Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,227)

Search Parameters:
Keywords = metal structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1579 KB  
Article
Verification of the Applicability of the FAD Method Based on Full-Scale Pressurised Tensile Tests of Large-Diameter X80 Pipelines
by Xiaoben Chen, Ying Zhen, Hongfeng Zheng, Haicheng Jin, Rui Hang, Xiaojiang Guo, Jian Xiao and Hao Zhou
Materials 2026, 19(3), 465; https://doi.org/10.3390/ma19030465 - 23 Jan 2026
Abstract
The Failure Assessment Diagram (FAD), as a significant method for evaluating the suitability of defective metallic structures, has been subject to considerable debate regarding its applicability in assessing ring welded joints for high-grade steel and large-diameter pipelines. To address this issue, this study [...] Read more.
The Failure Assessment Diagram (FAD), as a significant method for evaluating the suitability of defective metallic structures, has been subject to considerable debate regarding its applicability in assessing ring welded joints for high-grade steel and large-diameter pipelines. To address this issue, this study first designed and conducted two sets of full-scale pressure-tension tests on large-diameter X80 pipeline ring welded joints, considering factors such as different welding processes, joint configurations, defect dimensions, and locations. Subsequently, three widely adopted failure assessment diagram methodologies—BS 7910, API 579, and API 1104—were selected. Corresponding assessment curves were established based on material performance parameters obtained from the ring weld tests. Finally, predictive outcomes from each assessment method were compared against experimental data to investigate the applicability of failure assessment diagrams for evaluating high-strength, large-diameter, thick-walled ring welds. The research findings indicate that, under the specific material and defect assessment conditions employed in this study, the API 1104 assessment results exhibited significant conservatism (two sets matched). Conversely, the BS 7910 and API 579 assessment results showed a high degree of agreement with the experimental data (eight sets matched), with the BS 7910 assessment providing a relatively higher safety margin compared to API 579. The data from this study provides valuable experimental reference for selecting assessment methods under specific conditions, such as similar materials, defects, and loading patterns. Full article
32 pages, 3916 KB  
Review
From Porphyrinic MOFs and COFs to Hybrid Architectures: Design Principles for Photocatalytic H2 Evolution
by Maria-Chrysanthi Kafentzi, Grigorios Papageorgiou and Kalliopi Ladomenou
Inorganics 2026, 14(2), 32; https://doi.org/10.3390/inorganics14020032 - 23 Jan 2026
Abstract
Solar-driven hydrogen production via photocatalytic water splitting represents a promising route toward sustainable and low-carbon energy systems. Among emerging photocatalysts, porphyrin-based framework materials, specifically porphyrinic metal–organic frameworks (PMOFs) and porphyrinic covalent organic frameworks (PCOFs), have attracted increasing attention owing to their strong visible-light [...] Read more.
