, M.; Qiu, X. Synthesis and Modification Strategies of g-C3N4 Nanosheets for Photocatalytic Applications. Adv. Powder Mater. 2024, 3, 100150. [Google Scholar] [CrossRef]
- Muhmood, T.; Ahmad, I.; Haider, Z.; Haider, S.K.; Shahzadi, N.; Aftab, A.; Ahmed, S.; Ahmad, F. Graphene-Like Graphitic Carbon Nitride (g-C3N4) as a Semiconductor Photocatalyst: Properties, Classification, and Defects Engineering Approaches. Mater. Today Sustain. 2023, 25, 100633. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Sun, Y.; Zhang, H. Facile Synthesis of gC3N4 with Various Morphologies for Application in Electrochemical Detection. RSC Adv. 2019, 9, 7737–7746. [Google Scholar] [CrossRef] [PubMed]
- Fidan, T.; Torabfam, M.; Saleem, Q.; Wang, C.; Kurt, H.; Yüce, M.; Tang, J.; Bayazit, M.K. Functionalized Graphitic Carbon Nitrides for Environmental and Sensing Applications. Adv. Energy Sustain. Res. 2021, 2, 2000073. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, H.; Li, H.; Zhao, Z.; Wang, K.; Zhou, Y.; Zhao, X.; Dubal, D.P. CxNy-based Materials as Gas Sensors: Structure, Performance, Mechanism, and Perspective. Coord. Chem. Rev. 2024, 503, 215653. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.E.; Yoon, T.; Cho, M.H. Na, O-Co-Doped Graphitic Carbon Nitride (Na, O-g-C3N4) for Nonenzymatic Electrochemical Sensing of Hydrogen Peroxide. Appl. Surf. Sci. 2020, 525, 146353. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, S.; Jiang, B.; Jaroniec, M.; Zhang, L. Engineering Defects in Graphitic Carbon Nitride Photocatalysts. Mater. Today, 2024; in press. [Google Scholar] [CrossRef]
- Zafar, Z.; Yi, S.; Li, J.; Li, C.; Zhu, Y.; Zada, A.; Yao, W.; Liu, Z.; Yue, X. Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy Environ. Mater. 2022, 5, 68–114. [Google Scholar] [CrossRef]
- Roy, R.; Chacko, A.R.; Abraham, T.; Korah, B.K.; John, B.K.; Punnoose, M.S.; Mohan, C.; Mathew, B. Recent Advances in Graphitic Carbon Nitrides (g-C3N4) as Photoluminescence Sensing Probe: A Review. ChemistrySelect 2022, 7, e202200876. [Google Scholar] [CrossRef]
- Hou, L.; Wang, X.; Li, P.; Zhang, H.; Yao, Y.; Liu, Z.; Wang, J.; Liu, W. Adiposity Modifies the Association between Heart Failure Risk and Glucose Metabolic Disorder in Older Individuals: A Community-Based Prospective Cohort Study. Cardiovasc. Diabetol. 2024, 23. [Google Scholar] [CrossRef]
- Athar, M.S.; Rasool, Z.; Muneer, M.; Altass, H.M.; Althagafi, I.I.; Ahmed, S.A. Fabrication of Direct Z-Scheme CoNiWO4/Ph-gC3N4 Heterocomposites: Enhanced Photodegradation of Bisphenol A and Anticancer Activity. ACS Omega 2023, 8, 38272–38287. [Google Scholar] [CrossRef] [PubMed]
- Tashkhourian, J.; Nami-Ana, S.F.; Shamsipur, M. A New Bifunctional Nanostructure Based on Two-Dimensional Nanolayered Co(OH)2 Exfoliated Graphitic Carbon Nitride as a High Performance Enzyme-Less Glucose Sensor: Impedimetric and Amperometric Detection. Anal. Chim. Acta 2018, 1034, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, M.; Wang, C. In-Situ Synthesis of Graphitic Carbon Nitride/Iron Oxide−Copper Composites and Their Application in the Electrochemical Detection of Glucose. Electrochim. Acta 2018, 265, 275–283. [Google Scholar] [CrossRef]
