Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = metagenomic-assembled genome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 241
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

21 pages, 1420 KiB  
Article
Functional Characterization of a Synthetic Bacterial Community (SynCom) and Its Impact on Gene Expression and Growth Promotion in Tomato
by Mónica Montoya, David Durán-Wendt, Daniel Garrido-Sanz, Laura Carrera-Ruiz, David Vázquez-Arias, Miguel Redondo-Nieto, Marta Martín and Rafael Rivilla
Agronomy 2025, 15(8), 1794; https://doi.org/10.3390/agronomy15081794 - 25 Jul 2025
Viewed by 395
Abstract
Sustainable agriculture requires replacing agrochemicals with environmentally friendly products. One alternative is bacterial inoculants with plant-growth-promoting (PGP) activity. Bacterial consortia offer advantages over single-strain inoculants, as they possess more PGP traits and allow the exploitation of bacterial synergies. Synthetic bacterial communities (SynComs) can [...] Read more.
Sustainable agriculture requires replacing agrochemicals with environmentally friendly products. One alternative is bacterial inoculants with plant-growth-promoting (PGP) activity. Bacterial consortia offer advantages over single-strain inoculants, as they possess more PGP traits and allow the exploitation of bacterial synergies. Synthetic bacterial communities (SynComs) can be used as inoculants that are thoroughly characterized and assessed for efficiency and safety. Here, we describe the construction of a SynCom composed of seven bacterial strains isolated from the rhizosphere of tomato plants and other orchard vegetables. The strains were identified by 16S rDNA sequencing as Pseudomonas spp. (two isolates), Rhizobium sp., Ensifer sp., Microbacterium sp., Agromyces sp., and Chryseobacterium sp. The metagenome of the combined strains was sequenced, allowing the identification of PGP traits and the assembly of their individual genomes. These traits included nutrient mobilization, phytostimulation, and biocontrol. When inoculated into tomato plants in an agricultural soil, the SynCom caused minor effects in soil and rhizosphere bacterial communities. However, it had a high impact on the gene expression pattern of tomato plants. These effects were more significant at the systemic than at the local level, indicating a priming effect in the plant, as signaling through jasmonic acid and ethylene appeared to be altered. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 5133 KiB  
Article
Comparative Metagenomics Reveals Microbial Diversity and Biogeochemical Drivers in Deep-Sea Sediments of the Marcus-Wake and Magellan Seamounts
by Chengcheng Li, Bailin Cong, Wenquan Zhang, Tong Lu, Ning Guo, Linlin Zhao, Zhaohui Zhang and Shenghao Liu
Microorganisms 2025, 13(7), 1467; https://doi.org/10.3390/microorganisms13071467 - 24 Jun 2025
Viewed by 587
Abstract
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through [...] Read more.
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through metagenomic sequencing and genome-resolved analysis, we revealed that Proteobacteria (33.18–40.35%) dominated the bacterial communities, while Thaumarchaeota (5.98–10.86%) were the predominant archaea. Metagenome-assembled genomes uncovered 117 medium-quality genomes, 81.91% of which lacked species-level annotation, highlighting uncultured diversity. In the Nazuna seamount, which is located in the Marcus-Wake seamount region, microbiomes exhibited heightened autotrophic potential via the 3-hydroxypropionate cycle and dissimilatory nitrate reduction, whereas in the Magellan seamounts regions, nitrification and organic nitrogen metabolism were prioritized. Sulfur oxidation genes dominated Nazuna seamount microbes, with 33 MAGs coupling denitrification to sulfur redox pathways. Metal resistance genes for tellurium, mercury, and copper were prevalent, alongside habitat-specific iron transport systems. Cross-feeding interactions mediated by manganese, reduced ferredoxin, and sulfur–metal integration suggested adaptive detoxification strategies. This study elucidates how deep-sea microbes partition metabolic roles and evolve metal resilience mechanisms across geographical niches. It also supports the view that microbial community structure and metabolic function across seamount regions are likely influenced by the geomorphological features of the seamounts. Full article
Show Figures