Solar-driven hydrogen production via photocatalytic water splitting represents a promising route toward sustainable and low-carbon energy systems. Among emerging photocatalysts, porphyrin-based framework materials, specifically porphyrinic metal–organic frameworks (PMOFs) and porphyrinic covalent organic frameworks (PCOFs), have attracted increasing attention owing to their strong visible-light absorption, tunable electronic structures, permanent porosity, and well-defined catalytic architectures. In these systems, porphyrins function as versatile photosensitizers whose photophysical properties can be precisely tailored through metalation, peripheral functionalization, and integration into ordered frameworks. This review provides a comprehensive, design-oriented overview of recent advances in PMOFs, PCOFs, and hybrid porphyrinic architectures for photocatalytic H2 evolution. We discuss key structure–activity relationships governing light harvesting, charge separation, and hydrogen evolution kinetics, with particular emphasis on the roles of porphyrin metal centers, secondary building units, linker functionalization, framework morphology, and cocatalyst integration. Furthermore, we highlight how heterojunction engineering through coupling porphyrinic frameworks with inorganic semiconductors, metal sulfides, or single-atom catalytic sites can overcome intrinsic limitations related to charge recombination and limited spectral response. Current challenges, including long-term stability, reliance on noble metals, and scalability, are critically assessed. Finally, future perspectives are outlined, emphasizing rational molecular design, earth-abundant catalytic motifs, advanced hybrid architectures, and data-driven approaches as key directions for translating porphyrinic frameworks into practical photocatalytic hydrogen-generation technologies. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

22 pages, 4467 KB  
Article
Innovative Trinuclear Copper(I)-Based Metal–Organic Framework: Synthesis, Characterization, and Application in Laser-Induced Graphene Supercapacitors
by Hiba Toumia, Yu Kyoung Ryu, Habiba Zrida, Alicia De Andrés, María Belén Gómez-Mancebo, Natalia Brea Núñez, Fernando Borlaf, Ayoub Haj Said and Javier Martinez
Nanomaterials 2026, 16(3), 155; https://doi.org/10.3390/nano16030155 - 23 Jan 2026
Abstract
Optimizing efficient electrode materials that combine high energy density, rapid charge transport, and excellent cycling stability remains a challenge for advanced supercapacitors. Here, we report the synthesis of an innovative copper(I)-based metal–organic framework (MOF), Cu3(NDI)3, prepared via a simple [...] Read more.
Optimizing efficient electrode materials that combine high energy density, rapid charge transport, and excellent cycling stability remains a challenge for advanced supercapacitors. Here, we report the synthesis of an innovative copper(I)-based metal–organic framework (MOF), Cu3(NDI)3, prepared via a simple solvothermal method using N,N’-bis(3,5-dimethylpyrazol-4-yl)-naphthalene diimide (H2NDI-H) as a linker. Structural analyses (XRD, FTIR, SEM, EDX, and BET) confirmed the formation of a highly crystalline, porous MOF. Integration of this MOF into laser-induced graphene (LIG) matrices yielded hybrid electrodes with enhanced structural characteristics and electrochemical activity, compared to its only-LIG counterpart. Electrochemical studies (CV, CD, EIS) revealed that the LIG–MOF electrode exhibited the highest performance, delivering a specific capacitance of 4.6 mF cm−2 at 0.05 mA cm−2, and an areal energy density of 60.03 μWh cm−2 at a power density of 1292.17 μW cm−2, outperforming both LIG and MOF–LIG configurations. This enhancement arises from the synergetic interaction between the conductive LIG network and the redox-active Cu3(NDI)3 framework, highlighting the potential of LIG–MOF hybrids as next-generation materials for high-performance supercapacitors. Full article
23 pages, 3611 KB  
Review
Rhodium-Based Electrocatalysts for Ethanol Oxidation Reaction: Mechanistic Insights, Structural Engineering, and Performance Optimization
by Di Liu, Qingqing Lv, Dahai Zheng, Chenhui Zhou, Shuchang Chen, Hongxin Yang, Liwei Chen and Yufeng Zhang
Catalysts 2026, 16(2), 114; https://doi.org/10.3390/catal16020114 - 23 Jan 2026
Abstract
Direct ethanol fuel cells (DEFCs) have gained considerable attention as promising power sources for sustainable energy conversion due to their high energy density, low toxicity, and renewable ethanol feedstock. However, the sluggish ethanol oxidation reaction (EOR) kinetics and the formation of strongly adsorbed [...] Read more.