- França, G.R.; Rosa, V.S.; Rezende, E.H.M.; Filho, M.D.E.C.; Jansen, H.E.M.; Filho, D.J.d.S.; Pereira, B.M.; Alves, N.C.; Pinotti, J.G.F.; Araújo, M.A.A.d.; et al. Arterial Hypertension and Dyslipidemia in Patients with Type 2 Diabetes Mellitus: Risk Factors, Intervention Strategies, and Impact on Cardiovascular Health. Braz. J. Implantol. Health Sci. 2024, 6, 577–589. [Google Scholar] [CrossRef]
- Chen, M.; Yang, Y.; Chen, Q.; Tang, L.; Liu, J.; Sun, Y.; Liu, Q.; Zhang, Y.; Zhang, G.J.; Chen, S. Pt, P-Codoped Carbon Nitride Nanoenzymes for Fluorescence and Colorimetric Dual-Mode Detection of Cholesterol. Anal. Chim. Acta 2024, 1297, 342351. [Google Scholar] [CrossRef]
- Ilmu Dan Teknologi Kesehatan, J.; Nazarena, Y.; Sadiq, A.; Gizi, J.; Kemenkes Palembang, P. Analysis Study of “Food Cholesterol Detect” Application Development in Early Detection of High Cholesterol Food Consumption. J. Ilmu Dan Teknol. Kesehat. 2023, 10, 2338–9095. [Google Scholar] [CrossRef]
- Ifiora, F.C.; Agudosi, G.M.; Ekpemiro, C.U.; Keke, V.C.; Okoh, P.; Oyesile, A.Y.; Mbah, L.A.; Akueme, N.T.; Akanle, O.E.; Anebere, R.; et al. Nonpharmacological Approach to Managing Atrial Fibrillation: A Review. Cardiol. Angiol. Int. J. 2023, 12, 234–255. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.H.; Kim, C.S. In Situ Synthesis of Cylindrical Spongy Polypyrrole Doped Protonated Graphitic Carbon Nitride for Cholesterol Sensing Application. Biosens. Bioelectron. 2017, 94, 686–693. [Google Scholar] [CrossRef]
- Ajith, A.; Gowthaman, N.S.K.; Pandiarajan, D.; Sugumar, C.; John, S.A. 2-D Graphitic Carbon Nitride Fabricated Electrode as a Robust Inexpensive Electrochemical Scaffold for the Real-Time Detection of Serum Uric Acid in Gout Patients. Microchem. J. 2024, 199, 110020. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, L.; Peng, J.; Hou, X.; Du, H. Highly Sensitive and Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid Using Pt@g-C3N4/N-CNTs Nanocomposites. iScience 2024, 27, 109241. [Google Scholar] [CrossRef]
- Dhinasekaran, D.; John, J.F.; Subashchandran, S. Review—Electrochemical Sensing of Uric Acid: Methods and Recent Materials. J. Electrochem. Soc. 2024, 171, 057505. [Google Scholar] [CrossRef]
- Yulianti, E.S.; Rahman, S.F.; Rizkinia, M.; Zakiyuddin, A. Low-Cost Electrochemical Biosensor Based on a Multi-Walled Carbon Nanotube-Doped Molecularly Imprinted Polymer for Uric Acid Detection. Arab. J. Chem. 2024, 17, 105692. [Google Scholar] [CrossRef]
- Sai Iswarya Bakavaty, T.; Gurunathan, K. Graphene-Wrapped WO3/Mo Derivatives for the Simultaneous Electrochemical Detection of Dopamine and Uric Acid. Mater. Sci. Eng. B 2024, 299, 116967. [Google Scholar] [CrossRef]
- Stoikov, D.; Ivanov, A.; Shafigullina, I.; Gavrikova, M.; Padnya, P.; Shiabiev, I.; Stoikov, I.; Evtugyn, G. Flow-Through Amperometric Biosensor System Based on Functionalized Aryl Derivative of Phenothiazine and PAMAM-Calix-Dendrimers for the Determination of Uric Acid. Biosensors 2024, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Jun, J.B. Altered Serum Uric Acid Levels in Kidney Disorders. Life 2022, 12, 1891. [Google Scholar] [CrossRef]
