Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (829)

Search Parameters:
Keywords = metal photocatalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4196 KiB  
Review
Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
by Yulin Zhao, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen and Yingying Zhu
Catalysts 2025, 15(8), 730; https://doi.org/10.3390/catal15080730 - 31 Jul 2025
Viewed by 282
Abstract
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional [...] Read more.
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional physical separation methods avoid secondary pollution by chemicals and can effectively separate floating oil and dispersed oil, they are ineffective in removing emulsified oil with small particle sizes. To address these complex challenges, photocatalytic technology and photocatalysis-based improved technologies have emerged, offering significant application prospects in degrading organic pollutants in oily wastewater as an environmentally friendly oxidation technology. In this paper, the degradation mechanism, kinetic mechanism, and limitations of conventional photocatalysis technology are briefly discussed. Subsequently, the surface interface modulation functions of metal doping and heterojunction energy band engineering, along with their applications in enhancing the light absorption range and carrier separation efficiency, are reviewed. Focus on typical studies on the separation and degradation of aqueous and oily phases using photocatalytic membrane technology, and illustrate the advantages and mechanisms of photocatalysts loaded on the membranes. Finally, other new approaches and converging technologies in the field are outlined, and the challenges and prospects for the future treatment of oily wastewater are presented. Full article
Show Figures

Figure 1

36 pages, 9312 KiB  
Review
Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review
by Carol D. Langa, Nonhlangabezo Mabuba and Nomso C. Hintsho-Mbita
Catalysts 2025, 15(8), 727; https://doi.org/10.3390/catal15080727 - 30 Jul 2025
Viewed by 308
Abstract
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted [...] Read more.
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted the potential of metal sulfide-based photocatalysts, particularly those synthesized through environmentally friendly, plant-mediated approaches, as promising alternatives for efficient and sustainable dye degradation. However, despite their promising potential, metal sulfide photocatalysts often suffer from limitations such as photocorrosion, low stability under irradiation, and rapid recombination of charge carriers, which restrict their long-term applicability. In light of these challenges, this review provides a comprehensive examination of the physicochemical characteristics, synthetic strategies, and photocatalytic applications of metal sulfides. Particular emphasis is placed on green synthesis routes employing plant-derived extracts, which offer environmentally benign and sustainable alternatives to conventional methods. Moreover, the review elucidates various modification approaches, most notably, the formation of heterostructures, as viable strategies to enhance photocatalytic efficiency and mitigate the aforementioned drawbacks. The green synthesis of metal sulfides, aligned with the principles of green chemistry, offers a promising route toward the development of sustainable and environmentally friendly water treatment technologies. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 229
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Viewed by 578
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 6747 KiB  
Article
Fabrication of Metal–Organic Framework-Mediated Heterogeneous Photocatalyst Using Sludge Generated in the Classical Fenton Process
by Xiang-Yu Wang, Xu Liu, Wu Kuang and Hong-Bin Xiong
Nanomaterials 2025, 15(14), 1069; https://doi.org/10.3390/nano15141069 - 10 Jul 2025
Viewed by 293
Abstract
The sludge produced by the Fenton process contains mixed-valence iron particulates (hereafter called Fenton wastes). Using a solvothermal method, we fabricated a new heterogeneous photo-Fenton catalyst using Fenton wastes and metal–organic frameworks (MOFs). Nanoporous metal carboxylate (MIL-88) MOF impregnated with Fenton waste was [...] Read more.
The sludge produced by the Fenton process contains mixed-valence iron particulates (hereafter called Fenton wastes). Using a solvothermal method, we fabricated a new heterogeneous photo-Fenton catalyst using Fenton wastes and metal–organic frameworks (MOFs). Nanoporous metal carboxylate (MIL-88) MOF impregnated with Fenton waste was functionalized using 2,5-dihydroxyterephthalic acid (x-HO-MIL-88-C, x, concentration of the 2,5-dihydroxyterephthalic acid). The efficiency of x-HO-MIL-88-C was examined under visible light radiation using methylene blue (MB) as an index pollutant. We observed the best catalytic performance for MB degradation by 4-HO-MIL-88-C. In the photo-Fenton process, the simultaneous presence of singlet oxygen, superoxide, and hydroxyl radicals is confirmed by free radical quenching and electron spin resonance spectral data. These free radicals associate with holes in the non-selective degradation of MB. The 4-HO-MIL-88-C catalyst shows good stability and reusability, maintaining over 80% efficiency at the end of five consecutive cycles. This work opens up a new path for recycling Fenton wastes into usable products. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