Figure 1

27 pages, 20860 KiB  
Article
Metagenomic Investigation of Intestinal Microbiota of Insectivorous Synanthropic Bats: Densoviruses, Antibiotic Resistance Genes, and Functional Profiling of Gut Microbial Communities
by Ilia V. Popov, Andrey D. Manakhov, Vladislav E. Gorobets, Kristina B. Diakova, Ekaterina A. Lukbanova, Aleksey V. Malinovkin, Koen Venema, Alexey M. Ermakov and Igor V. Popov
Int. J. Mol. Sci. 2025, 26(13), 5941; https://doi.org/10.3390/ijms26135941 - 20 Jun 2025
Viewed by 540
Abstract
Bats serve as key ecological reservoirs of diverse microbial communities, including emerging viruses and antibiotic resistance genes. This study investigates the intestinal microbiota of two insectivorous bat species, Nyctalus noctula and Vespertilio murinus, at the Rostov Bat Rehabilitation Center in Southern Russia [...] Read more.
Bats serve as key ecological reservoirs of diverse microbial communities, including emerging viruses and antibiotic resistance genes. This study investigates the intestinal microbiota of two insectivorous bat species, Nyctalus noctula and Vespertilio murinus, at the Rostov Bat Rehabilitation Center in Southern Russia using whole metagenome shotgun sequencing. We analyzed taxonomic composition, functional pathways, antibiotic resistance genes, and virulence factors. Densoviruses, especially those closely related to Parus major densovirus, were the most dominant viral sequences identified. Metagenome-assembled densovirus genomes showed high sequence similarity with structural variations and clustered phylogenomically with viruses from mealworms and birds, reflecting both dietary origins and the potential for vertebrate infection. Functional profiling revealed microbial pathways associated with cell wall biosynthesis, energy metabolism, and biofilm formation. A total of 510 antibiotic resistance genes, representing 142 unique types, mainly efflux pumps and β-lactamases, were identified. Additionally, 870 virulence factor genes were detected, with a conserved set of iron acquisition systems and stress response regulators across all samples. These findings highlight the ecological complexity of bat-associated microbiota and viromes and suggest that synanthropic bats may contribute to the circulation of insect-associated viruses and antimicrobial resistance in urban settings. Full article
Show Figures

