Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = mesoporous carbon and silica nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8009 KB  
Review
Recent Advances in Nanoparticle-Mediated Antibacterial Photodynamic Therapy
by Nivedita, Shashwat Sharma, Dyah Ika Krisnawati, Tsai-Mu Cheng and Tsung-Rong Kuo
Int. J. Mol. Sci. 2025, 26(22), 10949; https://doi.org/10.3390/ijms262210949 - 12 Nov 2025
Viewed by 1003
Abstract
The escalating threat of antibiotic resistance has prompted the search for alternative antibacterial therapies. Antibacterial photodynamic therapy (aPDT), which utilizes light-activated photosensitizers to generate reactive oxygen species (ROS), offers a promising, non-invasive approach. The aim of this review is to analyze recent advances [...] Read more.
The escalating threat of antibiotic resistance has prompted the search for alternative antibacterial therapies. Antibacterial photodynamic therapy (aPDT), which utilizes light-activated photosensitizers to generate reactive oxygen species (ROS), offers a promising, non-invasive approach. The aim of this review is to analyze recent advances in nanoparticle-mediated aPDT and synthesize crucial design principles necessary to overcome the current translational barriers, thereby establishing a roadmap for future clinically applicable antimicrobial treatments. Emerging nanoparticle platforms, including upconverting nanoparticles (UCNPs), carbon dots (CDs), mesoporous silica nanoparticles (MSNs), liposomes, and metal–organic frameworks (MOFs), have demonstrated improved photosensitizer delivery, enhanced ROS generation, biofilm disruption, and targeted bacterial eradication. Synergistic effects are observed when aPDT is integrated with photothermal, chemodynamic, or immunotherapeutic approaches. The review further examines the mechanisms of action, biocompatibility, and antibacterial performance of these nanoparticle systems, particularly against drug-resistant strains and in challenging environments such as chronic wounds. Overall, nanomaterial-mediated aPDT presents a highly promising and versatile solution to antimicrobial resistance. Future perspectives include the integration of artificial intelligence to personalize aPDT by predicting optimal light dosage and nanoplatform design based on patient-specific data, rigorous clinical validation through trials, and the development of safer, more efficient nanoparticle platforms. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

30 pages, 3682 KB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Cited by 1 | Viewed by 2005
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

21 pages, 3397 KB  
Article
In Vitro Assessment of 177Lu-Labeled Trastuzumab-Targeted Mesoporous Carbon@Silica Nanostructure for the Treatment of HER2-Positive Breast Cancer
by Ayça Tunçel, Simone Maschauer, Olaf Prante and Fatma Yurt
Pharmaceuticals 2024, 17(6), 732; https://doi.org/10.3390/ph17060732 - 5 Jun 2024
Cited by 1 | Viewed by 2538
Abstract
This study assessed the effectiveness of a trastuzumab-targeted 177Lu-labeled mesoporous Carbon@Silica nanostructure (DOTA@TRA/MC@Si) for HER2-positive breast cancer treatment, focusing on its uptake, internalization, and efflux in breast cancer cells. The synthesized PEI-MC@Si nanocomposite was reacted with DOTA-NHS-ester, confirmed by the Arsenazo(III) assay. [...] Read more.
This study assessed the effectiveness of a trastuzumab-targeted 177Lu-labeled mesoporous Carbon@Silica nanostructure (DOTA@TRA/MC@Si) for HER2-positive breast cancer treatment, focusing on its uptake, internalization, and efflux in breast cancer cells. The synthesized PEI-MC@Si nanocomposite was reacted with DOTA-NHS-ester, confirmed by the Arsenazo(III) assay. Following this, TRA was conjugated to the DOTA@PEI-MC@Si for targeting. DOTA@PEI-MC@Si and DOTA@TRA/MC@Si nanocomposites were labeled with 177Lu, and their efficacy was evaluated through in vitro radiolabeling experiments. According to the results, the DOTA@TRA/MC@Si nanocomposite was successfully labeled with 177Lu, yielding a radiochemical yield of 93.0 ± 2.4%. In vitro studies revealed a higher uptake of the [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite in HER2-positive SK-BR-3 cells (44.0 ± 4.6% after 24 h) compared to MDA-MB-231 cells (21.0 ± 2.3%). The IC50 values for TRA-dependent uptake in the SK-BR-3 and BT-474 cells were 0.9 µM and 1.3 µM, respectively, indicating affinity toward HER-2 receptor-expressing cells. The lipophilic distribution coefficients of the radiolabeled nanocomposites were determined to be 1.7 ± 0.3 for [177Lu]Lu-DOTA@TRA/MC@Si and 1.5 ± 0.2 for [177Lu]Lu-DOTA@PEI-MC@Si, suggesting sufficient passive transport through the cell membrane and increased accumulation in target tissues. The [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite showed an uptake into HER2-positive cell lines, marking a valuable step toward the development of a nanoparticle-based therapeutic agent for an improved treatment strategy for HER2-positive breast cancer. Full article
(This article belongs to the Special Issue Radiopharmaceuticals and Nanotechnology)
Show Figures

