Polyoxometalate-Based Photocatalytic New Materials for the Treatment of Water Pollutants: Mechanism, Advances, and Challenges
Abstract
1. Introduction
2. POMs and Their Composites
2.1. Pure POM Photocatalysts
2.2. POM-Based Organic–Inorganic Hybrid Photocatalysts
2.3. POMs/Oxide Composites
2.4. POM-Based Frameworks
2.5. POMs on Other Carriers
3. Applications for the Removal of Pollutants from Water
3.1. Dyes
3.2. Antibiotics
3.3. Other Contaminants
4. Conclusions and Outlook
- 1.
- Low utilization rate of visible light
- 2.
- Small specific surface area and poor stability
- 3.
- pH sensitivity
- 4.
- High synthesis costs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Sun, X.; Ma, J.; Yi, Z.; Wang, S.; Liu, G.; Yang, H. Coupled piezo-pyro-photocatalysis of oxygen vacancies and Bi quantum dots co-modified BaTiO3 for highly efficient removal of ciprofloxacin. Sep. Purif. Technol. 2024, 337, 126392. [Google Scholar] [CrossRef]
- Su, R.; Zhu, Y.; Gao, B.; Li, Q. Progress on mechanism and efficacy of heterogeneous photocatalysis coupled oxidant activation as an advanced oxidation process for water decontamination. Water Res. 2024, 251, 121119. [Google Scholar] [CrossRef]
- Singh, A.; Shah, S.S.; Sharma, C.; Gupta, V.; Sundramoorthy, A.K.; Kumar, P.; Arya, S. An approach towards different techniques for detection of heavy metal ions and their removal from waste water. J. Environ. Chem. Eng. 2024, 12, 113032. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Q. Highly sensitive passive sampling of new pollutants in urban reclaimed water using hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membrane. Water Res. 2024, 257, 121681. [Google Scholar] [CrossRef]
- Liu, G.; Fei, H.; Feng, Z.; Shao, Q.; Zhao, T.; Guo, W.; Li, F. Tri-phase interface to enhance the performance of piezoelectric photocatalysis and recyclability of hydrophobic BiOI/BaTiO3 heterojunction. J. Clean. Prod. 2024, 440, 140886. [Google Scholar] [CrossRef]
- Hu, H.; Zheng, H.; Liu, F.; Ding, Z.; Wang, Z.; Peng, Y.; Zhang, D.; Zhang, Y.; Zheng, Y.; Ding, A. Heavy metal contamination assessment and source attribution in the Vicinity of an iron slag pile in Hechi, China: Integrating multi-medium analysis. Environ. Res. 2024, 263, 120206. [Google Scholar] [CrossRef]
- Wang, J.; Shen, C.; Zhang, J.; Lou, G.; Shan, S.; Zhao, Y.; Man, Y.B.; Li, Y. Per- and polyfluoroalkyl substances (PFASs) in Chinese surface water: Temporal trends and geographical distribution. Sci. Total Environ. 2024, 915, 170127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Khu, S.-T.; Zhang, Y. Which organic contaminants should be paid more attention: Based on an improved health risk assessment framework. J. Environ. Manag. 2024, 370, 122323. [Google Scholar] [CrossRef]
- Ran, Y.; Cui, R.; Wang, X.; Wang, H.; Zhang, L.; Xu, L.; Zhu, J.; Huang, Q.; Yuan, W. Advancements in iron-based photocatalytic degradation for antibiotics and dyes. J. Environ. Manag. 2025, 374, 123991. [Google Scholar] [CrossRef]
- Tabassum, M.; Aima-tul-ayesha; Yang, B.; Jia, X.; Zafar, M.N. Progress on synthesis, characterization and photocatalytic applications of bismuth oxyhalide based nanomaterials in cleaner environment and energy—A review. J. Clean. Prod. 2025, 494, 144868. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Liu, Y.; Zhao, Y.; Zhang, H.; Chen, D.; Zong, S.; Wang, J. Synthesis of InP quantum dot decorated Bi2WO6 microspheres for the efficient photocatalytic production of hydrogen peroxide in water. J. Alloys Compd. 2025, 1011, 178253. [Google Scholar] [CrossRef]