Direct ethanol fuel cells (DEFCs) have gained considerable attention as promising power sources for sustainable energy conversion due to their high energy density, low toxicity, and renewable ethanol feedstock. However, the sluggish ethanol oxidation reaction (EOR) kinetics and the formation of strongly adsorbed intermediates (e.g., CO*, CHx*) severely hinder catalytic efficiency and durability. Rhodium (Rh)-based catalysts stand out for their balanced intermediate adsorption, efficient C–C bond cleavage, and superior CO tolerance arising from their unique electronic structure. This review summarizes recent advances in Rh-based EOR catalysts, including monometallic Rh nanostructures, Rh-based alloys, and Rh–support composites. The effects of morphology, alloying, and metal–support interactions on activity, selectivity, and stability are discussed in detail. Strategies for structural and electronic regulation—such as nanoscale design, alloying modulation and interfacial engineering—are highlighted to enhance catalytic performance. Finally, current challenges and future directions are outlined, emphasizing the need for Rh-based catalysts with high activity, selectivity and stability, integrating in situ characterization with theoretical modeling. This work provides insights into the structure–activity relationships of Rh-based catalysts and guidance for designing efficient and durable anode catalysts for practical DEFC applications. Full article
18 pages, 2264 KB  
Article
Unveiling the Bio-Interface via Spectroscopic and Computational Studies of (Propyl-3-ol/butyl-4-ol)triphenyltin(IV) Compound Binding to Human Serum Transferrin
by Žiko Milanović, Emina Mrkalić, Jovan Kulić and Goran N. Kaluđerović
Materials 2026, 19(3), 457; https://doi.org/10.3390/ma19030457 - 23 Jan 2026
Abstract
Two structurally tunable (propyl-3-ol)triphenyltin(IV) (Ph3SnL1) and (butyl-4-ol)triphenyltin(IV) (Ph3SnL2) compounds were investigated at the human serum transferrin (Tf) molecular interface to resolve how ligand architecture and protein metallation modulate organotin(IV) biocompound stability [...] Read more.
Two structurally tunable (propyl-3-ol)triphenyltin(IV) (Ph3SnL1) and (butyl-4-ol)triphenyltin(IV) (Ph3SnL2) compounds were investigated at the human serum transferrin (Tf) molecular interface to resolve how ligand architecture and protein metallation modulate organotin(IV) biocompound stability and lobe-selective binding. Steady-state fluorescence spectroscopy revealed efficient quenching of native Tf emission (λex = 280 nm, 296–310 K, pH 7.4) without significant spectral displacement, indicating the predominant formation of non-fluorescent ground-state complexes. Calculated bimolecular quenching constants (Kq ~1012 M−1 s−1) exceeded the diffusion-controlled aqueous limit, ruling out a collisional dynamic quenching mechanism and confirming static complexation as the principal origin of fluorescence suppression. Double-log binding analysis revealed moderate affinity (Ka ~102–103 M−1) and an approximately single dominant binding event per protein (n ≈ 0.65–0.90). Temperature-dependent van’t Hoff evaluation yielded positive ΔH° and ΔS° values, supporting a spontaneous, entropy-favored association process largely governed by hydrophobic and dispersion-type contributions, consistent with lipophilic organotin(IV) scaffold accommodation. Iron (Fe3+) loading of Tf markedly enhanced ligand engagement, especially for Ph3SnL1, evidencing that metallation-induced lobe closure reshapes pocket accessibility and local polarity relevant for organotin(IV) binding presentation rather than simply strengthening empirical docking scores. Molecular docking localized the most stable Ph3SnL2 poses in the sterically confined, rigid C-lobe, while Ph3SnL1 preferentially penetrated the more adaptive N-lobe. ONIOM QM/MM refinement of docking poses confirmed strong interfacial stabilization (ΔEint ≈ –38 to –62 kcal mol−1) and clarified charge–packing interplay without invoking frontier orbital analysis. The results map multiscale structure–interaction relationships defining lobe preference and complex stability at the transferrin interface. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

32 pages, 2701 KB  
Review
A Comprehensive Review of Application Techniques for Thermal-Protective Elastomeric Ablative Coatings in Solid Rocket Motor Combustion Chambers
by Mohammed Meiirbekov, Marat Nurguzhin, Marat Ismailov, Marat Janikeyev, Zhannat Kadyrov, Myrzakhan Omarbayev, Assem Kuandyk, Nurmakhan Yesbolov, Meiir Nurzhanov, Sunkar Orazbek and Mukhammed Sadykov
Technologies 2026, 14(2), 77; https://doi.org/10.3390/technologies14020077 (registering DOI) - 23 Jan 2026
Abstract
Elastomeric ablative coatings are essential for protecting solid rocket motor (SRM) combustion chambers from extreme thermal and erosive environments, and their performance is governed by both material composition and processing strategy. This review examines the main elastomer systems used for SRM insulation, including [...] Read more.