Graphical abstract

30 pages, 3770 KB  
Review
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
by Huma Jamil, Muhammad Faizan, Muhammad Adeel, Teofil Jesionowski, Grzegorz Boczkaj and Aldona Balčiūnaitė
Molecules 2024, 29(6), 1267; https://doi.org/10.3390/molecules29061267 - 13 Mar 2024
Cited by 58 | Viewed by 11244
Abstract
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, [...] Read more.
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π–π stacking, Diels–Alder reactions, and metal–ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications. Full article
Show Figures

Graphical abstract

28 pages, 1219 KB  
Review
Nanoplatforms for the Delivery of Nucleic Acids into Plant Cells
by Tatiana Komarova, Irina Ilina, Michael Taliansky and Natalia Ershova
Int. J. Mol. Sci. 2023, 24(23), 16665; https://doi.org/10.3390/ijms242316665 - 23 Nov 2023
Cited by 20 | Viewed by 5061
Abstract
Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells; however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and [...] Read more.
Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells; however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and biosafe nanomaterials that were demonstrated to be applicable to the delivery of nucleic acids into plant cells. This review covers studies the object of which is the plant cell and the cargo for the nanocarrier is either DNA or RNA. The following nanoplatforms that could be potentially used for nucleic acid foliar delivery via spraying are discussed: mesoporous silica nanoparticles, layered double hydroxides (nanoclay), carbon-based materials (carbon dots and single-walled nanotubes), chitosan and, finally, cell-penetrating peptides (CPPs). Hybrid nanomaterials, for example, chitosan- or CPP-functionalized carbon nanotubes, are taken into account. The selected nanocarriers are analyzed according to the following aspects: biosafety, adjustability for the particular cargo and task (e.g., organelle targeting), penetration efficiency and ability to protect nucleic acid from environmental and cellular factors (pH, UV, nucleases, etc.) and to mediate the gradual and timely release of cargo. In addition, we discuss the method of application, experimental system and approaches that are used to assess the efficiency of the tested formulation in the overviewed studies. This review presents recent progress in developing the most promising nanoparticle-based materials that are applicable to both laboratory experiments and field applications. Full article
Show Figures

Figure 1

14 pages, 1603 KB  
Article
Toxicological Profiling and Long-Term Effects of Bare, PEGylated- and Galacto-Oligosaccharide-Functionalized Mesoporous Silica Nanoparticles
by Irene Barguilla, Vicente Candela-Noguera, Patrick Oliver, Balasubramanyam Annangi, Paula Díez, Elena Aznar, Ramón Martínez-Máñez, Ricard Marcos, Alba Hernández and María Dolores Marcos
Int. J. Mol. Sci. 2023, 24(22), 16158; https://doi.org/10.3390/ijms242216158 - 10 Nov 2023
Cited by 7 | Viewed by 1968
Abstract
Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) [...] Read more.
Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell’s enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone. Full article
Show Figures