- Yang, H.H.; Gong, Y.Q.; Chen, X.; Li, R.Z.; Chen, Y.H.; Li, M.J.; Tang, X.R. Investigation into the Feasibility of a Synergistic Photocatalytic Degradation Process for Fracturing Flowback Fluid Streams Utilizing O3 and Ti/Ni Composite Materials. Molecules 2025, 30, 1568. [Google Scholar] [CrossRef]
- Hoang, A.T.; Pandey, A.; Chen, W.H.; Ahmed, S.F.; Nizetic, S.; Ng, K.H.; Said, Z.; Duong, X.Q.; Agbulut, U.; Hadiyanto, H.; et al. Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Photocatalysts. ACS Sustain. Chem. Eng. 2023, 11, 1221–1252. [Google Scholar] [CrossRef]
- Qiu, X.; Lin, S.; Li, J.; Guo, L. One-Step Coprecipitation Synthesis of BiOClxBr1–x Photocatalysts Decorated with CQDs at Room Temperature with Enhanced Visible-Light Response. Inorg. Chem. 2022, 61, 10999–11010. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Xue, Y.; Wang, J.; Varbanov, P.S.; Klemeš, J.J.; Yin, C. Nanocatalysts in photocatalytic water splitting for green hydrogen generation: Challenges and opportunities. J. Clean. Prod. 2023, 414, 137700. [Google Scholar] [CrossRef]
- Ruziwa, D.T.; Oluwalana, A.E.; Mupa, M.; Meili, L.; Selvasembian, R.; Nindi, M.M.; Sillanpaa, M.; Gwenzi, W.; Chaukura, N. Pharmaceuticals in wastewater and their photocatalytic degradation using nano-enabled photocatalysts. J. Water Process Eng. 2023, 54, 103880. [Google Scholar] [CrossRef]
- Zhu, W.; Yue, Y.; Wang, H.; Zhang, B.; Hou, R.; Xiao, J.; Huang, X.; Ishag, A.; Sun, Y. Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review. J. Environ. Chem. Eng. 2023, 11, 110164. [Google Scholar] [CrossRef]
- Askari, N.; Jamalzadeh, M.; Askari, A.; Liu, N.; Samali, B.; Sillanpaa, M.; Sheppard, L.; Li, H.; Dewil, R. Unveiling the photocatalytic marvels: Recent advances in solar heterojunctions for environmental remediation and energy harvesting. J. Environ. Sci. 2025, 148, 283–297. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Puspa, M.B.; Kumoro, A.C.; Hanif, M.I.; Othman, M.H.D.; Kurniawan, T.A.; Utomo, D.P. Superior photocatalytic and self-cleaning performance of PVDF-TiO2@NH2-MIL-125(Ti)/PVA membranes for efficient produced water treatment. J. Water Process Eng. 2025, 72, 107415. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Wang, M.; Yue, D.; Wu, J.; Song, H. Constructing NH2-MIL-125(Ti) derived evaporator for simultaneous photocatalytic decontamination and water evaporation. Sep. Purif. Technol. 2025, 361, 131567. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, J.; Li, Z.; Fu, A.; Yuan, S.; Li, H.; Lu, B. A bifunctional polyacrylamide-alginate-TiO2 hydrogel solar evaporator for integrated high-efficiency desalination and photocatalytic degradation. Desalination 2025, 611, 118920. [Google Scholar] [CrossRef]
- Chen, X.F.; Wu, H.Z.; Shi, X.J.; Wu, L.X. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. Nanoscale 2023, 15, 9242–9255. [Google Scholar] [CrossRef]
- Murmu, G.; Panigrahi, T.H.; Saha, S. Recent advances in the development of polyoxometalates and their composites for the degradation of toxic chemical dyes. Prog. Solid State Chem. 2024, 76, 100489. [Google Scholar] [CrossRef]
