Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = metal nanocavity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1957 KiB  
Article
Highly Efficient Upconversion Emission Platform Based on the MDM Cavity Effect in Aluminum Nanopillar Metasurface
by Xiaofeng Wu, Xiangyuan Mao, Shengbin Cheng, Haiou Li and Shiping Zhan
Photonics 2025, 12(6), 582; https://doi.org/10.3390/photonics12060582 - 7 Jun 2025
Viewed by 417
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication [...] Read more.
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication of a plasmonics–UCNPs system is still a challenge. Here, we reported a metal–dielectric–metal (MDM)-type plasmonic platform based on the aluminum metasurface, which can efficiently enhance the luminescence intensity of magnetic and non-magnetic rare earth-doped UCNPs. Attributed to the strong local field effect of the nanocavities formed by the aluminum anti-transmission layer at the bottom, the fluorescence of the two types of UCNPs in such a platform can be enhanced by over 1000 folds compared with that in the conventional substrate. It is found that the deposited UCNPs amount and the aluminum pillar size can both impact the enhancement. We confirmed that the constructed MDM nanocavities could enhance and regulate the local field strength, and the optimum enhancement can be achieved by choosing proper parameters. All these findings provide an efficient way of exploring the plasmon-enhanced UCNPs luminescence system with low cost, high efficiency, and easy fabrication and can be promising in the fields of biosensing and photovoltaic devices. Full article
Show Figures

Figure 1

16 pages, 2545 KiB  
Article
Cavity-Tuned Exciton Dynamics in Transition Metal Dichalcogenides Monolayers
by Kaijun Shen, Kewei Sun, Maxim F. Gelin and Yang Zhao
Materials 2024, 17(16), 4127; https://doi.org/10.3390/ma17164127 - 20 Aug 2024
Cited by 4 | Viewed by 1581
Abstract
A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify [...] Read more.
A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify the dynamical and spectroscopic signatures of polaronic and polaritonic effects and to elucidate their characteristic timescales across a range of exciton–cavity couplings. The approach employed can be extended to simulation of various cavity-tuned 2D materials, specifically for exploring finite temperature nonlinear spectroscopic signals. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

19 pages, 9067 KiB  
Article
Infrared Lightwave Memory-Resident Manipulation and Absorption Based on Spatial Electromagnetic Wavefield Excitation and Resonant Accumulation by GdFe-Based Nanocavity-Shaped Metasurfaces
by Cheng Chen, Chuang Zhang, Taige Liu, Zhe Wang, Jiashuo Shi and Xinyu Zhang
Nanomaterials 2024, 14(14), 1230; https://doi.org/10.3390/nano14141230 - 20 Jul 2024
Viewed by 935
Abstract
An arrayed nanocavity-shaped architecture consisting of the key GdFe film and SiO2 dielectric layer is constructed, leading to an efficient infrared (IR) absorption metasurface. By carefully designing and optimizing the film system configuration and the surface layout with needed geometry, a desirable [...] Read more.
An arrayed nanocavity-shaped architecture consisting of the key GdFe film and SiO2 dielectric layer is constructed, leading to an efficient infrared (IR) absorption metasurface. By carefully designing and optimizing the film system configuration and the surface layout with needed geometry, a desirable IR radiation absorption according to the spatial magnetic plasmon modes is realized experimentally. The simulations and measurements demonstrate that GdFe-based nanocavity-shaped metasurfaces can be used to achieve an average IR absorption of ~81% in a wide wavelength range of 3–14 μm. A type of the patterned GdFe-based nanocavity-shaped metasurface is further proposed for exciting relatively strong spatial electromagnetic wavefields confined by a patterned nanocavity array based on the joint action of the surface oscillated net charges over the charged metallic films and the surface conductive currents including equivalent eddy currents surrounding the layered GdFe and SiO2 materials. Intensive IR absorption can be attributed to a spatial electromagnetic wavefield excitation and resonant accumulation or memory residence according to the GdFe-based nanocavity-shaped array formed. Our research provides a potential clue for efficiently responding and manipulating and storing incident IR radiation mainly based on the excitation and resonant accumulation of spatial magnetic plasmons. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