Elastomeric ablative coatings are essential for protecting solid rocket motor (SRM) combustion chambers from extreme thermal and erosive environments, and their performance is governed by both material composition and processing strategy. This review examines the main elastomer systems used for SRM insulation, including ethylene propylene diene monomer (EPDM), nitrile butadiene rubber (NBR), hydroxyl-terminated polybutadiene (HTPB), polyurethane (PU), silicone-based compounds, and related hybrids, and discusses how their rheological behavior, cure kinetics, thermal stability, and ablation mechanisms affect manufacturability and in-service performance. A comprehensive assessment of coating technologies is presented, covering casting, molding, centrifugal forming, spraying, automated deposition, and emerging additive-manufacturing approaches for complex geometries. Emphasis is placed on processing parameters that control adhesion to metallic substrates, layer uniformity, defect formation, and thermomechanical integrity under high-heat-flux exposure. The review integrates current knowledge on how material choice, surface preparation, and application sequence collectively determine insulation efficiency under operational SRM conditions. Practical aspects such as scalability, compatibility with complex chamber architectures, and integration with quality-control tools are highlighted. By comparing the capabilities and limitations of different materials and technologies, the study identifies key development trends and outlines remaining challenges for improving the durability, structural robustness, and ablation resistance of next-generation elastomeric coatings for SRMs. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

13 pages, 2371 KB  
Article
Facet-Dependent Electrocatalysis of Spinel Co3O4 for Enhanced Chlorine-Mediated Ammonia Oxidation
by Xuanxu Shen and Fang Ma
Water 2026, 18(3), 298; https://doi.org/10.3390/w18030298 - 23 Jan 2026
Abstract
Facet engineering has emerged as a promising approach to tailor the catalytic performance of metal oxides for environmental electrocatalysis. Herein, we synthesized spinel Co3O4 nanocrystals with predominantly exposed {110}, {111}, and {112} facets to investigate their facet-dependent electrocatalytic activity toward [...] Read more.
Facet engineering has emerged as a promising approach to tailor the catalytic performance of metal oxides for environmental electrocatalysis. Herein, we synthesized spinel Co3O4 nanocrystals with predominantly exposed {110}, {111}, and {112} facets to investigate their facet-dependent electrocatalytic activity toward chlorine-mediated ammonia oxidation. Structural characterization confirmed the successful fabrication of well-defined {110} nanorods, {111} octahedra, and {112} nanoplates. Electrochemical evaluation revealed a distinct activity trend: {110} > {112} > {111}. The Co3O4 {110} facet exhibited the lowest chlorine evolution potential, the smallest charge-transfer resistance, and the highest ammonia removal rate, achieving nearly complete oxidation of 75 mg L−1 NH4+-N within 2 h at 15 mA cm−2. Mechanistic studies demonstrated that free chlorine species (HOCl/OCl), rather than hydroxyl or chlorine radicals, serve as the primary oxidants. XPS and CV analyses further indicated that the superior activity of the {110} facet is attributed to its higher proportion of Co3+ sites and greater oxygen vacancy density, which enhance chloride adsorption and facilitate the Co3+/Co2+ redox cycle critical for the chlorine evolution reaction. This work elucidates the intrinsic structure–activity relationships of Co3O4 facets and provides a rational strategy for designing efficient electrocatalysts for electrochemical ammonia removal. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

27 pages, 3203 KB  
Article
Machine Learning and Physics-Informed Neural Networks for Thermal Behavior Prediction in Porous TPMS Metals
by Mohammed Yahya and Mohamad Ziad Saghir
Fluids 2026, 11(2), 29; https://doi.org/10.3390/fluids11020029 - 23 Jan 2026
Abstract
Triply periodic minimal surface (TPMS) structures provide high surface area to volume ratios and tunable conduction pathways, but predicting their thermal behavior across different metallic materials remains challenging because multi-material experimentation is costly and full-scale simulations require extremely fine meshes to resolve the [...] Read more.