Graphical abstract

16 pages, 3629 KiB  
Article
Ten Previously Unassigned Human Cosavirus Genotypes Detected in Feces of Children with Non-Polio Acute Flaccid Paralysis in Nigeria in 2020
by Toluwani Goodnews Ajileye, Toluwanimi Emmanuel Akinleye, Temitope O. C. Faleye, Lander De Coninck, Uwem Etop George, Anyebe Bernard Onoja, Sheriff Tunde Agbaje, Ijeoma Maryjoy Ifeorah, Oluseyi Adebowale Olayinka, Elijah Igbekele Oni, Arthur Obinna Oragwa, Bolutife Olubukola Popoola, Olaitan Titilola Olayinka, Oluwadamilola Gideon Osasona, Oluwadamilola Adefunke George, Philip G. Ajayi, Adedolapo A. Suleiman, Ahmed Iluoreh Muhammad, Isaac Komolafe, Adekunle Johnson Adeniji, Jelle Matthijnssens and Moses Olubusuyi Adewumiadd Show full author list remove Hide full author list
Viruses 2025, 17(6), 844; https://doi.org/10.3390/v17060844 - 12 Jun 2025
Viewed by 674
Abstract
Since its discovery via metagenomics in 2008, human cosavirus (HCoSV) has been detected in the cerebrospinal fluid (CSF) and feces of humans with meningitis, acute flaccid paralysis (AFP), and acute gastroenteritis. To date, 34 HCoSV genotypes have been documented by the Picornaviridae study [...] Read more.
Since its discovery via metagenomics in 2008, human cosavirus (HCoSV) has been detected in the cerebrospinal fluid (CSF) and feces of humans with meningitis, acute flaccid paralysis (AFP), and acute gastroenteritis. To date, 34 HCoSV genotypes have been documented by the Picornaviridae study group. However, the documented genetic diversity of HCoSV in Nigeria is limited. Here we describe the genetic diversity of HCoSV in Nigeria using a metagenomics approach. Archived and anonymized fecal specimens from children (under 15 years old) diagnosed with non-polio AFP from five states in Nigeria were analyzed. Virus-like particles were purified from 55 pools (made from 254 samples) using the NetoVIR protocol. Pools were subjected to nucleic acid extraction and metagenomic sequencing. Reads were trimmed and assembled, and contigs classified as HCoSV were subjected to phylogenetic, pairwise identity, recombination analysis, and, when necessary, immuno-informatics and capsid structure prediction. Fifteen pools yielded 23 genomes of HCoSV. Phylogenetic and pairwise identity analysis showed that all belonged to four species (eleven, three, three, and six members of Cosavirus asiani, Cosavirus bepakis, Cosavirus depakis, and Cosavirus eaustrali, respectively) and seventeen genotypes. Ten genomes belong to seven (HCoSV-A3/A10, A15, A17, A19, A24, D3, and E1) previously assigned genotypes, while the remaining thirteen genomes belonged to ten newly proposed genotypes across the four HCoSV species, based on the near-complete VP1 region (VP1*) of the cosavirus genome. Our analysis suggests the existence of at least seven and eight Cosavirus bepakis and Cosavirus eaustrali genotypes, respectively (including those described here). We report the first near-complete genomes of Cosavirus bepakis and Cosavirus depakis from Nigeria, which contributes to the increasing knowledge of the diversity of HCoSV, raising the number of tentative genotypes from 34 to over 40. Our findings suggest that the genetic diversity of HCoSV might be broader than is currently documented, highlighting the need for enhanced surveillance. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 864 KiB  
Brief Report
Implementing Wastewater-Based Epidemiology for Long-Read Metagenomic Sequencing of Antimicrobial Resistance in Kampala, Uganda
by William Strike, Temitope O. C. Faleye, Brian Lubega, Alexus Rockward, Soroosh Torabi, Anni Noble, Mohammad Dehghan Banadaki, James Keck, Henry Mugerwa, Matthew Scotch and Scott Berry
Microorganisms 2025, 13(6), 1240; https://doi.org/10.3390/microorganisms13061240 - 28 May 2025
Viewed by 646
Abstract
Antimicrobial resistance (AMR) is an emerging global threat that is expanding in many areas of the world. Wastewater-based epidemiology (WBE) is uniquely suited for use in areas of the world where clinical surveillance is limited or logistically slow to identify emerging threats, such [...] Read more.
Antimicrobial resistance (AMR) is an emerging global threat that is expanding in many areas of the world. Wastewater-based epidemiology (WBE) is uniquely suited for use in areas of the world where clinical surveillance is limited or logistically slow to identify emerging threats, such as in Sub-Saharan Africa (SSA). Wastewater was analyzed from three urban areas of Kampala, including a local HIV research clinic and two informal settlements. Wastewater extraction was performed using a low-cost, magnetic bead-based protocol that minimizes consumable plastic consumption followed by sequencing on the Oxford Nanopore Technology MinION platform. The majority of the analysis was performed using cloud-based services to identify AMR biomarkers and bacterial pathogens. Assemblies containing AMR pathogens were isolated from all locations. As one example, clinically relevant AMR biomarkers for multiple drug classes were found within Acinetobacter baumannii genomic fragments. This work presents a metagenomic WBE workflow that is compatible with areas of the world without robust water treatment infrastructure. This study was able to identify various bacterial pathogens and AMR biomarkers without shipping water samples internationally or relying on complex concentration methods. Due to the time-dependent nature of wastewater surveillance data, this work involved cross-training researchers in Uganda to collect and analyze wastewater for future efforts in public health development. Full article
(This article belongs to the Special Issue Advances in Research on Waterborne Pathogens)
Show Figures