- Murugan, N.; Chan-Park, M.B.; Sundramoorthy, A.K. Electrochemical Detection of Uric Acid on Exfoliated Nanosheets of Graphitic-Like Carbon Nitride (g-C3N4) Based Sensor. J. Electrochem. Soc. 2019, 166, B3163–B3170. [Google Scholar] [CrossRef]
- Liaqat, R.; Fatima, S.; Komal, W.; Minahal, Q.; Hussain, A.S. Dietary Supplementation of Methionine, Lysine, and Tryptophan as Possible Modulators of Growth, Immune Response, and Disease Resistance in Striped Catfish (Pangasius hypophthalmus). PLoS ONE 2024, 19, e0301205. [Google Scholar] [CrossRef]
- Singh, A.K.; Yadav, R.; Singh, A.; Rosy. Poly-Methionine/Graphitic Carbon Nitride Modified Screen-Printed Electrodes: A Metal-Free, Bio-Interface for Tryptophan Sensing. Mater. Chem. Phys. 2024, 328, 129941. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Tarul; Pratap Singh Bais, A.; Rosy. Electrodeposited Phosphorous-Doped Graphitic Carbon Nitride as A Versatile Metal Free Interface for Tryptophan Detection in Dietary, Nutritional, and Clinical Samples. Microchem. J. 2024, 203, 110833. [Google Scholar] [CrossRef]
- Mihret, Y.; Sisay, G.; Diro, A.; Hailemariam, S.; Kitte, S.A. Nitrogen Defect-Rich Graphitic Carbon Nitride for Highly Sensitive Voltammetric Determination of Tryptophan. ACS Omega 2023, 8, 46869–46877. [Google Scholar] [CrossRef]
- Abebe, H.A.; Diro, A.; Kitte, S.A. Voltammetric Determination of Tryptophan at Graphitic Carbon Nitride Modified Carbon Paste Electrode. Heliyon 2023, 9, e21033. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qin, X.; Liang, M.; Luo, Z.; Zhan, Z.; Weng, S.; Guo, C.; He, J. Genome-Wide Identification, Characterization, and Expression Analysis of the Transient Receptor Potential Gene Family in Mandarin Fish Siniperca chuatsi. BMC Genom. 2024, 25, 848. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Q.; Xiao, Z.; Lü, C.; Feng, Z.; Yin, Y.; Cao, Z. Graphene Oxide/Triangular Gold Nanoplates/Nafion Composite Modified Electrode Used for Sensitive Detection of L-Tryptophan. Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chin. Univ. 2018, 39, 636–644. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Di, J.; Long, Y.; Li, W.; Tu, Y. Graphene-like Carbon Nitride Nanosheet as a Novel Sensing Platform for Electrochemical Determination of Tryptophan. J. Colloid Interface Sci. 2017, 505, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Nurhidayat, I.; Budiawan. Synergistic Effect of Trichloroethylene and Cu(II) on DNA-Adduct 8-Hydroxy Deoxyguanosine (8-OHdG) Formation as a Biomarker of Cancer Risk. J. Phys. Conf. Ser. 2021, 1918, 032011. [Google Scholar] [CrossRef]
- Rajaji, U.; Selvi, S.V.; Chen, S.M.; Chinnapaiyan, S.; Chen, T.W.; Govindasamy, M. A Nanocomposite Consisting of Cuprous Oxide Supported on Graphitic Carbon Nitride Nanosheets for Non-Enzymatic Electrochemical Sensing of 8-Hydroxy-2′-Deoxyguanosine. Microchim. Acta 2020, 187, 459. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, X.; Pei, X.; Zhang, W.; Liu, S.; Wang, Z.; Han, J.; Chen, S.; Xie, G. Hollow Graphitic Carbon Nitride with Tunable Shell Thickness for Electrochemiluminescence and Photoelectrochemistry Dual-Mode Detection of Cardiac troponin I. Microchem. J. 2024, 200, 110405. [Google Scholar] [CrossRef]