Figure 1

17 pages, 1376 KB  
Review
The Promising Nanovectors for Gene Delivery in Plant Genome Engineering
by Heng Zhi, Shengen Zhou, Wenbo Pan, Yun Shang, Zhanghua Zeng and Huawei Zhang
Int. J. Mol. Sci. 2022, 23(15), 8501; https://doi.org/10.3390/ijms23158501 - 31 Jul 2022
Cited by 47 | Viewed by 6192
Abstract
Highly efficient gene delivery systems are essential for genetic engineering in plants. Traditional delivery methods have been widely used, such as Agrobacterium-mediated transformation, polyethylene glycol (PEG)-mediated delivery, biolistic particle bombardment, and viral transfection. However, genotype dependence and other drawbacks of these techniques limit [...] Read more.
Highly efficient gene delivery systems are essential for genetic engineering in plants. Traditional delivery methods have been widely used, such as Agrobacterium-mediated transformation, polyethylene glycol (PEG)-mediated delivery, biolistic particle bombardment, and viral transfection. However, genotype dependence and other drawbacks of these techniques limit the application of genetic engineering, particularly genome editing in many crop plants. There is a great need to develop newer gene delivery vectors or methods. Recently, nanomaterials such as mesoporous silica particles (MSNs), AuNPs, carbon nanotubes (CNTs), and layer double hydroxides (LDHs), have emerged as promising vectors for the delivery of genome engineering tools (DNA, RNA, proteins, and RNPs) to plants in a species-independent manner with high efficiency. Some exciting results have been reported, such as the successful delivery of cargo genes into plants and the generation of genome stable transgenic cotton and maize plants, which have provided some new routines for genome engineering in plants. Thus, in this review, we summarized recent progress in the utilization of nanomaterials for plant genetic transformation and discussed the advantages and limitations of different methods. Furthermore, we emphasized the advantages and potential broad applications of nanomaterials in plant genome editing, which provides guidance for future applications of nanomaterials in plant genetic engineering and crop breeding. Full article
(This article belongs to the Special Issue Nano-Materials and Methods 3.0)
Show Figures

Figure 1

3 pages, 202 KB  
Editorial
Nanoparticles for Bio-Medical Applications
by Miguel Gisbert-Garzarán and María Vallet-Regí
Nanomaterials 2022, 12(7), 1189; https://doi.org/10.3390/nano12071189 - 2 Apr 2022
Cited by 9 | Viewed by 2701
Abstract
The Special Issue of Nanomaterials “Nanoparticles for Biomedical Applications” highlights the use of different types of nanoparticles for biomedical applications, including magnetic nanoparticles, mesoporous carbon nanoparticles, mesoporous bioactive glass nanoparticles, and mesoporous silica nanoparticles [...] Full article
(This article belongs to the Special Issue Nanoparticles for Bio-Medical Applications)
9 pages, 2259 KB  
Article
Synthesis and Characteristics of Double-Shell Mesoporous Hollow Silica Nanomaterials to Improve CO2 Adsorption Performance
by Jong-tak Lee and Jae-Young Bae
Micromachines 2021, 12(11), 1424; https://doi.org/10.3390/mi12111424 - 19 Nov 2021
Cited by 7 | Viewed by 2909
Abstract
To improve the adsorption performance of carbon dioxide, which is considered the main culprit of greenhouse gases, the specific surface area and high pore volume of the adsorbing material should be considered. For a porous material, the performance of carbon dioxide adsorption is [...] Read more.
To improve the adsorption performance of carbon dioxide, which is considered the main culprit of greenhouse gases, the specific surface area and high pore volume of the adsorbing material should be considered. For a porous material, the performance of carbon dioxide adsorption is determined by the amine groups supporting capacity; the larger the pore volume, the greater the capacity to support the amine groups. In this study, a double-shell mesoporous hollow silica nanomaterial with excellent pore volume and therefore increased amine support capacity was synthesized. A core–shell structure capable of having a hollow shape was synthesized using polystyrene as a core material, and a double-shell mesoporous shape was synthesized by sequentially using two types of surfactants. The synthesized material was subjected to a sintering process of 600 degrees, and the N2 sorption analysis confirmed a specific surface area of 690 m2/g and a pore volume of 1.012 cm3/g. Thereafter, the amine compound was impregnated into the silica nanomaterial, and then, a carbon dioxide adsorption experiment was conducted, which confirmed that compared to the mesoporous hollow silica nanomaterial synthesized as a single shell, the adsorption performance was improved by about 1.36 times. Full article
(This article belongs to the Special Issue Nano Korea 2021)
Show Figures