Figure 1

17 pages, 1852 KiB  
Article
A Tutorial Toolbox to Simplify Bioinformatics and Biostatistics Analyses of Microbial Omics Data in an Island Context
by Isaure Quétel, Sourakhata Tirera, Damien Cazenave, Nina Allouch, Chloé Baum, Yann Reynaud, Degrâce Batantou Mabandza, Virginie Nerrière, Serge Vedy, Matthieu Pot, Sébastien Breurec, Anne Lavergne, Séverine Ferdinand, Vincent Guerlais and David Couvin
BioMedInformatics 2025, 5(2), 27; https://doi.org/10.3390/biomedinformatics5020027 - 19 May 2025
Viewed by 1335
Abstract
Background: Bioinformatics is increasingly used in various scientific works. Large amounts of heterogeneous data are being generated these days. It is difficult to interpret and analyze these data effectively. Several software tools have been developed to facilitate the handling and analysis of biological [...] Read more.
Background: Bioinformatics is increasingly used in various scientific works. Large amounts of heterogeneous data are being generated these days. It is difficult to interpret and analyze these data effectively. Several software tools have been developed to facilitate the handling and analysis of biological data, based on specific needs. Methods: The Galaxy web platform is one of these software tools, allowing free access to users and facilitating the use of thousands of tools. Other software tools, such as Bioconda or Jupyter Notebook, facilitate the installation of tools and their dependencies. In addition to these tools, RStudio can be mentioned as a powerful interface that facilitates the use of the R programming language for data analysis and statistics. Results: The aim of this study is to provide the scientific community with guides on how to perform bioinformatics/biostatistical analyses in a simpler manner. With this work, we also try to democratize well-documented software tools to make them suitable for both bioinformaticians and non-bioinformaticians. We believe that user-friendly guides and real-life/concrete examples will provide end-users with suitable and easy-to-use methods for their bioinformatics analysis needs. Furthermore, tutorials and usage examples are available on our dedicated GitHub repository. Conclusions: These tutorials/examples (In English and/or French) could be used as pedagogical tools to promote bioinformatics analysis and offer potential solutions to several bioinformatics needs. Special emphasis is placed on microbial omics data analysis. Full article
Show Figures

Figure 1

13 pages, 490 KiB  
Article
First Animal Source Metagenome Assembly of Lawsonella clevelandensis from Canine External Otitis
by Adrienn Gréta Tóth, Norbert Solymosi, Miklós Tenk, Zsófia Káldy and Tibor Németh
Pathogens 2025, 14(5), 465; https://doi.org/10.3390/pathogens14050465 - 10 May 2025
Viewed by 1003
Abstract
External otitis is one of the most common conditions in dogs to be presented to the veterinarian. Moreover, the disorder is often challenging to manage. The range and role of microorganisms involved in the pathogenesis are currently not fully understood. Therefore, the condition [...] Read more.
External otitis is one of the most common conditions in dogs to be presented to the veterinarian. Moreover, the disorder is often challenging to manage. The range and role of microorganisms involved in the pathogenesis are currently not fully understood. Therefore, the condition has been studied using third-generation sequencing (Oxford Nanopore Technology) to gain a more complete picture of the pathogens involved. Throughout the metagenome assembly of a sample from the ear canal of an 11-year-old female Yorkshire terrier suffering from chronic external otitis, a genome of Lawsonella clevelandensis was compiled. To our knowledge, this result is the first of its type of animal origin. The outcome of the assembly is a single circular chromosome with a length of 1,909,339 bp and 1727 predicted genes. One open reading frame associated with antimicrobial resistance could have been identified. Comparing all available genomes, the species can be associated with three main genome clusters. The finding contributes to the extending knowledge bank about this often-overlooked pathogen and raises attention to the role of nanopore sequencing by the identification and characterization of microorganisms that are difficult to culture. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

17 pages, 1253 KiB  
Review
Metagenome-Assembled Genomes (MAGs): Advances, Challenges, and Ecological Insights
by Salvador Mirete, Mercedes Sánchez-Costa, Jorge Díaz-Rullo, Carolina González de Figueras, Pablo Martínez-Rodríguez and José Eduardo González-Pastor
Microorganisms 2025, 13(5), 985; https://doi.org/10.3390/microorganisms13050985 - 25 Apr 2025
Viewed by 1993
Abstract
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances [...] Read more.
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances have expanded the known microbial diversity, revealing novel taxa and metabolic pathways involved in key biogeochemical cycles, including carbon, nitrogen, and sulfur transformations. MAG-based studies have identified microbial lineages form Archaea and Bacteria responsible for methane oxidation, carbon sequestration in marine sediments, ammonia oxidation, and sulfur metabolism, highlighting their critical roles in ecosystem stability. From a sustainability perspective, MAGs provide essential insights for climate change mitigation, sustainable agriculture, and bioremediation. The ability to characterize microbial communities in diverse environments, including soil, aquatic ecosystems, and extreme habitats, enhances biodiversity conservation and supports the development of microbial-based environmental management strategies. Despite these advancements, challenges such as assembly biases, incomplete metabolic reconstructions, and taxonomic uncertainties persist. Continued improvements in sequencing technologies, hybrid assembly approaches, and multi-omics integration will further refine MAG-based analyses. As methodologies advance, MAGs will remain a cornerstone for understanding microbial contributions to global biogeochemical processes and developing sustainable interventions for environmental resilience. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