- Dashtian, K.; Shahsavarifar, S.; Usman, M.; Joseph, Y.; Ganjali, M.R.; Yin, Z.; Rahimi-Nasrabadi, M. A comprehensive review on advances in polyoxometalate based materials for electrochemical water splitting. Coord. Chem. Rev. 2024, 504, 215644. [Google Scholar] [CrossRef]
- Guo, S.; Pan, C.W.; Hou, M.; Hou, Y.T.; Yao, S.; Lu, T.B.; Zhang, Z.M. Dual Regulation of Sensitizers and Cluster Catalysts in Metal-Organic Frameworks to Boost H2 Evolution. Angew. Chem. Int. Ed. 2025, 64, e202420398. [Google Scholar] [CrossRef]
- Gu, J.; Chen, W.; Shan, G.G.; Li, G.; Sun, C.; Wang, X.L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760. [Google Scholar] [CrossRef]
- Du, J.; Ma, Y.-Y.; Cui, W.-J.; Zhang, S.-M.; Han, Z.-G.; Li, R.-H.; Han, X.-Q.; Guan, W.; Wang, Y.-H.; Li, Y.-Q.; et al. Unraveling photocatalytic electron transfer mechanism in polyoxometalate-encapsulated metal-organic frameworks for high-efficient CO2 reduction reaction. Appl. Catal. B Environ. 2022, 318, 121812. [Google Scholar] [CrossRef]
- Ren, H.Y.; Wang, G.N.; Chen, T.T.; Wang, Q.; Ren, J.H.; Pang, H.J. Polyoxometalate-Derived Photocatalysts Enabling Progress in Hydrogen Evolution Reactions. Adv. Sustain. Syst. 2025, 9, 2400752. [Google Scholar] [CrossRef]
- Dong, Y.-J.; Zhu, B.; Su, Z.-M.; Guan, W. Theoretical insights and predictions: Photocatalytic functionalization of C(sp3)−H bonds in methane using [W10O32]4−. J. Catal. 2025, 447, 116101. [Google Scholar] [CrossRef]
- Yang, L.; Xu, M.Z.; Wang, H.N.; Zhang, D.P.; Zhou, Z. Polyoxometalate-Based Frameworks: Construction Strategies and Photocatalytic Applications. Chemcatchem 2024, 16, e202400006. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, K.; Wang, J.; Li, H.; Zhu, X.; Ma, P.; Niu, J.; Wang, J. Enhanced Carrier Separation in Visible-Light-Responsive Polyoxometalate-Based Metal–Organic Frameworks for Highly Efficient Oxidative Coupling of Amines. ACS Appl. Mater. Interfaces 2022, 14, 27882–27890. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.W.; Wang, C.L.; Hu, Y.H. Highly selective photocatalytic conversion of methane to liquid oxygenates over silicomolybdicacid/TiO2 under mild conditions. J. Mater. Chem. A 2021, 9, 1713–1719. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, T.; Ma, H.; Ma, R.; Xia, Z.; Yang, Q.; Yang, X.; Xie, G.; Chen, S. Heterointerface Connection with Multiple Hydrogen-Bonding in Z-Scheme Heterojunction SiW9Co3@UiO-67-NH2 Deciding High Stability and Photocatalytic CO2 Reduction Performance. Inorg. Chem. 2023, 62, 20401–20411. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Song, Y.T.; Li, F.Y.; Xu, W.J.; Zheng, Y.; Xu, L. A “concentration-induced self-assembly” strategy for AgxH3−xPMo12O40 nanorods: Synthesis, photoelectric properties and photocatalytic applications. Nanoscale Adv. 2021, 3, 446–454. [Google Scholar] [CrossRef]
- Li, H.F.; Chen, W.J.; Yuan, Z.L.; Jin, Y.Z.; Zhao, Y.J.; Ma, P.T.; Niu, J.Y.; Wang, J.P. Controlled Assembly of Ru-Containing Polyoxometalates for Photocatalytic Activity of the Primary Amine Coupling Reaction. Inorg. Chem. 2022, 61, 9935–9945. [Google Scholar] [CrossRef]
- Huang, X.; Liu, X. Morphology control of highly efficient visible-light driven carbon-doped POM photocatalysts. Appl. Surf. Sci. 2020, 505, 144527. [Google Scholar] [CrossRef]
- Recepoglu, Y.K.; Goren, A.Y.; Orooji, Y.; Vatanpour, V.; Kudaibergenov, N.; Khataee, A. Polyoxometalate-based hybrid composites in multi-functional wastewater treatment applications. J. Water Process Eng. 2023, 53, 103863. [Google Scholar] [CrossRef]