11 pages, 2759 KiB  
Article
Photoluminescence Enhancement and Carrier Dynamics of Charged Biexciton in Monolayer WS2 Coupled with Plasmonic Nanocavity
by Huiqiang Geng, Qirui Liu, Yuxiang Tang and Ke Wei
Photonics 2024, 11(4), 358; https://doi.org/10.3390/photonics11040358 - 12 Apr 2024
Cited by 2 | Viewed by 1795
Abstract
Monolayer two-dimensional transition metal dichalcogenide (TMD)-based materials have become one of the ideal platforms for the study of multibody interactions due to their rich excitonic complexes. The coupling between optical nanocavity and material has become an important means for manipulating the optical properties [...] Read more.
Monolayer two-dimensional transition metal dichalcogenide (TMD)-based materials have become one of the ideal platforms for the study of multibody interactions due to their rich excitonic complexes. The coupling between optical nanocavity and material has become an important means for manipulating the optical properties of materials, but there are few studies on the coupling of nanocavities and the multi-body effect in materials. In this study, we investigate the optical properties of silver nanodisk (Ag ND) arrays covering a monolayer WS2. In the experimental sample, we observed a ~114.3-fold photoluminescence enhancement of charged biexciton in the heterostructure region, as compared to the monolayer WS2 region, a value which is much higher than those for exciton (~2.2-fold) and trion (~16.4-fold), a finding which is attributed to the Fano resonant coupling between monolayer WS2 and the Ag ND. By means of time-resolved spectroscopy, we studied the carrier dynamics in the hybrid system. Our findings reveal that resonant coupling promotes the formation and radiation recombination processes of the charged biexciton, significantly reducing the radiative recombination lifetime by ~15-fold, which is much higher than the measurement in exciton (~2-fold). Our results provide an opportunity to understand the multibody physics of coupling with nanocavities, which could facilitate the application of multi-body excitons in the fields of light-emitting devices and lasers, etc. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

12 pages, 2620 KiB  
Article
The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds
by Zixin Wang, Wenjin Zhou, Min Yang, Yong Yang, Jianyong Hu, Chengbing Qin, Guofeng Zhang, Shaoding Liu, Ruiyun Chen and Liantuan Xiao
Nanomaterials 2024, 14(1), 53; https://doi.org/10.3390/nano14010053 - 24 Dec 2023
Cited by 3 | Viewed by 2688
Abstract
Surface-enhanced Raman scattering (SERS) has garnered substantial attention due to its ability to achieve single-molecule sensitivity by utilizing metallic nanostructures to amplify the exceedingly weak Raman scattering process. However, the introduction of metal nanostructures can induce a background continuum which can reduce the [...] Read more.
Surface-enhanced Raman scattering (SERS) has garnered substantial attention due to its ability to achieve single-molecule sensitivity by utilizing metallic nanostructures to amplify the exceedingly weak Raman scattering process. However, the introduction of metal nanostructures can induce a background continuum which can reduce the ultimate sensitivity of SERS in ways that are not yet well understood. Here, we investigate the impact of laser irradiation on both Raman scattering and backgrounds from self-assembled monolayers within nanoparticle-on-mirror plasmonic nanocavities with variable geometry. We find that laser irradiation can reduce the height of the monolayer by inducing an irreversible change in molecular conformation. The resulting increased plasmon confinement in the nanocavities not only enhances the SERS signal, but also provides momentum conservation in the inelastic light scattering of electrons, contributing to the enhancement of the background continuum. The plasmon confinement can be modified by changing the size and the geometry of nanoparticles, resulting in a nanoparticle geometry-dependent background continuum in SERS. Our work provides new routes for further modifying the geometry of plasmonic nanostructures to improve SERS sensitivity. Full article
Show Figures