20 pages, 5993 KiB  
Article
Investigation of the Plant-Growth-Promoting Potential of Plant Endophytic Keystone Taxa in Desertification Environments
by Tianle Kong, Baoqin Li, Xiaoxu Sun, Weimin Sun, Huaqing Liu, Ying Huang, Yize Wang and Pin Gao
Processes 2025, 13(4), 1199; https://doi.org/10.3390/pr13041199 - 16 Apr 2025
Cited by 1 | Viewed by 461
Abstract
The Qinghai–Tibetan Plateau (QTP) is under serious desertification stress, which has been receiving increasing attention. Although the restoration of surface vegetation is crucial, the growth of plants is often hindered by unfavorable nutrient-deficient conditions. The plant-associated endophytic microbiome is considered the secondary genome [...] Read more.
The Qinghai–Tibetan Plateau (QTP) is under serious desertification stress, which has been receiving increasing attention. Although the restoration of surface vegetation is crucial, the growth of plants is often hindered by unfavorable nutrient-deficient conditions. The plant-associated endophytic microbiome is considered the secondary genome of the host and plays a significant role in host survival under environmental stresses. However, the community compositions and functions of plant-endophytic microorganisms in the QTP desertification environments remain unclear. Therefore, this study investigated the endophytic microbiome of the pioneer plant Gueldenstaedtia verna on the QTP and its contribution to host growth under stressful conditions. The results showed that nutrient-deficient stresses strongly influenced the microbial community structures in the rhizosphere. The impacts of these stresses, however, decreased from the rhizosphere community to the plant endophytes, resulting in consistent plant endophytic microbial communities across different sites. Members of Halomonas were recognized as keystone taxa in the endophytic microbiome of G. verna. Correlation analysis, metagenome-assembled genomes (MAGs), and comparative genome analyses have shown that the keystone taxa of the plant endophytic microbiome may promote plant growth through pathways such as nitrogen fixation, IAA, and antioxidant production, which are important for improving plant nutrient acquisition and tolerance. This finding may provide a crucial theoretical foundation for future phytoremediation efforts in desertification environments on the Qinghai-Tibet Plateau. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 3rd Edition)
Show Figures

Graphical abstract

25 pages, 4505 KiB  
Article
Pangenome Analysis of Clostridium scindens: A Collection of Diverse Bile Acid- and Steroid-Metabolizing Commensal Gut Bacterial Strains
by Kelly Y. Olivos-Caicedo, Francelys V. Fernandez-Materan, Steven L. Daniel, Karthik Anantharaman, Jason M. Ridlon and João M. P. Alves
Microorganisms 2025, 13(4), 857; https://doi.org/10.3390/microorganisms13040857 - 9 Apr 2025
Cited by 1 | Viewed by 1053
Abstract
Clostridium scindens is a commensal gut bacterium capable of forming the secondary bile acids as well as converting glucocorticoids to androgens. Historically, only two strains, C. scindens ATCC 35704 and C. scindens VPI 12708, have been characterized to any significant extent. The formation [...] Read more.
Clostridium scindens is a commensal gut bacterium capable of forming the secondary bile acids as well as converting glucocorticoids to androgens. Historically, only two strains, C. scindens ATCC 35704 and C. scindens VPI 12708, have been characterized to any significant extent. The formation of secondary bile acids is important in the etiology of cancers of the GI tract and in the prevention of Clostridioides difficile infection. We determined the presence and absence of bile acid inducible (bai) and steroid-17,20-desmolase (des) genes among C. scindens strains and the features of the pangenome of 34 cultured strains of C. scindens and a set of 200 metagenome-assembled genomes (MAGs) to understand the variability among strains. The results indicate that the C. scindens cultivars have an open pangenome with 12,720 orthologous gene groups and a core genome with 1630 gene families, in addition to 7051 and 4039 gene families in the accessory and unique (i.e., strain-exclusive) genomes, respectively. The pangenome profile including the MAGs also proved to be open. Our analyses reveal that C. scindens strains are distributed into two clades, indicating the possible onset of C. scindens separation into two species, as suggested by gene content, phylogenomic, and average nucleotide identity (ANI) analyses. This study provides insight into the structure and function of the C. scindens pangenome, offering a genetic foundation of significance for many aspects of research on the intestinal microbiota and bile acid metabolism. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