- Zhu, M.-Q.; Han, Q.; Ma, Y.-Y.; Li, Z.-B.; Zhu, L.-T.; Wu, Q.-X.; Ren, Z.-M.; Du, J.; Han, Z.-G. Polyoxometalate-based nickel-phosphine oxide compounds based on ligand in situ oxidation and rearrangement. J. Mol. Struct. 2025, 1330, 141578. [Google Scholar] [CrossRef]
- Li, R.A.; Chen, R.; Tang, L.X.; Li, Q.; Chen, Y.X.; Liao, J.S.; Wang, W. Constructing a P2W18O626− Containing Hybrid Photocatalyst via Noncovalent Interactions for Enhanced H2 Production. ACS Omega 2024, 9, 18556–18565. [Google Scholar] [CrossRef]
- Li, M.; Fu, Y.; You, S.; Yang, Y.; Qin, C.; Zhao, L.; Su, Z. Hexanuclear nickel-based [P4Mo11O50] with photocatalytic reduction of CO2 activity. Inorg. Chem. Commun. 2021, 134, 109009. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Shioya, K.; Li, C.; Yonesato, K.; Murata, K.; Ishii, K.; Yamaguchi, K.; Suzuki, K. Porphyrin–Polyoxotungstate Molecular Hybrid as a Highly Efficient, Durable, Visible-Light-Responsive Photocatalyst for Aerobic Oxidation Reactions. J. Am. Chem. Soc. 2024, 146, 4549–4556. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, C.; Zhang, X.; Li, Y.; Ma, H.; Liu, Y. Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions. Appl. Catal. B Environ. 2018, 234, 79–89. [Google Scholar] [CrossRef]
- Nandan, S.P.; Gumerova, N.I.; Schubert, J.S.; Saito, H.; Rompel, A.; Cherevan, A.; Eder, D. Immobilization of a [CoIII CoII (H2O)W11O39]7− Polyoxoanion for the Photocatalytic Oxygen Evolution Reaction. ACS Mater. Au 2022, 2, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Wang, T.; Li, F.; Li, D.; Yang, Y.; Yu, H.; Dong, X. Polyoxometalate as pivotal interface in SnO2@PW12@TiO2 coaxial nanofibers: From heterojunction design to photocatalytic and gas sensing applications. Sens. Actuators B Chem. 2023, 390, 133928. [Google Scholar] [CrossRef]
- Xing, C.; Ma, M.; Chang, J.; Ji, Z.; Wang, P.; Sun, L.; Li, S.; Li, M. Polyoxometalate anchored zinc oxide nanocomposite as a highly effective photocatalyst and bactericide for wastewater decontamination. Chem. Eng. J. 2023, 464, 142632. [Google Scholar] [CrossRef]
- Jing, Z.; Liu, S.; Zhang, X.; Hong, Y.; Ma, P.; Wang, J.; Niu, J. [Ru(bpy)3]2+ Derivatives-Incorporated POM@MOFs with Good Photocatalytic Activity for Visible-Light-Driven Oxidative Coupling of Amines to Imines. Inorg. Chem. 2025, 64, 7832–7840. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.Y.; Xue, Y.N.; Liu, X.M.; Li, N.F.; Wang, J.L.; Mei, H.; Xu, Y. An unprecedented polyoxometalate-encapsulated organo-metallophosphate framework as a highly efficient cocatalyst for CO2 photoreduction. J. Mater. Chem. A 2022, 10, 3469–3477. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, C.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y.; Yi, H.; Fu, Y.; Li, L. Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catal. 2021, 11, 13374–13396. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.A.; Yuan, Z.L.; Li, L.N.; Ma, P.T.; Wang, J.P.; Niu, J.Y. Visible-Light-Responsive Polyoxometalate@Metal-Organic Frameworks Involving Ir Metalloligands for Highly Selective Photocatalytic Oxidation of Sulfides to Sulfoxide. Chem. A Eur. J. 2024, 30, e202303401. [Google Scholar] [CrossRef]