Figure 1

19 pages, 33047 KiB  
Article
The Corrosion Behavior of Al/Al2O3 Composite Films with Ultra-Dense Structure Exposed to Lead-Bismuth Eutectic at 450 to 650 °C
by Xing Yin, Xiteng Li, Hao Wang, Ke Zhao, Jun Wang, Le Chen, Zhongzhen Wu and Yong Chen
Coatings 2023, 13(7), 1274; https://doi.org/10.3390/coatings13071274 - 20 Jul 2023
Cited by 7 | Viewed by 2602
Abstract
Al2O3 coatings are the most promising candidate material for mitigating (lead-bismuth eutectic) LBE corrosion at elevated temperatures, but preventing inward diffusion of Pb, Bi, and O for the ceramic coating remains a critical challenge. Here, we have fabricated an amorphous [...] Read more.
Al2O3 coatings are the most promising candidate material for mitigating (lead-bismuth eutectic) LBE corrosion at elevated temperatures, but preventing inward diffusion of Pb, Bi, and O for the ceramic coating remains a critical challenge. Here, we have fabricated an amorphous Al2O3 coating with an ultra-dense structure by continuous high-power magnetron sputtering (C-HPMS). After LBE corrosion at 550 °C for 2000 h, nanocavities induced by the phase transformation from amorphous to γ-Al2O3 provide the diffusion path for Fe, O, Pb, and Bi in which the corrosion products, such as Fe3O4, PbO2, or their mixed oxides, form. Furthermore, the diffusion of Pb to the substrate and Cr segregation at the interface between the coating and substrate are observed for the sample exposed to LBE at 550 °C for 4000 h. Additionally, the hardness and interface bonding strength are enhanced after LBE corrosion. Moreover, pit corrosion was found to be the main failure mode of coating, and pits that merged with each other induced large area failure at a temperature of 650 °C. The corrosion mechanism of Al2O3 includes element diffusion, phase transformation, and chemical reaction. This work not only provides a deep understanding of the corrosion mechanism of amorphous Al2O3 coatings, but also shows the optimization method on the corrosion resistance of Al2O3 coating. Full article
Show Figures

Figure 1

36 pages, 5646 KiB  
Review
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts
by Albert A. Shteinman
Catalysts 2023, 13(2), 415; https://doi.org/10.3390/catal13020415 - 15 Feb 2023
Cited by 6 | Viewed by 3822
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic [...] Read more.
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4. Full article
Show Figures

Figure 1

10 pages, 3979 KiB  
Communication
Subnanometer-Resolution Nanoparticle Sensing through the Strong Coupling between Surface Plasmon Polariton Whispering Gallery Resonances and Localized Surface Plasmon
by Han Yang and Yue-Gang Chen
Photonics 2023, 10(2), 212; https://doi.org/10.3390/photonics10020212 - 15 Feb 2023
Viewed by 2146
Abstract
High-resolution nanoparticle sensing is very important, and many schemes have been proposed to achieve this goal. Circular nanocavities in which surface plasmon polariton (SPP) whispering gallery mode (WGM) resonances were excited were designed to sense particles of ultra-small size and with high resolution. [...] Read more.
High-resolution nanoparticle sensing is very important, and many schemes have been proposed to achieve this goal. Circular nanocavities in which surface plasmon polariton (SPP) whispering gallery mode (WGM) resonances were excited were designed to sense particles of ultra-small size and with high resolution. Localized surface plasmon resonances (LSPRs) were excited when a metal particle was set in the circular cavity. The SPP WGM split into symmetric mode (SM) and antisymmetric mode (ASM) due to the LSPRs scattering into the SPPs. The strong coupling between SM resonance and LSPRs generated positive and opposite modes, which were sensitive to the variation in nanoparticle size and position. Even a small nanometer-sized metal particle introduced LSPRs and produced mode splitting. The WGM mode splitting induced by LSPRs reduced the sensing limit. The simulation results show that 1 nm changes in nanoparticle radius and position led to SM 11.8 nm and 10.2 nm wavelength shifts, respectively. This means that variations of 0.09 nm in size and 0.1 nm in position can be sensed with a 1 nm spectral resolution. The strong coupling between SPP WGM and LSPRs can be applied to sense at a subnanometer resolution. Full article
(This article belongs to the Special Issue Strong Light Fields Coupled with Plasmonic Nano-Structures)
Show Figures