Figure 1

14 pages, 3583 KB  
Article
Dopamine-Conjugated Carbon Dots Inhibit Human Calcitonin Fibrillation
by Jhe-An Wu, Yu-Chieh Chen and Ling-Hsien Tu
Nanomaterials 2021, 11(9), 2242; https://doi.org/10.3390/nano11092242 - 30 Aug 2021
Cited by 10 | Viewed by 3263
Abstract
The development of biocompatible nanomaterials has become a new trend in the treatment and prevention of human amyloidosis. Human calcitonin (hCT), a hormone peptide secreted from parafollicular cells, plays a major role in calcium–phosphorus metabolism. Moreover, it can be used in the treatment [...] Read more.
The development of biocompatible nanomaterials has become a new trend in the treatment and prevention of human amyloidosis. Human calcitonin (hCT), a hormone peptide secreted from parafollicular cells, plays a major role in calcium–phosphorus metabolism. Moreover, it can be used in the treatment of osteoporosis and Paget’s disease. Unfortunately, it tends to form amyloid fibrils irreversibly in an aqueous solution, resulting in a reduction of its bioavailability and therapeutic activity. Salmon calcitonin is the replacement of hCT as a widely therapeutic agent due to its lower propensity in aggregation and better bioactivity. Herein, we used citric acid to synthesize carbon dots (CDs) and modified their surface properties by a variety of chemical conjugations to provide different functionalized CDs. It was found that dopamine-conjugated CDs can effectively inhibit hCT aggregation especially in the fibril growth phase and dissociate preformed hCT amyloids. Although the decomposition mechanism of dopamine-conjugated CDs is not clear, it seems to be specific to hCT amyloids. In addition, we also tested dopamine-conjugated mesoporous silica nanoparticles in preventing hCT fibrillization. They also can work as inhibitors but are much less effective than CDs. Our studies emphasized the importance of the size and surface functionalization of core materials in the development of nanomaterials as emerging treatments for amyloidosis. On the other hand, proper functionalized CDs would be useful in hCT formulation. Full article
(This article belongs to the Special Issue Surface-Functionalized Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

32 pages, 9770 KB  
Review
Sustainability in Catalytic Cyclohexane Oxidation: The Contribution of Porous Support Materials
by Marta A. Andrade and Luísa M.D.R.S. Martins
Catalysts 2020, 10(1), 2; https://doi.org/10.3390/catal10010002 - 18 Dec 2019
Cited by 26 | Viewed by 12435
Abstract
The development of green and sustainable protocols for synthetic routes is a growing area of research in chemistry worldwide. The development of sustainable processes and products through innovative catalytic materials and technologies, that allow a better use of resources, is undoubtedly a very [...] Read more.
The development of green and sustainable protocols for synthetic routes is a growing area of research in chemistry worldwide. The development of sustainable processes and products through innovative catalytic materials and technologies, that allow a better use of resources, is undoubtedly a very important issue facing research chemists today. Environmentally and economically advanced catalytic processes for selective alkane oxidations reactions, as is the case of cyclohexane oxidation, are now focused on catalysts’ stability and their reuse, intending to overcome the drawbacks posed by current homogeneous systems. The aim of this short review is to highlight recent contributions in heterogeneous catalysis regarding porous support materials to be applied to cyclohexane oxidation reaction. Different classes of porous materials are covered, from carbon nanomaterials to zeolites, mesoporous silicas, and metal organic frameworks. The role performed by the materials to be used as supports towards an enhancement of the activity/selectivity of the catalytic materials and the ability of recycling and reuse in consecutive catalytic cycles is highlighted. Full article
Show Figures