- Lalitha, S.S.; Sankar, A.; Purushothaman, G.; Sridevi, C. Diagnostic Accuracy of Heart-Type Fatty Acid Binding Protein for the Detection of Acute Myocardial Infarction among South Indian Population: A Cross-Sectional Study. Natl. J. Lab. Med. 2023, 30, 267–274. [Google Scholar] [CrossRef]
- Khushaim, W.; Peramaiah, K.; Beduk, T.; Vijjapu, M.T.; Ilton de Oliveira Filho, J.; Huang, K.W.; Mani, V.; Salama, K.N. Porous Graphitic Carbon Nitrides Integrated Biosensor for Sensitive Detection of Cardiac Troponin I. Biosens. Bioelectron. 2022, 12, 100234. [Google Scholar] [CrossRef]
- Aryan, Z.; Khajehsharifi, H.; Shahrokhian, S. AuNPs-Ultrathin/Graphitic-C3N4 Nanosheets as a Sensitive Platform for Electrochemical Detection and Determination of Dopamine. Microchem. J. 2024, 198, 110087. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Singh, A.; Rosy. One-Step Electrodeposition of MnO2-Graphitic Carbon Nitride Composite Layer on Screen Printed Electrode for Electrocatalytic Dopamine Sensing. Microchem. J. 2024, 204, 110998. [Google Scholar] [CrossRef]
- Wang, Y.; Sang, X.-G.; Bi, J.; Fu, H.; Liu, N.; Zhang, X.; Wang, Z.; Han, Y. Template-Assisted Synthesis of 3D Ordered Mesoporous Graphitic Carbon Nitride Decorated with Gold Nanoparticle for Dopamine Sensing. New J. Chem. 2024, 48, 17928–17934. [Google Scholar] [CrossRef]
- ul Haq, Z.; Ganaie, F.A.; Bhat, S.A.; Nazir, I.; Qureashi, A.; Bashir, A.; Rizvi, M.A. Integrating 2D Graphitic Carbon Nitride with Gd2S3 Nanoparticles towards Development of Multiutility Water Treatment Nanomaterial: Synergistic Effects on Electrochemical Dopamine Sensing and Photocatalytic Degradation of Contaminants. New J. Chem. 2024, 48, 16461–16474. [Google Scholar] [CrossRef]
- Emran, M.Y.; Kotb, A.; Ganganboina, A.B.; Okamoto, A.; Abolibda, T.Z.; Alzahrani, H.A.H.; Gomha, S.M.; Ma, C.; Zhou, M.; Shenashen, M.A. Tailored Portable Electrochemical Sensor for Dopamine Detection in Human Fluids Using Heteroatom-Doped Three-Dimensional g-C3N4 Hornet Nest Structure. Anal. Chim. Acta 2024, 1320, 342985. [Google Scholar] [CrossRef]
- Li, F.; Peng, H.; Shen, N.; Yang, C.; Zhang, L.; Li, B.; He, J. Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning. ACS Appl. Mater. Interfaces 2024, 16, 27767–27777. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Wang, Q.; Wang, X.; Wang, S. Electrochemical Sensor Based on an Electrode Modified with Porous Graphitic Carbon Nitride Nanosheets (C3N4) Embedded in Graphene Oxide for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Microchim. Acta 2020, 187, 149. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Rivas-Santisteban, R.; Lillo, J.; Camps, J.; Navarro, G.; Reyes-Resina, I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front. Cell Dev. Biol. 2021, 9, 667815. [Google Scholar] [CrossRef]