Figure 1

10 pages, 3179 KiB  
Article
Strong Plasmon-Mie Resonance in Si@Pd Core-Ω Shell Nanocavity
by Haomin Guo, Qi Hu, Chengyun Zhang, Haiwen Liu, Runmin Wu and Shusheng Pan
Materials 2023, 16(4), 1453; https://doi.org/10.3390/ma16041453 - 9 Feb 2023
Cited by 4 | Viewed by 3090
Abstract
The surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) can be used to enhance the generation of the hot electrons in plasmon metal nanocavity. In this paper, Pd nanomembrane (NMB) is sputtered on the surface of Si nanosphere (NS) on glass [...] Read more.
The surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) can be used to enhance the generation of the hot electrons in plasmon metal nanocavity. In this paper, Pd nanomembrane (NMB) is sputtered on the surface of Si nanosphere (NS) on glass substrate to form the Si@Pd core-Ω shell nanocavity. A plasmon-Mie resonance is induced in the nanocavity by coupling the plasmon resonance with the Mie resonance to control the optical property of Si NS. When this nanocavity is excited by near-infrared-1 (NIR-1, 650 nm–900 nm) femtosecond (fs) laser, the luminescence intensity of Si NS is dramatically enhanced due to the synergistic interaction of plasmon and Mie resonance. The generation of resonance coupling regulates resonant mode of the nanocavity to realize multi-dimensional nonlinear optical response, which can be utilized in the fields of biological imaging and nanoscale light source. Full article
Show Figures

Figure 1

10 pages, 6559 KiB  
Article
Resonance Coupling in Si@WS2Core-Ω Shell Nanostructure
by Haomin Guo, Qi Hu, Chengyun Zhang, Zihao Fan, Haiwen Liu, Runmin Wu, Zhiyu Liu and Shusheng Pan
Nanomaterials 2023, 13(3), 462; https://doi.org/10.3390/nano13030462 - 23 Jan 2023
Viewed by 2348
Abstract
Realizing strong laser–matter interaction in a heterostructure consisting of two-dimensional transition metal dichalcogenides (TMDCs) and an optical nanocavity is a potential strategy for novel photonic devices. In this paper, two core-Ω shell nanostructures, Si@WS2 core-Ω shell nanostructure on glass/Si substrates, are briefly [...] Read more.
Realizing strong laser–matter interaction in a heterostructure consisting of two-dimensional transition metal dichalcogenides (TMDCs) and an optical nanocavity is a potential strategy for novel photonic devices. In this paper, two core-Ω shell nanostructures, Si@WS2 core-Ω shell nanostructure on glass/Si substrates, are briefly introduced. A strong laser–matter interaction occurred in the Si@WS2 core-Ω shell nanostructure when it was excited by femtosecond (fs) laser in the near-infrared-1 region (NIR-1, 650 nm–950 nm), resulting in a resonance coupling between the electric dipole resonance (EDR) of the Si nanosphere (NS) and the exciton resonance of the WS2 nanomembrane (NMB). The generation of resonance coupling regulates the resonant mode of the nanostructure to realize the multi-dimensional nonlinear optical response, which can be utilized in the fields of biological imaging and nanoscale light source. Full article
(This article belongs to the Special Issue Light-Nanomaterials Interactions)
Show Figures