Triply periodic minimal surface (TPMS) structures provide high surface area to volume ratios and tunable conduction pathways, but predicting their thermal behavior across different metallic materials remains challenging because multi-material experimentation is costly and full-scale simulations require extremely fine meshes to resolve the complex geometry. This study develops a physics-informed neural network (PINN) that reconstructs steady-state temperature fields in TPMS Gyroid structures using only two experimentally measured materials, Aluminum and Silver, which were tested under identical heat flux and flow conditions. The model incorporates conductivity ratio physics, Fourier-based thermal scaling, and complete spatial temperature profiles directly into the learning process to maintain physical consistency. Validation using the complete Aluminum and Silver datasets confirms excellent agreement for Aluminum and strong accuracy for Silver despite its larger temperature gradients. Once trained, the PINN can generalize the learned behavior to nine additional metals using only their conductivity ratios, without requiring new experiments or numerical simulations. A detailed heat transfer analysis is also performed for Magnesium, a lightweight material that is increasingly considered for thermal management applications. Since no published TPMS measurements for Magnesium currently exist, the predicted Nusselt numbers obtained from the PINN-generated temperature fields represent the first model-based evaluation of its convective performance. The results demonstrate that the proposed PINN provides an efficient, accurate, and scalable surrogate model for predicting thermal behavior across multiple metallic TPMS structures and supports the design and selection of materials for advanced porous heat technologies. Full article
Show Figures

Figure 1

22 pages, 3208 KB  
Article
Validated Cohesive Zone Models for Epoxy-Based Adhesive Joints Between Steel and CFRP Composites for Multimaterial Structural Design in Transportation Applications
by Stanislav Špirk and Tomáš Kalina
Polymers 2026, 18(3), 309; https://doi.org/10.3390/polym18030309 - 23 Jan 2026
Abstract
This study presents the development, calibration, and validation of cohesive zone models (CZMs) for epoxy-based adhesive joints connecting stainless steel and CFRP composites. The objective of this study is to develop and rigorously validate cohesive zone models for epoxy-based adhesive joints between stainless [...] Read more.
This study presents the development, calibration, and validation of cohesive zone models (CZMs) for epoxy-based adhesive joints connecting stainless steel and CFRP composites. The objective of this study is to develop and rigorously validate cohesive zone models for epoxy-based adhesive joints between stainless steel and CFRP composites, ensuring their reliability for numerical simulations of structural failure under quasi-static and large-deformation conditions. The work focuses on accurately describing the quasi-static behaviour and failure mechanisms of hybrid adhesive interfaces, which are crucial for multimaterial structures in modern transportation systems. Experimental tests in Mode I (DCB) and Mode II (ENF) configurations were performed to determine the cohesive parameters of the structural adhesive SikaPower 1277. The obtained data were further analysed through analytical formulations and validated numerically using PAM-CRASH. Excellent agreement was achieved between experiments, analytical predictions, and simulations, confirming the reliability of the proposed material definitions under large deformations. The validated models were subsequently implemented in a large-scale numerical simulation of a bus rollover according to UN/ECE Regulation No. 66, demonstrating their applicability to real structural components. The results show that the developed cohesive zone models enable accurate prediction of failure initiation and propagation in adhesive joints between dissimilar materials. These findings provide a robust foundation for the design of lightweight, crashworthy structures in transportation and open new perspectives for integrating epoxy-based adhesives into additively manufactured hybrid metal–composite systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 1227 KB  
Review
Physicochemical Properties and Adsorption Mechanisms of Bentonite–Sawdust-Derived Carbon Composites
by Rabiga M. Kudaibergenova, Olzhas N. Nurlybayev, Ivan Kazarinov, Aisha N. Nurlybayeva, Seitzhan A. Orynbayev, Nazgul S. Murzakasymova, Elvira A. Baibazarova and Arman A. Kabdushev
Water 2026, 18(2), 290; https://doi.org/10.3390/w18020290 - 22 Jan 2026
Abstract
The escalating global water crisis necessitates the development of efficient, sustainable, and cost-effective remediation technologies. This review highlights bentonite–sawdust-derived carbon composites as a promising class of adsorbents for the removal of diverse water pollutants. The synthesis strategies, physicochemical properties, key interfacial adsorption mechanisms, [...] Read more.