14 pages, 1340 KiB  
Article
Genomic Analysis of the Uncultured AKYH767 Lineage from a Wastewater Treatment Plant Predicts a Facultatively Anaerobic Heterotrophic Lifestyle and the Ability to Degrade Aromatic Compounds
by Shahjahon Begmatov, Alexey V. Beletsky, Andrey V. Mardanov and Nikolai V. Ravin
Water 2025, 17(7), 1061; https://doi.org/10.3390/w17071061 - 3 Apr 2025
Cited by 2 | Viewed by 489
Abstract
Microbial communities in wastewater treatment plants (WWTPs) play a crucial role in the decontamination of polluted water. An uncultured order-level lineage AKYH767 of the phylum Bacteroidota has been consistently detected in microbial consortia of activated sludge at WWTPs worldwide, but its functional role [...] Read more.
Microbial communities in wastewater treatment plants (WWTPs) play a crucial role in the decontamination of polluted water. An uncultured order-level lineage AKYH767 of the phylum Bacteroidota has been consistently detected in microbial consortia of activated sludge at WWTPs worldwide, but its functional role remains elusive. Representatives of AKYH767 were also detected in soils and freshwater bodies, which may be their natural reservoirs. Here, we obtained ten high-quality metagenome-assembled genomes, including one closed circular genome, of AKYH767 bacteria from metagenomes of the wastewater and activated sludge and used genomic data to uncover the metabolic potential of these bacteria and to predict their functional role. The cells of the AKYH767 bacteria were inferred to be rod-shaped and non-motile. Genome-based metabolic reconstruction predicted the Embden–Meyerhof pathway, the non-oxidative stage of the pentose phosphate pathway, and the complete tricarboxylic acid cycle. A facultatively anaerobic chemoheterotrophic lifestyle with the capacity to oxidize low organic substrates through aerobic respiration was suggested. Under anaerobic conditions AKYH767 bacteria can perform different steps of denitrification. They have limited capacities to hydrolyze carbohydrates and proteinaceous substrates but can utilize fatty acids. A peculiar property of AKYH767 bacteria is the presence of the phenylacetyl-CoA pathway for the utilization of phenylacetate, and about half of the genomes encoded the benzoate degradation pathway. Apparently, in bioreactors at WWTPs, the AKYH767 bacteria could be involved in the denitrification and biodegradation of aromatic compounds. Based on phylogenetic and genomic analyses, the novel AKYH767 bacterium is proposed to be classified as Candidatus Pollutiaquabacter aromativorans, within the candidate order Pollutiaquabacterales. Full article
Show Figures

Figure 1

17 pages, 4870 KiB  
Article
Microbial Diversity and Heavy Metal Resistome in Slag-Contaminated Soils from an Abandoned Smelter in Chihuahua, Mexico
by Gustavo Montes-Montes, Zilia Y. Muñoz-Ramírez, Leonor Cortes-Palacios, Javier Carrillo-Campos, Obed Ramírez-Sánchez, Ismael Ortiz-Aguirre, Laila N. Muñoz-Castellanos and Román González-Escobedo
Soil Syst. 2025, 9(2), 30; https://doi.org/10.3390/soilsystems9020030 - 1 Apr 2025
Viewed by 851
Abstract
Heavy metal(loid) (HM) contamination in soils from smelting activities poses significant environmental and public health risks, as well as disruptions in microbial community dynamics and HM resistance gene profiles. This study investigates the microbial diversity, resistome, and physicochemical properties of soils from the [...] Read more.
Heavy metal(loid) (HM) contamination in soils from smelting activities poses significant environmental and public health risks, as well as disruptions in microbial community dynamics and HM resistance gene profiles. This study investigates the microbial diversity, resistome, and physicochemical properties of soils from the abandoned Avalos smelter in Chihuahua, Mexico. Through soil analyses, we identified elevated concentrations of certain HMs, which pose serious environmental and health hazards. The metagenomic analysis of the microbial community, composed of bacteria, archaea, and fungi, was dominated by genera such as Streptomyces, Bradyrhizobium, Halobaculum, Nitrosocosmicus, Fusarium, and Aspergillus in rhizospheric soil. Furthermore, a diverse array of metal resistance genes (MRGs) were detected, associated with copper, arsenic, iron, lead, cadmium, zinc, and other HMs. Additionally, metagenome-assembled genomes (MAGs) revealed the presence of functional genes linked to HM resistance, providing deeper insights into the ecological roles and metabolic capabilities of microbial taxa. These findings highlight the significant impact of smelting-derived contamination on microbial diversity and functional potential, offering valuable insights for the development of bioremediation strategies in HM-contaminated environments. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