- De Fátima dos Santos Sampaio, M.; de Paiva, Y.B.; Sampaio, T.B.; Pereira, M.G.; Coimbra, N.C. Therapeutic Applicability of Cannabidiol and Other Phytocannabinoids in Epilepsy, Multiple Sclerosis and Parkinson’s Disease and in Comorbidity with Psychiatric Disorders. Basic Clin. Pharmacol. Toxicol. 2024, 134, 574–601. [Google Scholar] [CrossRef]
- Cuniberto, E.; Huang, Z.; Ward, M.D.; Shahrjerdi, D. Unraveling the Complex Electrochemistry of Serotonin Using Engineered Graphitic Sensors. Analyst 2023, 148, 105–113. [Google Scholar] [CrossRef]
- Mufeeda, M.; Ankitha, M.; Rasheed, P.A. Nb2CTx/Protonated Carbon Nitride Nanocomposite for Electrochemical Detection of Serotonin. ACS Appl. Nano Mater. 2023, 6, 21152–21161. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, X.; Sailjoi, A.; Zou, Y.; Lin, X.; Yan, F.; Su, B.; Liu, J. Vertical Silica Nanochannels Supported by Nanocarbon Composite for Simultaneous Detection of Serotonin and Melatonin in Biological Fluids. Sens. Actuators B Chem. 2022, 353, 131101. [Google Scholar] [CrossRef]
- Kathiresan, V.; Rajarathinam, T.; Lee, S.; Kim, S.; Lee, J.; Thirumalai, D.; Chang, S.C. Cost-Effective Electrochemical Activation of Graphitic Carbon Nitride on the Glassy Carbon Electrode Surface for Selective Determination of Serotonin. Sensors 2020, 20, 6083. [Google Scholar] [CrossRef] [PubMed]
- Rafiei Boldaji, S.; Yaftian, M.R.; Hatefi-Mehrjardi, A.; Shayani-Jam, H. Graphitic Carbon Nitride-Graphene Nanoplates; Application in the Sensitive Electrochemical Detection of Noscapine. Synth. Met. 2020, 268, 116489. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Development of Molecular Imprinted Sensor Including Graphitic Carbon Nitride/N-Doped Carbon Dots Composite for Novel Recognition of Epinephrine. Compos. B Eng. 2019, 175, 107113. [Google Scholar] [CrossRef]
- Cai, S.-Q.; Xia, T.; Xu, X.-P. Usefulness of Neutrophil-to-Lymphocyte Count Ratio, Procalcitonin, and Interleukin-6 for Severity Assessment of Bacterial Sepsis. J. Lab. Med. 2024, 48, 187–193. [Google Scholar] [CrossRef]
- Chen, F.; Bao, L.; Zhang, Y.; Wang, R.; Liu, J.; Hai, W.; Liu, Y. NiCoP/g-C3N4 Nanocomposites-Based Electrochemical Immunosensor for Sensitive Detection of Procalcitonin. Sensors 2023, 23, 4348. [Google Scholar] [CrossRef] [PubMed]
- Sala, G.; Orsetti, C.; Meucci, V.; De Marchi, L.; Sgorbini, M.; Bonelli, F. Case–Control Study: Endogenous Procalcitonin and Protein Carbonylated Content as a Potential Biomarker of Subclinical Mastitis in Dairy Cows. Vet. Sci. 2023, 10, 670. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.; Bao, L.; Hai, W. Construction of a Non-Enzymatic Electrochemical Sensor Based on Graphitic Carbon Nitride Nanosheets for Sensitive Detection of Procalcitonin. RSC Adv. 2022, 12, 22518–22525. [Google Scholar] [CrossRef]