The escalating global water crisis necessitates the development of efficient, sustainable, and cost-effective remediation technologies. This review highlights bentonite–sawdust-derived carbon composites as a promising class of adsorbents for the removal of diverse water pollutants. The synthesis strategies, physicochemical properties, key interfacial adsorption mechanisms, and adsorption performance toward different pollutant categories are systematically discussed. These hybrid materials exhibit synergistically enhanced properties, including increased surface area, optimized porosity, abundant functional groups, tunable surface charge, and improved structural stability, often outperforming the individual components. Their effectiveness has been demonstrated for both heavy metals (e.g., Cd and Pb) and organic contaminants (e.g., dyes and pharmaceuticals), governed by a combination of ion exchange, electrostatic attraction, π–π interactions, and pore-filling mechanisms. Current challenges related to large-scale production, long-term stability, and regeneration are critically evaluated, and future research directions for the sustainable application of these composites in advanced water treatment systems are outlined. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
17 pages, 2407 KB  
Article
Solid Microneedles from Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate): A Solvent-Free, Biodegradable Platform for Drug Delivery
by Diana Araújo, Francisco Santos, Rui Igreja and Filomena Freitas
Pharmaceutics 2026, 18(1), 139; https://doi.org/10.3390/pharmaceutics18010139 - 22 Jan 2026
Abstract
Background: Solid microneedles (MNs) are effective transdermal delivery devices but are commonly fabricated from metallic or non-biodegradable materials, raising concerns related to sustainability, waste management, and processing constraints. This study aimed to evaluate the suitability of the biodegradable biopolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx) as [...] Read more.
Background: Solid microneedles (MNs) are effective transdermal delivery devices but are commonly fabricated from metallic or non-biodegradable materials, raising concerns related to sustainability, waste management, and processing constraints. This study aimed to evaluate the suitability of the biodegradable biopolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx) as a structuring material for solvent-free fabrication of solid MN arrays and to assess their mechanical performance, insertion capability, and drug delivery potential. Methods: PHBHVHHx MN arrays were fabricated by solvent-free micromolding at 200 °C. The resulting MNs were morphologically characterized by scanning electron microscopy. Mechanical properties were assessed by axial compression testing, and insertion performance was evaluated using a multilayer Parafilm skin simulant model. Diclofenac sodium was used as a model drug and applied via surface coating using a FucoPol-based formulation. In vitro drug release was assessed in phosphate-buffered saline under sink conditions and quantified by UV–Vis spectroscopy. Results: PHBHVHHx MN arrays consisted of sharp, well-defined conical needles (681 ± 45 µm length; 330 µm base diameter) with micro-textured surfaces. The MNs withstood compressive forces up to 0.25 ± 0.03 N/needle and achieved insertion depths of approximately 396 µm in the Parafilm model. Drug-coated MNs retained adequate mechanical integrity and exhibited a rapid release profile, with approximately 73% of diclofenac sodium released within 10 min. Conclusions: The results demonstrate that PHBHVHHx is a suitable biodegradable thermoplastic for the fabrication of solid MN arrays via a solvent-free process. PHBHVHHx MNs combine adequate mechanical performance, reliable insertion capability, and compatibility with coated drug delivery, supporting their potential as sustainable alternatives to conventional solid MN systems. Full article
(This article belongs to the Special Issue Biomaterials for Skin Drug Delivery)
22 pages, 5608 KB  
Article
ZSM-5 Nanocatalyst from Rice Husk: Synthesis, DFT Analysis, and Au/Pt Modification for Isopropanol Conversion
by Ebtsam K. Alenezy, Sahar A. El-Molla, Karam S. El-Nasser, Ylias Sabri and Ibraheem O. Ali
Catalysts 2026, 16(1), 110; https://doi.org/10.3390/catal16010110 - 22 Jan 2026
Abstract
Silica extracted from rice straw was utilized to synthesize nanoscale ZSM-5 zeolite, which was further modified with platinum (Pt) or gold (Au). The structural properties of the materials were examined using XRD, SEM, and BET analysis, while acidity distribution was determined by in [...] Read more.