Figure 1

18 pages, 4439 KB  
Review
Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications
by Zhuqing Wang, Shasha Wu, Jian Wang, Along Yu and Gang Wei
Nanomaterials 2019, 9(7), 1045; https://doi.org/10.3390/nano9071045 - 22 Jul 2019
Cited by 171 | Viewed by 9560
Abstract
Carbon nanofibers (CNFs) exhibit great potentials in the fields of materials science, biomedicine, tissue engineering, catalysis, energy, environmental science, and analytical science due to their unique physical and chemical properties. Usually, CNFs with flat, mesoporous, and porous surfaces can be synthesized by chemical [...] Read more.
Carbon nanofibers (CNFs) exhibit great potentials in the fields of materials science, biomedicine, tissue engineering, catalysis, energy, environmental science, and analytical science due to their unique physical and chemical properties. Usually, CNFs with flat, mesoporous, and porous surfaces can be synthesized by chemical vapor deposition and electrospinning techniques with subsequent chemical treatment. Meanwhile, the surfaces of CNFs are easy to modify with various materials to extend the applications of CNF-based hybrid nanomaterials in multiple fields. In this review, we focus on the design, synthesis, and sensor applications of CNF-based functional nanomaterials. The fabrication strategies of CNF-based functional nanomaterials by adding metallic nanoparticles (NPs), metal oxide NPs, alloy, silica, polymers, and others into CNFs are introduced and discussed. In addition, the sensor applications of CNF-based nanomaterials for detecting gas, strain, pressure, small molecule, and biomacromolecules are demonstrated in detail. This work will be beneficial for the readers to understand the strategies for fabricating various CNF-based nanomaterials, and explore new applications in energy, catalysis, and environmental science. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for (Bio)Sensors Development)
Show Figures

Figure 1

23 pages, 4133 KB  
Review
Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment
by Alessandro Sanginario, Beatrice Miccoli and Danilo Demarchi
Biosensors 2017, 7(1), 9; https://doi.org/10.3390/bios7010009 - 15 Feb 2017
Cited by 149 | Viewed by 16456
Abstract
Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide [...] Read more.
Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide nanowires, zinc oxide or mesoporous silica nanoparticles, for cancer and metastasis treatment with the advantage of operating directly at the bio-molecular scale. Among them, carbon nanotubes emerged as valid candidates not only for drug delivery, but also as a valuable tool in cancer imaging and physical ablation. Nevertheless, deep investigations about carbon nanotubes’ potential bio-compatibility and cytotoxicity limits should be also critically addressed. In the present review, after introducing carbon nanotubes and their promising advantages and drawbacks for fighting cancer, we want to focus on the numerous and different ways in which they can assist to reach this goal. Specifically, we report on how they can be used not only for drug delivery purposes, but also as a powerful ally to develop effective contrast agents for tumors’ medical or photodynamic imaging, to perform direct physical ablation of metastasis, as well as gene therapy. Full article
(This article belongs to the Special Issue Point-of-Care Diagnostics)
Show Figures

Figure 1

12 pages, 3342 KB  
Review
Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators
by Jing Hu and Yonggang Yang
Gels 2017, 3(1), 2; https://doi.org/10.3390/gels3010002 - 1 Jan 2017
Cited by 12 | Viewed by 5212
Abstract
Chiral low-molecular-weight gelators (LMWGs) derived from amino acids can self-assemble into helical fibers and twisted/coiled nanoribbons by H-bonding and π–π interaction. Silica nanotubes with single-handed helices have been prepared using chiral LMWGs through sol–gel transcription. Molecular-scale chirality exists at the inner surfaces. Here, [...] Read more.
Chiral low-molecular-weight gelators (LMWGs) derived from amino acids can self-assemble into helical fibers and twisted/coiled nanoribbons by H-bonding and π–π interaction. Silica nanotubes with single-handed helices have been prepared using chiral LMWGs through sol–gel transcription. Molecular-scale chirality exists at the inner surfaces. Here, we discuss single-handed helical aromatic ring-bridged polybissilsesquioxane nanotubes and mesoporous nanofibers prepared using chiral LMWGs. This review aims at describing the formation mechanisms of the helical nanostructures, the origination of optical activity, and the applications for other helical nanomaterial preparation, mainly based on our group’s results. The morphology and handedness can be controlled by changing the chirality and kinds of LMWGs and tuning the reaction conditions. The aromatic rings arrange in a partially crystalline structure. The optical activity of the polybissilsesquioxane nanotubes and mesoporous nanofibers originates from chiral defects, including stacking and twisting of aromatic groups, on the inner surfaces. They can be used as the starting materials for preparation of silica, silicon, carbonaceous, silica/carbon, and silicon carbide nanotubes. Full article
(This article belongs to the Special Issue Gels as Templates for Transcription)
Show Figures

Graphical abstract

Back to TopTop