46 pages, 3942 KiB  
Review
Catalytic Fluorination with Modern Fluorinating Agents: Recent Developments and Synthetic Scope
by Muhammad Saeed Akhtar, Mohammad Aslam, Wajid Zaman, Kuppu Sakthi Velu, Seho Sun and Hee Nam Lim
Catalysts 2025, 15(7), 665; https://doi.org/10.3390/catal15070665 - 8 Jul 2025
Viewed by 2011
Abstract
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, [...] Read more.
Fluorinated organic molecules have become indispensable in modern chemistry, owing to the unique properties imparted by fluorine to other compounds, including enhanced metabolic stability, controlled lipophilicity, and improved bioavailability. The site-selective incorporation of fluorine atoms into organic frameworks is essential in pharmaceutical, agrochemical, and material science research. In recent years, catalytic fluorination has become an important methodology for the efficient and selective incorporation of fluorine atoms into complex molecular architectures. This review highlights advances in catalytic fluorination reactions over the past six years and describes the contributions of transition metal catalysts, photocatalysts, organocatalysts, and electrochemical systems that have enabled site-selective fluorination under a variety of conditions. Particular attention is given to the use of well-defined fluorinating agents, including Selectfluor, N-fluorobenzenesulfonimide (NFSI), AlkylFluor, Synfluor, and hypervalent iodine reagents. These reagents have been combined with diverse catalytic systems, such as AgNO3, Rh(II), Mo-based complexes, Co(II)-salen, and various organocatalysts, including β,β-diaryl serine catalysts, isothiourea catalysts, and chiral phase-transfer catalysts. This review summarizes proposed mechanisms reported in the original studies and discusses examples of electrophilic, nucleophilic, radical, photoredox, and electrochemical fluorination pathways. Recent developments in stereoselective and more sustainable protocols are also examined. By consolidating these strategies, this article provides an up-to-date perspective on catalytic fluorination and its impact on synthetic organic chemistry. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

6 pages, 2223 KiB  
Proceeding Paper
Photocatalytic Degradation of Dyes Using TpPa-COF-Cl2 Membrane
by Mayu Kawaguchi, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 1; https://doi.org/10.3390/chemproc2025017001 - 4 Jul 2025
Viewed by 355
Abstract
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing [...] Read more.
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing the cross-linked structure of calcium alginate, we succeeded in forming the photocatalyst TpPa-COF-Cl2 into a membrane without destroying its structure. This was confirmed by characterization such as FT-IR. In addition, methyl orange was decolorized at 450 nm, confirming the photocatalytic activity of the membrane. Full article
Show Figures

Figure 1

38 pages, 6778 KiB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Viewed by 646
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

28 pages, 3287 KiB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Viewed by 722
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

22 pages, 23349 KiB  
Article
Ag/AgCl-Decorated Layered Lanthanum/Niobium Oxide Microparticles as Efficient Photocatalysts for Azo Dye Remediation and Cancer Cell Inactivation
by Elmuez Dawi and Mohsen Padervand
Catalysts 2025, 15(7), 638; https://doi.org/10.3390/catal15070638 - 30 Jun 2025
Viewed by 411
Abstract
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), [...] Read more.
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) techniques were used to illustrate the physicochemical properties of the materials. The photoactivity was evaluated for the degradation of Acid Blue 92 (AB92) azo dye, a typical organic contaminant from the textile industry, and U251 cancer cell inactivation. According to the results, Nb2O5–Ag/AgCl was able to remove >99% of AB92 solution in 35 min with the rate constant of 0.12 min−1, 2.4 times higher than that of La2O3–Ag/AgCl. A pH of 3 and a catalyst dosage of 0.02 g were determined as the optimized factors to reach the highest degradation efficiency under solar energy at noon, which was opted to have the highest sunlight intensity over the reactor. Also, 0.02 mg/mL of Nb2O5–Ag/AgCl was determined to be of great potential to reduce cancer cell viability by more than 50%, revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and mitochondrial membrane potential (MMP) examinations. The mechanism of degradation was also discussed, considering the key role of Ag0 nanoparticles in inducing a plasmonic effect and improving the charge separation. This work provides helpful insights to opt for an efficient rare metal oxide with good biocompatibility as support for the plasmonic photocatalysts with the goal of environmental purification under sunlight. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