Silica extracted from rice straw was utilized to synthesize nanoscale ZSM-5 zeolite, which was further modified with platinum (Pt) or gold (Au). The structural properties of the materials were examined using XRD, SEM, and BET analysis, while acidity distribution was determined by in situ FT-IR through pyridine adsorption. The zeolitic samples were evaluated as catalysts for isopropanol conversion in the temperature range of 150–275 °C. Modification of HZSM-5 with Au and Pt introduced additional active metal sites and enhanced the acidity of the catalyst, thereby lowering the activation energy for dehydration reactions and improving catalytic performance. Both acetone and propene were produced from isopropanol conversion across all catalysts, with oligomerization occurring at temperatures above 200 °C. Among the catalysts, HZSM-5 modified with 4% Pt or 4% Au exhibited superior conversion rates and selectivity to propene, achieving 92% selectivity at 200 °C. The enhanced propylene selectivity and stability of Au/HZSM-5 are associated with preserved medium-strength acid sites, as evidenced by in situ FT-IR pyridine adsorption, particularly the band at 1457 cm−1. Theoretical studies indicated that incorporating noble metals such as Au and Pt enhances the stability of the zeolite structure, which is consistent with the experimental results, suggesting new potential for advanced catalysis and material science applications. Full article
Show Figures

Figure 1

38 pages, 7740 KB  
Review
Waterborne Poly(urethane-urea)s for Lithium-Ion/Lithium-Metal Batteries
by Bushra Rashid, Anjum Hanief Kohli and In Woo Cheong
Polymers 2026, 18(2), 299; https://doi.org/10.3390/polym18020299 - 22 Jan 2026
Abstract
Waterborne polyurethane (WPU) and waterborne poly(urethane-urea) (WPUU) dispersions allow safer and more sustainable manufacturing of rechargeable batteries via water-based processing, while offering tunable adhesion and segmented-domain mechanics. Beyond conventional roles as binders and coatings, WPU/WPUU chemistries also support separator/interlayer and polymer-electrolyte designs for [...] Read more.
Waterborne polyurethane (WPU) and waterborne poly(urethane-urea) (WPUU) dispersions allow safer and more sustainable manufacturing of rechargeable batteries via water-based processing, while offering tunable adhesion and segmented-domain mechanics. Beyond conventional roles as binders and coatings, WPU/WPUU chemistries also support separator/interlayer and polymer-electrolyte designs for lithium-ion and lithium metal systems, where interfacial integrity, stress accommodation, and ion transport must be balanced. Here, we review WPU/WPUU fundamentals (building blocks, dispersion stabilization, morphology, and film formation) and review prior studies through a battery-centric structure–processing–property lens. We point out key performance-limiting trade-offs—adhesion versus electrolyte uptake and ionic conductivity versus storage modulus—and relate them to practical formulation variables, including soft-/hard-segment selection, ionic center/counterion design, molecular weight/topology control, and crosslinking strategies. Applications are reviewed for (i) electrode binders (graphite/Si; cathodes such as LFP and NMC), (ii) separator coatings and functional interlayers, and (iii) gel/solid polymer electrolytes and hybrid composites, with a focus on practical design guidelines for navigating these trade-offs. Future advancements in WPU/WPUU chemistries will depend on developing stable, low-impedance interlayers, enhancing electrochemical behavior, and establishing application-specific design guidelines to optimize performance in lithium metal batteries (LMB). Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3014 KB  
Article
The Application of High-Performance Silver Nanowire and Metal Oxide Composite Electrodes as Window Electrodes in Electroluminescent Devices
by Xingzhen Yan, Ziyao Niu, Mengying Lyu, Yanjie Wang, Fan Yang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2026, 17(1), 141; https://doi.org/10.3390/mi17010141 - 22 Jan 2026
Abstract
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local [...] Read more.