- Su, S.; Li, X.; Liu, Z.; Ding, W.; Cao, Y.; Yang, Y.; Su, Q.; Luo, M. Microchemical environmental regulation of POMs@MIL-101(Cr) promote photocatalytic nitrogen to ammonia. J. Colloid Interface Sci. 2023, 646, 547–554. [Google Scholar] [CrossRef]
- Dai, J.; Yan, L.; Yang, W.; Li, R.; Dong, Y.; Shen, Y. Integration of polyoxometalate into defective UiO-66-NH2(Zr/Hf) for visible-light-driven hydrogen photogeneration. Appl. Catal. B Environ. Energy 2025, 362, 124715. [Google Scholar] [CrossRef]
- Beni, F.A.; Ostad, M.I.; Shahrak, M.N.; Ayati, A. Unveiling the remarkable simultaneous adsorption-photocatalytic potential of Ag nanoparticles-anchored phosphotungestic acid loaded ZIF-8 for Congo red removal. Environ. Res. 2024, 252, 119049. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhu, Y.Q.; Wang, W.; Niu, J.F.; Lu, Z.Y.; He, P.L. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. 2024, 17, 5975–5984. [Google Scholar] [CrossRef]
- Xing, F.; Zeng, R.; Cheng, C.; Liu, Q.; Huang, C. POM-incorporated ZnIn2S4 Z-scheme dual-functional photocatalysts for cooperative benzyl alcohol oxidation and H2 evolution in aqueous solution. Appl. Catal. B Environ. 2022, 306, 121087. [Google Scholar] [CrossRef]
- Khan, A.; Li, W.; Ma, X.; Dong, M.; Liu, X.; Ren, C. Novel binary photocatalysts containing polyoxometalate immobilized on CdS nanorods surface for enhance photocatalytic performance. J. Photochem. Photobiol. A Chem. 2023, 443, 114854. [Google Scholar] [CrossRef]
- Tang, L.; Hu, Y.; Tang, H.; Sun, L.; Jiang, H.; Wang, W.; Su, H.; Hu, J.; Wang, L.; Liu, Q. Incorporating Ni-Polyoxometalate into the S-Scheme Heterojunction to Accelerate Charge Separation and Resist Photocorrosion for Promoting Photocatalytic Activity and Stability. J. Phys. Chem. Lett. 2022, 13, 11778–11786. [Google Scholar] [CrossRef]
- Meng, P.; Li, J.; Wang, P.; Yang, G.; Liu, W.; Liang, S.; Yang, R.; Sun, C. In-situ construction of Z-scheme silver phosphotungstate/polyimide photocatalysts and enhanced visible-light photocatalytic degradation of aflatoxin B1 in vegetable oil. Chem. Eng. J. 2024, 483, 149153. [Google Scholar] [CrossRef]
- Huang, X.; Liu, X. The synergistic effect of POM-π interaction and solid phase amidation on the visible light photocatalytic of g–C3N4–based photocatalyst. Mater. Sci. Semicond. Process. 2024, 178, 108417. [Google Scholar] [CrossRef]
- Sivakumar, R.; Park, K.; Thomas, J.; Yoon, S.M.; Yoon, M. Solar catalytic CO2 reduction over POM-entrapped zeolites decorated with TiO2 nanocomposites in water: Highly efficient and selective production of CH3OH via Z-scheme charge separation. J. Environ. Chem. Eng. 2024, 12, 112052. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J.; Xue, Q.; Ma, Y.-Y.; Gao, Y. AgBr/Polyoxometalate/Graphene Oxide Ternary Composites for Visible Light-Driven Photocatalytic Hydrogen Production. ACS Appl. Nano Mater. 2021, 4, 2126–2135. [Google Scholar] [CrossRef]
- Bani-Atta, S.A.; Darwish, A.A.A.; Shwashreh, L.; Alotaibi, F.A.; Al-Tweher, J.N.; Al-Aoh, H.A.; El-Zaidia, E.F.M. Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation. Processes 2024, 12, 2769. [Google Scholar] [CrossRef]
- Man, C.; Xu, C.P.; Wang, J.F.; Li, X.L.; Li, T.; Ma, Y.H.; Zhang, S.L.; Qiao, Y.F.; Wu, Q. Mechanistic study on the photocatalytic degradation of rhodamine B via Mn-Schiff-base-modified Keggin-type polyoxometalate composite materials. RSC Adv. 2025, 15, 12364–12371. [Google Scholar] [CrossRef]