- Nellaiappan, S.; Mandali, P.K.; Prabakaran, A.; Krishnan, U.M. Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects. Chemosensors 2021, 9, 182. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Bao, L.; Bao, W.; Wenfeng, H. Electrochemical Sensitive Determination of Sepsis Biomarker Procalcitonin at Graphitic Carbon Nitride Nanosheets Modified Electrodes. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Medetalibeyoglu, H.; Beytur, M.; Akyıldırım, O.; Atar, N.; Yola, M.L. Validated Electrochemical Immunosensor for Ultra-Sensitive Procalcitonin Detection: Carbon Electrode Modified with Gold Nanoparticles Functionalized Sulfur Doped MXene as Sensor Platform and Carboxylated Graphitic Carbon Nitride as Signal Amplification. Sens. Actuators B Chem. 2020, 319, 128195. [Google Scholar] [CrossRef]
- Kaur, M.; Bhattacharya, M.; Maity, B. Green Transformation of Biomass-Derived Indian Gooseberry into Fluorescent Intrinsic Nitrogen-Functionalized Carbon Quantum Dots for Real-Time Detection of Vitamin B2 in the Nanomolar Range. RSC Sustain. 2024, 2, 1472–1486. [Google Scholar] [CrossRef]
- Singh, A.K.; Yadav, R.; Singh, A.; Rosy. In-Situ Growth of CuO Nanoflakes on Graphitic Carbon Nitride Sheets: An Electro-Active Interface for Electrocatalytic Oxidation and Detection of Riboflavin in Food and Nutritional Supplements. Nano-Struct. Nano-Objects 2024, 39, 101284. [Google Scholar] [CrossRef]
- Sangavi, R.; Keerthana, M.; Pushpa Malini, T. Rational Design of Dysprosium Oxide Nanochains Decorated on Graphitic Carbon Nitride Nanosheet for the Electrochemical Sensing of Riboflavin in Food Samples. Carbon Lett. 2023, 33, 2171–2188. [Google Scholar] [CrossRef]
- Rajkumar, C.; Kim, H. Interface Engineering of Ruthenium-Supported Sulfur-Doped Graphitic Carbon Nitride for Ultrasensitive Electrochemical Determination of Riboflavin. J. Taiwan Inst. Chem. Eng. 2022, 138, 104470. [Google Scholar] [CrossRef]
- Shanbhag, Y.M.; Shanbhag, M.M.; Malode, S.J.; Dhanalakshmi, S.; Mondal, K.; Shetti, N.P. Direct and Sensitive Electrochemical Evaluation of Pramipexole Using Graphitic Carbon Nitride (GCN) Sensor. Biosensors 2022, 12, 552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasikumar, G.K.; Raja, P.U.M.; Jerome, P.; Shenthilkumar, R.R.; Balla, P. Graphitic Carbon Nitride: A Novel Two-Dimensional Metal-Free Carbon-Based Polymer Material for Electrochemical Detection of Biomarkers. C 2024, 10, 98. https://doi.org/10.3390/c10040098
Sasikumar GK, Raja PUM, Jerome P, Shenthilkumar RR, Balla P. Graphitic Carbon Nitride: A Novel Two-Dimensional Metal-Free Carbon-Based Polymer Material for Electrochemical Detection of Biomarkers. C. 2024; 10(4):98. https://doi.org/10.3390/c10040098
Chicago/Turabian StyleSasikumar, Ganesan Kausalya, Pitchai Utchimahali Muthu Raja, Peter Jerome, Rathinasamy Radhamani Shenthilkumar, and Putrakumar Balla. 2024. "Graphitic Carbon Nitride: A Novel Two-Dimensional Metal-Free Carbon-Based Polymer Material for Electrochemical Detection of Biomarkers" C 10, no. 4: 98. https://doi.org/10.3390/c10040098
APA StyleSasikumar, G. K., Raja, P. U. M., Jerome, P., Shenthilkumar, R. R., & Balla, P. (2024). Graphitic Carbon Nitride: A Novel Two-Dimensional Metal-Free Carbon-Based Polymer Material for Electrochemical Detection of Biomarkers. C, 10(4), 98. https://doi.org/10.3390/c10040098