Figure 1

9 pages, 1615 KiB  
Proceeding Paper
Multi-Objective Optimization of the Nanocavities Diffusion in Irradiated Metals
by Andrée De Backer, Abdelkader Souidi, Etienne A. Hodille, Emmanuel Autissier, Cécile Genevois, Farah Haddad, Antonin Della Noce, Christophe Domain, Charlotte S. Becquart and Marie France Barthe
Phys. Sci. Forum 2022, 5(1), 41; https://doi.org/10.3390/psf2022005041 - 6 Jan 2023
Cited by 2 | Viewed by 2804
Abstract
Materials in fission reactors or fusion tokamaks are exposed to neutron irradiation, which creates defects in the microstructure. With time, depending on the temperature, defects diffuse and form, among others, nanocavities, altering the material performance. The goal of this work is to determine [...] Read more.
Materials in fission reactors or fusion tokamaks are exposed to neutron irradiation, which creates defects in the microstructure. With time, depending on the temperature, defects diffuse and form, among others, nanocavities, altering the material performance. The goal of this work is to determine the diffusion properties of the nanocavities in tungsten. We combine (i) a systematic experimental study in irradiated samples annealed at different temperatures up to 1800 K (the created nanocavities diffuse, and their coalescence is studied by transmission electron microscopy); (ii) our object kinetic Monte Carlo model of the microstructure evolution fed by a large collection of atomistic data; and (iii) a multi-objective optimization method (using model inversion) to obtain the diffusion of nanocavities, input parameters of our model, from the comparison with the experimental observations. We simplify the multi-objective function, proposing a projection into the parameter space. Non-dominated solutions are revealed: two “valleys” of minima corresponding to the nanocavities density and size objectives, respectively, which delimit the Pareto optimal solution. These “valleys” are found to be the upper and lower uncertainties on the diffusion beyond the uncertainties on the experimental and simulated results. The nanocavity diffusion can be split in three domains: the mono vacancy and small vacancy clusters, for which atomistic models are affordable, the small nanocavities for which our approach is decisive, and the nanocavities larger than 1.5 nm for which the classical surface diffusion theory is valid. Full article
Show Figures

Figure 1

8 pages, 2550 KiB  
Communication
All-Dielectric Dual-Band Metamaterial Absorber Based on Ring Nanocavity in Visible Region for Sensing Applications
by Fei Liu, Meiling Zou, Zhenjie Feng, Bo Ni, Baisong Ye and Yunji Wang
Photonics 2023, 10(1), 58; https://doi.org/10.3390/photonics10010058 - 5 Jan 2023
Cited by 7 | Viewed by 2345
Abstract
In this study, an all-dielectric metamaterial absorber consisting of a ring nanocavity array, a spacer layer, and a metallic substrate is designed and investigated. The simulation results show that the two perfect absorption peaks (99.91% and 99.96%) are achieved at 539 nm and [...] Read more.
In this study, an all-dielectric metamaterial absorber consisting of a ring nanocavity array, a spacer layer, and a metallic substrate is designed and investigated. The simulation results show that the two perfect absorption peaks (99.91% and 99.96%) are achieved at 539 nm and 673 nm. The two resonance modes caused by the different electric and magnetic field distributions of the ring nanocavity structure lead to different absorption and sensing properties. In addition, the influence of the structural parameters, such as the width of the nanocavity, on the sensing characteristics was studied and is presented here. A high sensitivity and narrow band result in a huge figure of merit when the proposed absorber is operated as a refractive index sensor. Full article
(This article belongs to the Special Issue Nano/Micromechanical Metasurfaces and Active Metasurfaces/Plasmonics)
Show Figures