- Qin, L.; Ren, R.; Huang, X.; Xu, X.; Shi, H.; Huai, R.; Song, N.; Yang, L.; Wang, S.; Zhang, D.; et al. Photocatalytic activity of an Anderson-type polyoxometalate with mixed copper(I)/copper(II) ions for visible-light enhancing heterogeneous catalysis. J. Solid State Chem. 2022, 310, 123052. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhao, M.Y.; Huang, J.B.; Zhao, N.; Yu, H.H. Controllable Synthesis, Photocatalytic Property, and Mechanism of a Novel POM-Based Direct Z-Scheme Nano-Heterojunction α-Fe2O3/P2Mo18. Molecules 2023, 28, 6671. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Huang, J.; Zhao, M.; Xu, J.; Li, M.; Kong, L. Magnetic field-assisted enhancement of photocatalytic activity: Modified Co-POMs direct Z-scheme heterojunction Co4PW9/CeO2 for efficient carrier separation and transport. J. Mol. Struct. 2024, 1316, 139015. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Cao, Y.; Yang, Y.; Xie, T.; Lin, Y. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129248. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Kong, L.Y.; Fei, B.L. Highly efficient catalytic reduction of organic dyes, Cr (VI) and 4-nitrophenol, and photocatalytic degradation of MB by an inorganic-organic hybrid polyoxometalate. Appl. Organomet. Chem. 2024, 38, e7599. [Google Scholar] [CrossRef]
- Liu, F.-H.; Li, X.; Chi, J.-Q.; Su, Z.-M. Two functional hybrids based on polyoxometalate coordination polymers: Synthesis, electrochemical and photocatalytic properties. Inorg. Chem. Commun. 2021, 130, 108673. [Google Scholar] [CrossRef]
- Shi, H.; Jin, T.; Li, J.; Li, Y.; Chang, Y.; Jin, Z.; Jiang, W.; Qu, X.; Chen, Z. Construction of Z-scheme Cs3PMo12O40/g-C3N4 composite photocatalyst with highly efficient photocatalytic performance under visible light irradiation. J. Solid State Chem. 2022, 311, 123069. [Google Scholar] [CrossRef]
- Shi, C.H.; Kang, N.; Wang, C.M.; Yu, K.; Lv, J.H.; Wang, C.X.; Zhou, B.B. An inorganic-organic hybrid nanomaterial with a core-shell structure constructed by using Mn-BTC and Ag5[BW12O40] for supercapacitors and photocatalytic dye degradation. Nanoscale Adv. 2022, 4, 4358–4365. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, M.; Xue, C.; Huang, J.; Zhao, N.; Kong, L. All-solid-state Z-scheme nanojunction PW12/Ag/ZnO photocatalyst: Effective carriers transfer promotion and enhanced visible light driven. J. Mol. Struct. 2024, 1300, 137272. [Google Scholar] [CrossRef]
- Ong, B.C.; Lim, H.K.; Tay, C.Y.; Lim, T.T.; Dong, Z.L. Polyoxometalates for bifunctional applications: Catalytic dye degradation and anticancer activity. Chemosphere 2022, 286, 131869. [Google Scholar] [CrossRef]
- Diaz-Uribe, C.; Duran, F.; Vallejo, W.; Puello, E.; Zarate, X.; Schott, E. Photocatalytic study of TiO2 thin films modified with Anderson-type polyoxometalates (Cr, Co and Ni): Experimental and DFT study. Polyhedron 2023, 231, 116253. [Google Scholar] [CrossRef]
- Kang, H.J.; Yang, L.L.; Liu, Y.Q.; Su, K.; Zhang, H.; Huang, X.X.; Yang, L. A Carboxylic-Functionalized Anderson-Type Polyoxoanion for Efficient Selective Cationic Dye Adsorption. J. Clust. Sci. 2024, 35, 1417–1423. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Wang, H.; Hu, X.; Fan, Z.M.; Wang, Y.Y.; Ma, P.T.; Niu, J.Y.; Wang, J.P. Synthesis and Structure of a Copper-Based Functional Network for Efficient Organic Dye Adsorption. Inorg. Chem. 2022, 61, 19764–19772. [Google Scholar] [CrossRef]