12 pages, 3952 KiB  
Article
Rationally Designed 2D CZIS/2D Ti3CNTx Heterojunctions for Photocatalytic Hydrogen Evolution Reaction
by Peize Li, Zhiying Wang and Xiaofei Yang
Catalysts 2025, 15(7), 632; https://doi.org/10.3390/catal15070632 - 27 Jun 2025
Viewed by 479
Abstract
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an [...] Read more.
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an ideal electron transfer mediator due to its large specific surface area and abundant active terminal groups. In this work, we strategically integrated the 2D multi-metal sulfide Cu-Zn-In-S (CZIS) with 2D Ti3CNTx nanosheets through physical mixture, constructing a heterostructured 2D/2D CZIS/Ti3CNTx composite photocatalyst for the hydrogen evolution reaction. The unique architecture significantly accelerates electron migration from CZIS to Ti3CNTx, while synergistically promoting the spatial separation and directional transfer of photogenerated electron–hole pairs (e/h+). When the hydrogen evolution reaction is carried out under identical conditions, the hydrogen yield rate is 4.3 mmol g−1 h−1 with pristine CZIS but is improved dramatically to 14.3 mmol g−1 h−1 when the composite containing an adequate amount of 2D Ti3CNTx is used. This study offers new insight into the rational design and controllable synthesis of Ti3CNTx-based composite photocatalytic systems for efficient photocatalytic hydrogen production. Full article
Show Figures

Graphical abstract

22 pages, 2718 KiB  
Review
Recent Studies on the Construction of MOF-Based Composites and Their Applications in Photocatalytic Hydrogen Evolution
by Quanmei Zhou, Yuchen Wei, Yifan Liao, Jiayi Meng, Yamei Huang, Xinglin Wang, Huihui Zhang and Weilin Dai
Molecules 2025, 30(13), 2755; https://doi.org/10.3390/molecules30132755 - 26 Jun 2025
Viewed by 512
Abstract
The development of metal–organic framework (MOF)-based composites for photocatalytic hydrogen evolution has garnered significant attention due to their tunable structures, high surface area, and abundant active sites. Recent advancements focus on enhancing light absorption, charge separation, and catalytic efficiency through strategies such as [...] Read more.
The development of metal–organic framework (MOF)-based composites for photocatalytic hydrogen evolution has garnered significant attention due to their tunable structures, high surface area, and abundant active sites. Recent advancements focus on enhancing light absorption, charge separation, and catalytic efficiency through strategies such as ligand functionalization, metal doping, heterojunction formation, and plasmonic coupling effects. For instance, modifications with Ir (III) complexes and Pt nanoparticles have significantly improved hydrogen evolution rates, while sandwich-structured MOF composites demonstrate optimized charge separation through tailored micro-environments and proton reduction efficiency. Additionally, integrating MOFs with semiconductors (e.g., CdS, g-C3N4) or plasmonic metals (e.g., Au) enhances visible-light responsiveness and stability. This review highlights key design principles, performance metrics, and mechanistic insights, providing a roadmap for future research in MOF-based photocatalysts for sustainable hydrogen production. Challenges such as long-term stability and scalable synthesis are also discussed to guide further innovations in this field. Full article
Show Figures

Graphical abstract

24 pages, 4115 KiB  
Review
Polyoxometalate-Based Photocatalytic New Materials for the Treatment of Water Pollutants: Mechanism, Advances, and Challenges
by Xiaoyu Qiu and Rui Wang
Catalysts 2025, 15(7), 613; https://doi.org/10.3390/catal15070613 - 21 Jun 2025
Viewed by 568
Abstract
Water, the source of life, is undeniably essential to all living beings in nature. However, the process of industrialization has led to the pollution of water resources. Photocatalytic water treatment technology can convert solar energy into environmentally friendly and renewable chemical energy, effectively [...] Read more.
Water, the source of life, is undeniably essential to all living beings in nature. However, the process of industrialization has led to the pollution of water resources. Photocatalytic water treatment technology can convert solar energy into environmentally friendly and renewable chemical energy, effectively degrading organic pollutants in water. This offers a promising solution for the purification of water environments. The development of high-performance photocatalysts is crucial for photocatalytic reactions. Polyoxometalates (POMs) are anionic metal oxide clusters that come in various sizes and shapes. Their unique electronic properties, tunable structures, and photocatalytic activity make them highly promising materials for the efficient degradation of organic pollutants in water. This review summarizes the recent advances in emerging POM-based photocatalytic materials for water treatment, elaborating on their mechanisms of action. Finally, the current development prospects and the future challenges of POM-based photocatalytic materials are envisioned. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Figure 1