Figure 1

10 pages, 3915 KiB  
Article
High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs
by Shubin Yan, Pengwei Liu, Zhanbo Chen, Jilai Liu, Lifang Shen, Xiaoyu Zhang, Jiaming Cui, Tingsong Li, Yang Cui and Yifeng Ren
Micromachines 2022, 13(6), 846; https://doi.org/10.3390/mi13060846 - 29 May 2022
Cited by 6 | Viewed by 2913
Abstract
A high-property plasma resonance-sensor structure consisting of two metal-insulator-metal (MIM) waveguides coupled with a transverse ladder-shaped nano-cavity (TLSNC) is designed based on surface plasmon polaritons. Its transmission characteristics are analyzed using multimode interference coupling mode theory (MICMT), and are simulated using finite element [...] Read more.
A high-property plasma resonance-sensor structure consisting of two metal-insulator-metal (MIM) waveguides coupled with a transverse ladder-shaped nano-cavity (TLSNC) is designed based on surface plasmon polaritons. Its transmission characteristics are analyzed using multimode interference coupling mode theory (MICMT), and are simulated using finite element analysis (FEA). Meanwhile, the influence of different structural arguments on the performance of the structure is investigated. This study shows that the system presents four high-quality formants in the transmission spectrum. The highest sensitivity is 3000 nm/RIU with a high FOM* of 9.7 × 105. In addition, the proposed structure could act as a biosensor to detect the concentrations of sodium ions (Na+), potassium ions (K+), and the glucose solution with maximum sensitivities of 0.45, 0.625 and 5.5 nm/mgdL−1, respectively. Compared with other structures, the designed system has the advantages of a simple construction, a wide working band range, high reliability and easy nano-scale integration, providing a high-performance cavity choice for refractive index sensing and biosensing devices based on surface plasmons. Full article
(This article belongs to the Special Issue Microwave Passive Components)
Show Figures

Figure 1

20 pages, 4907 KiB  
Article
Label-Free Detection of the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein at Physiologically Relevant Concentrations Using Surface-Enhanced Raman Spectroscopy
by Andrey K. Sarychev, Alyona Sukhanova, Andrey V. Ivanov, Igor V. Bykov, Nikita V. Bakholdin, Daria V. Vasina, Vladimir A. Gushchin, Artem P. Tkachuk, Galina Nifontova, Pavel S. Samokhvalov, Alexander Karaulov and Igor Nabiev
Biosensors 2022, 12(5), 300; https://doi.org/10.3390/bios12050300 - 5 May 2022
Cited by 18 | Viewed by 3738
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation [...] Read more.
Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal–dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants. Full article
(This article belongs to the Special Issue High Performance Integrated Biosensors Based on SERS)
Show Figures

Figure 1

9 pages, 1726 KiB  
Article
Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film
by Shun Cao, Yuxin Xing, Yuwei Sun, Zhenchao Liu and Sailing He
Nanomaterials 2022, 12(9), 1440; https://doi.org/10.3390/nano12091440 - 23 Apr 2022
Cited by 5 | Viewed by 2450
Abstract
The strong coupling between single quantum emitters and resonant optical micro/nanocavities is beneficial for understanding light and matter interactions. Here, we propose a plasmonic nanoantenna placed on a metal film to achieve an ultra-high electric field enhancement in the nanogap and an ultra-small [...] Read more.
The strong coupling between single quantum emitters and resonant optical micro/nanocavities is beneficial for understanding light and matter interactions. Here, we propose a plasmonic nanoantenna placed on a metal film to achieve an ultra-high electric field enhancement in the nanogap and an ultra-small optical mode volume. The strong coupling between a single quantum dot (QD) and the designed structure is investigated in detail by both numerical simulations and theoretical calculations. When a single QD is inserted into the nanogap of the silver nanoantenna, the scattering spectra show a remarkably large splitting and anticrossing behavior of the vacuum Rabi splitting, which can be achieved in the scattering spectra by optimizing the nanoantenna thickness. Our work shows another way to enhance the light/matter interaction at a single quantum emitter limit, which can be useful for many nanophotonic and quantum applications. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

Back to TopTop