- Singh, M.; Gupta, H.; Bedi, P.; Pradeep, C.P. Transformation of a Polyoxometalate Precursor into Carbon Doped Bismuth Molybdate Nanosheets for the Visible Light Photocatalytic Degradation of Aqueous Pollutants. ACS Appl. Nano Mater. 2024, 7, 17596–17610. [Google Scholar] [CrossRef]
- Samajdar, S.; Murmu, G.; Biswas, M.; Manna, S.; Saha, S.; Ghosh, S. Polyoxometalate-loaded reduced graphene oxide-modified metal vanadate catalysts for photoredox reactions through an indirect Z-scheme mechanism. Energy Adv. 2025, 4, 639–656. [Google Scholar] [CrossRef]
- Shi, H.F.; Wang, H.S.; Zhang, E.J.; Qu, X.S.; Li, J.P.; Zhao, S.S.; Gao, H.J.; Chen, Z. Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW12/TiO2 Composite: Degradation Pathways and Toxicity Assessment. Molecules 2023, 28, 6831. [Google Scholar] [CrossRef]
- He, R.; Xue, K.; Wang, J.; Yan, Y.; Peng, Y.; Yang, T.; Hu, Y.; Wang, W. Nitrogen-deficient g-C3Nx/POMs porous nanosheets with P–N heterojunctions capable of the efficient photocatalytic degradation of ciprofloxacin. Chemosphere 2020, 259, 127465. [Google Scholar] [CrossRef]
- Li, J.; Yan, X.; Li, F.; Shi, W.; Han, Q. Incorporating [Mo4O13]2− into a Fe-based metal-organic framework for efficiently photocatalysis degradation of tetracycline through synergistic effect. J. Mol. Struct. 2025, 1326, 141059. [Google Scholar] [CrossRef]
- Pal, D.; Pal, T.; Pal, A. Efficient catalytic degradation of ciprofloxacin in synthetic and real wastewater under aerobic condition using microporous ammonium phosphomolybdate. J. Water Process Eng. 2024, 63, 105382. [Google Scholar] [CrossRef]
- Wang, L.S.; Fu, W.Z.; Sun, S.J.; Liu, H.H.; Wang, J.H.; Zhong, W.Z.; Ma, B. Preparation, characterization, and removal of nitrate from water using vacant polyoxometalate/TiO2 composites. Environ. Technol. 2023, 44, 3393–3404. [Google Scholar] [CrossRef]
- Dong, Z.M.; Zeng, D.L.; Li, Z.F.; Chen, J.J.; Wang, Y.Q.; Cao, X.H.; Yang, G.P.; Zhang, Z.B.; Liu, Y.H.; Yang, F. Polyoxometalate-encapsulated metal-organic frameworks for photocatalytic uranium isolation. Chem. Sci. 2024, 15, 19126–19135. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Xing, Z.; Guo, M.; Li, Z.; Wang, N.; Zhou, W. Hollow cubic Cu2−xS/Fe-POMs/AgVO3 dual Z-scheme heterojunctions with wide-spectrum response and enhanced photothermal and photocatalytic-fenton performance. Appl. Catal. B Environ. 2021, 298, 120628. [Google Scholar] [CrossRef]
- Lu, B.-B.; Zhao, Q.-Y.; Lu, J.-C.; Chen, Z.-L.; Wang, R.; Kong, X.-C.; Yu, J.-H.; Fu, Y.; Ye, F. Incorporating nickel-substituted polyoxometalate into a photoactive metal–organic framework for efficient photodegradation of thiamethoxam insecticide. J. Colloid Interface Sci. 2025, 691, 137457. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, X.; Tang, H.; Liu, X. Modified carbon nitride incorporating Keggin-type potassium phosphotungstate enhances photocatalytic degradation of imidacloprid under visible light. Mater. Sci. Semicond. Process. 2024, 171, 108001. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, D.; Tian, A. Two Anderson-based complexes with adjustable structures for efficient and selective photocatalytic reduction of Cr(VI). J. Mol. Struct. 2025, 1337, 142237. [Google Scholar] [CrossRef]
POM-Based Photocatalysts | Examples |
---|---|
Pure POMs | AgHPMo12 nanorods, carbon-doped POMs, etc. |