15 pages, 2783 KiB  
Article
AliMarko: A Pipeline for Virus Identification Using an Expert-Guided Approach
by Nikolay Popov, Ignat Sonets, Anastasia Evdokimova, Maria Molchanova, Vera Panova, Elena Korneenko, Alexander Manolov and Elena Ilina
Viruses 2025, 17(3), 355; https://doi.org/10.3390/v17030355 - 28 Feb 2025
Viewed by 788
Abstract
Viruses are ubiquitous across all kingdoms of cellular life, posing a significant threat to human health, and analyzing viral communities is challenging due to their genetic diversity and lack of a single, universally conserved marker gene. To address this challenge, we developed the [...] Read more.
Viruses are ubiquitous across all kingdoms of cellular life, posing a significant threat to human health, and analyzing viral communities is challenging due to their genetic diversity and lack of a single, universally conserved marker gene. To address this challenge, we developed the AliMarko pipeline, a tool designed to streamline virus identification in metagenomic data. Our pipeline uses a dual approach, combining mapping reads with reference genomes and a de novo assembly-based approach involving an HMM-based homology search and phylogenetic analysis, to enable comprehensive detection of viral sequences, including low-coverage and divergent sequences. We applied our pipeline to total RNA sequencing of bat feces and identified a range of viruses, quickly validating viral sequences and assessing their phylogenetic relationships. We hope that the AliMarko pipeline will be a useful resource for the scientific community, facilitating the interpretation of viral communities and advancing our understanding of viral diversity and its impact on human health. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

11 pages, 6131 KiB  
Article
Metagenomics and Metagenome-Assembled Genomes: Analysis of Cupei from Sichuan Baoning Vinegar, One of the Four Traditional Renowned Vinegars in China
by Jie Wu, Ning Zhao, Qin Li, Kui Zhao, Meiling Tu, Jianlong Li, Kaidi Hu, Shujuan Chen, Shuliang Liu and Aiping Liu
Foods 2025, 14(3), 398; https://doi.org/10.3390/foods14030398 - 26 Jan 2025
Cited by 2 | Viewed by 995
Abstract
The microbial community in vinegar has primarily been investigated by analyzing short reads to determine operational taxonomic units, but it is also crucial to identify metagenome-assembled genomes (MAGs). In this study, the microbial diversity and functionality in Sichuan Baoning vinegar were examined through [...] Read more.
The microbial community in vinegar has primarily been investigated by analyzing short reads to determine operational taxonomic units, but it is also crucial to identify metagenome-assembled genomes (MAGs). In this study, the microbial diversity and functionality in Sichuan Baoning vinegar were examined through deep metagenomic sequencing and metagenomic binning. Results revealed that the most prevalent phylum was Firmicutes, followed by Proteobacteria and unclassified Bacteria. The most abundant bacterial species was Acetilactobacillus jinshanensis, while Saccharomyces cerevisiae was the most prevalent fungal species. The predominant viral species were Hopescreekvirus LfeInf, Myoviridae sp., and Siphoviridae sp. A total of 1395 MAGs were reconstructed, with 660 of them annotated. The majority of MAGs resolved at the species level were attributed to Firmicutes (n = 308), with Acetilactobacillus jinshanensis being the most abundant. According to the average nucleotide identity values, 223 out of the 660 MAGs might represent novel species. The recovered MAGs exhibited biomarker genes indicative of the genetic potential to encode several important secondary metabolites. This study helps to uncover the microbial composition and functional potential of microbial genomes in Sichuan Baoning vinegar. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

Back to TopTop