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local medium environment surrounding the AgNW meshes. The randomly distributed AgNW meshes fabricated via drop-coating were treated with plasma to remove surface organic residues and reduce the inter-nanowire contact resistance. Subsequently, a zinc oxide (ZnO) coating was applied to further decrease the sheet resistance (Rsheet) value. The pristine AgNW mesh exhibits an Rsheet of 17.4 ohm/sq and an optical transmittance of 93.06% at a wavelength of 550 nm. After treatment, the composite structure achieves a reduced Rsheet of 8.7 ohm/sq while maintaining a high optical transmittance of 92.20%. The use of AgNW meshes as window electrodes enhances electron injection efficiency and facilitates the coupling mechanism between localized surface plasmon resonances and excitons. Compared with conventional ITO transparent electrodes, the incorporation of the AgNW mesh leads to a 17-fold enhancement in ZnO emission intensity under identical injection current conditions. Moreover, the unique scattering characteristics of the AgNW and metal oxide composite structure effectively reduce photon reflection at the device interface, thereby broadening the angular distribution of emitted light in electroluminescent devices. Full article
Show Figures

Figure 1

22 pages, 5019 KB  
Article
Enhanced Bioactivity and Antibacterial Properties of Ti-6Al-4V Alloy Surfaces Modified by Electrical Discharge Machining
by Bárbara A. B. dos Santos, Rafael E. G. Leal, Ana P. G. Gomes, Liszt Y. C. Madruga, Ketul C. Popat, Hermes de Souza Costa and Roberta M. Sabino
Colloids Interfaces 2026, 10(1), 12; https://doi.org/10.3390/colloids10010012 - 22 Jan 2026
Abstract
Bacterial infections and the lack of bioactivity of titanium implants and their alloys remain critical challenges for the long-term performance and clinical success of these devices. These issues arise from the undesirable combination of early microbial adhesion and the limited ability of metallic [...] Read more.
Bacterial infections and the lack of bioactivity of titanium implants and their alloys remain critical challenges for the long-term performance and clinical success of these devices. These issues arise from the undesirable combination of early microbial adhesion and the limited ability of metallic surfaces to form a bioactive interface capable of supporting osseointegration. To address these limitations simultaneously, this study employed electrical discharge machining (EDM), which enables surface topography modification and in situ incorporation of bioactive ions from the dielectric fluid. Ti-6Al-4V ELI surfaces were modified using two dielectric fluids, a fluorine/phosphorus-based solution (DF1-F) and a calcium/phosphorus-based solution (DF2-Ca), under positive and negative polarities. The recast layer was characterized by SEM and EDS, while bioactivity was evaluated through immersion in simulated body fluid (SBF) for up to 21 days. Antibacterial performance was assessed against Staphylococcus aureus at 6 h and 24 h of incubation. The results demonstrated that dielectric composition and polarity strongly influenced ionic incorporation and the structural stability of the modified layers. The DF2-Ca(+) condition exhibited the most favorable bioactive response, with Ca/P ratios closer to hydroxyapatite and surface morphologies typical of mineralized coatings. In antibacterial assays, Ca/P-containing surfaces significantly decreased S. aureus attachment (>80–90%). Overall, EDM with Ca/P-containing dielectrics enables the fabrication of Ti-6Al-4V surfaces with enhanced mineralization capacity and anti-adhesive effects against Gram-positive bacteria, reinforcing their potential for multifunctional biomedical applications. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 3rd Edition)
Show Figures

Figure 1

Back to TopTop