POM-based organic–inorganic hybrid photocatalysts | P-PW, [Ni6(trz)2(Htrz)13][H4P4Mo11O50]·7H2O, porphyrin–polyoxotungstate hybrid photocatalyst |
POM/oxide composites | POMs/TiO2, SnO2@PW22@Rutile/TiO2 core–shell coaxial nanofibers, ZnO@PDA/Cu-POMs, etc. |
POM-based frameworks | Ni-Sb9@UiO-Ir-C6, POM@CdMOF, SiW9Mo3@MIL-101(Cr), CsPW@UNH, POM@COF, etc. |
POMs on other carriers | HPM/ZIS, CdS-NRs@PW12O40, silver phosphotungstate/polyimide, CNPI/KPW, AgNTiO2@POM-zeolite, AgBr/POM/GO |
Photocatalysts | Targets | Conditions | Degradation Efficiency (%) | Time (min) | Kinetic Rate Constants (min−1) | Ref. |
---|---|---|---|---|---|---|
Co-POM/N-TiO2 | RhB | pH = 7; catalysts, 8 mg; | 97.47 | 40 | 0.09216 | [66] |
PMoVCo | MB | PMoVCo dosage = 32 mg and pH = 7.0 | 99.9 | 480 | -- | [67] |
[M(H2O)2(btp)(Hbtp)2] [H2P2W18O62] | MB | -- | 98 | 60 | -- | [68] |
CPM/CN | RhB | catalysts: 20 mg; TCH: 20 mg/L; pH = 6 | 100 | 10 | 0.64822 | [69] |
Mn-BTC@Ag-5[BW12O40] | RhB, MO, MB | -- | >90 | 140 | --- | [70] |
PW12/Ag-4/ZnO-6 | RhB | catalyst 0.2 g/L and the dye concentration 50 mg/L, pH = 6 | 99.93 | 90 | 0.0375 | [71] |
CoV-POMs | RhB, MB | 40 mg/L CoV-POMs | 100 | 60 | -- | [72] |
CrMo6/TiO2 | MB | -- | 83 | 300 | 0.006 | [73] |
POM-1 | MB | -- | 98 | 25 | -- | [74] |
Cu-GaW-TRZ | MB | -- | 96.2 | 100 | -- | [75] |
C-BMO | malachite green (MG) | 20 mg of the photocatalyst | 70 | 180 | 0.0052 | [76] |
RPOM–AV | rose bengal | dye concentration of 50 μM, catalyst loading of 0.01 mg/mL | 94 | 120 | -- | [77] |
RPOM–CV | MB | dye concentration of 50 μM, catalyst loading of 1 mg/mL | 96 | 120 | -- | [77] |
Photocatalysts | Targets | Degradation Efficiency (%) | Degradation Time (min) | Ref. |
---|---|---|---|---|
Ag/PW12/TiO2 | TC | 78.19 | 60 | [78] |
Ag/PW12/TiO2 | ENR | 93.65 | 60 | [78] |
Cs3PMo12O40/g-C3N4 | TCH | 83.11 | 120 | [69] |
Cs3PMo12O40/g-C3N4 | CIP | 65.43 | 120 | [69] |
ZnO@PDA/Cu-POMs | TC | 90.75 | 90 | [45] |
g-C3Nx/PTA-30 | CIP | 97.4 | 5 | [79] |
FeMo-TPT | TC | 98.01 | 90 | [80] |
APM | CIP | 92 | 35 | [81] |
Photocatalysts | Targets | Degradation Efficiency (%) | Degradation Time (min) | Ref. |
---|---|---|---|---|
SiW11/TiO2/Cu | nitrate nitrogen | 96 | 360 | [82] |
POM@Cu-MOFs | U(VI) ions | 99.4 | 60 | [83] |
Cu2−xS/Fe-POMs/AgVO3 | BPA | 98.6 | 150 | [84] |
0.3-Ni4P2@NU-1000 | TMX | 75.1 | 120 | [85] |
g-C3N4/KPW-0.2 | TMX | 91.72 | 180 | [86] |
[CuII3O(Tpm)3(SO4)(H2O)3] [H2AlMo6O18(OH)6]2·H2O | Cr (VI) | 98.17 | 30 | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Wang, R. Polyoxometalate-Based Photocatalytic New Materials for the Treatment of Water Pollutants: Mechanism, Advances, and Challenges. Catalysts 2025, 15, 613. https://doi.org/10.3390/catal15070613
Qiu X, Wang R. Polyoxometalate-Based Photocatalytic New Materials for the Treatment of Water Pollutants: Mechanism, Advances, and Challenges. Catalysts. 2025; 15(7):613. https://doi.org/10.3390/catal15070613
Chicago/Turabian StyleQiu, Xiaoyu, and Rui Wang. 2025. "Polyoxometalate-Based Photocatalytic New Materials for the Treatment of Water Pollutants: Mechanism, Advances, and Challenges" Catalysts 15, no. 7: 613. https://doi.org/10.3390/catal15070613
APA StyleQiu, X., & Wang, R. (2025). Polyoxometalate-Based Photocatalytic New Materials for the Treatment of Water Pollutants: Mechanism, Advances, and Challenges. Catalysts, 15(7), 613. https://doi.org/10.3390/catal15070613