15 pages, 1834 KiB  
Article
Metal-Free Graphene/Conjugated Microporous Polymer Mott–Schottky Heterojunctions: A Design Strategy for High-Efficiency, Durable Photocatalysts
by Selsabil Chikhi, Sander Dekyvere, Shuai Li, Chih-Ming Kao and Francis Verpoort
Catalysts 2025, 15(7), 609; https://doi.org/10.3390/catal15070609 - 20 Jun 2025
Viewed by 451
Abstract
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a [...] Read more.
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a Mott–Schottky heterojunction and integrating graphene sheets with a near-zero bandgap into the CMP-1 framework, resulting in a non-covalent graphene/CMP (GCMP) heterojunction composite. GCMP serves two main functions: physical adsorption and photocatalytic absorption that uses visible light energy to trigger and degrade the organic dye. GCMP effectively degraded four dyes with both anionic and cationic properties (Rhodamine B; Nile Blue; Congo Red; and Orange II), demonstrating stable recyclability without losing its effectiveness. When exposed to visible light, GCMP generates reactive oxygen species (ROS), primarily singlet oxygen (1O2), and superoxide radicals (O2), degrading the dye molecules. These findings highlight GCMP’s potential for real-world applications, offering a metal-free, cost-effective, and environmentally friendly solution for wastewater treatment. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

17 pages, 4075 KiB  
Article
Design and Properties of Titanium Dioxide/Graphene Oxide Composites Exploitable in Wastewater Treatments
by Simona Ortelli, Lara Faccani, Enrico Ercolani, Ilaria Zanoni, Chiara Artusi, Magda Blosi, Stefania Albonetti and Anna Luisa Costa
Water 2025, 17(12), 1809; https://doi.org/10.3390/w17121809 - 17 Jun 2025
Viewed by 468
Abstract
Water is one of the necessities for human survival, and clean water is essential for life. As a result, there is an increasing focus on efficient wastewater treatment methods, including advanced oxidation processes using innovative heterogeneous photocatalysts. In this context, TiO2–graphene [...] Read more.
Water is one of the necessities for human survival, and clean water is essential for life. As a result, there is an increasing focus on efficient wastewater treatment methods, including advanced oxidation processes using innovative heterogeneous photocatalysts. In this context, TiO2–graphene oxide (TGO) composites offer a multifaceted approach to wastewater treatment, combining the photocatalytic properties of TiO2 with the adsorption capabilities and potential synergistic effects of graphene oxide. In this research, we intimately mixed commercial TiO2 powder with graphene oxide at different concentrations (9, 16, and 25 wt.%) by exploiting sonochemical activation. The morphological and physicochemical analyses confirmed the interfacial interactions and the successful formation of the composite. The TGO composites exhibited increased reactivity compared to both GO and TiO2 phases, during the photodegradation process of Rhodamine B (RhB), serving as a reaction model. Therefore, the photocatalytic results demonstrated the synergistic effect that occurs when a TiO2-based photocatalyst is combined with sonochemically activated GO. The Cu2+ adsorption tests, simulating the removal of heavy metals from contaminated water, revealed that TGO composites displayed intermediate capabilities compared to the pure phases’ higher (GO) and lower (TiO2) adsorption capacity. The functional characterizations revealed that the optimal design is represented by the sample containing 16 wt.% of GO. Overall, this study confirms that TGO composites are effective as photocatalysts and adsorbents for removing both organic and inorganic pollutants, making them strong candidates for wastewater treatment. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis in Water and Wastewater Treatment)
Show Figures

Graphical abstract

Back to TopTop