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Abstract: Chiral low-molecular-weight gelators (LMWGs) derived from amino acids can
self-assemble into helical fibers and twisted/coiled nanoribbons by H-bonding and π–π interaction.
Silica nanotubes with single-handed helices have been prepared using chiral LMWGs through sol–gel
transcription. Molecular-scale chirality exists at the inner surfaces. Here, we discuss single-handed
helical aromatic ring-bridged polybissilsesquioxane nanotubes and mesoporous nanofibers prepared
using chiral LMWGs. This review aims at describing the formation mechanisms of the helical
nanostructures, the origination of optical activity, and the applications for other helical nanomaterial
preparation, mainly based on our group’s results. The morphology and handedness can be controlled
by changing the chirality and kinds of LMWGs and tuning the reaction conditions. The aromatic
rings arrange in a partially crystalline structure. The optical activity of the polybissilsesquioxane
nanotubes and mesoporous nanofibers originates from chiral defects, including stacking and twisting
of aromatic groups, on the inner surfaces. They can be used as the starting materials for preparation
of silica, silicon, carbonaceous, silica/carbon, and silicon carbide nanotubes.
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1. Introduction

Low-molecular-weight gelators (LMWGs) have applications in food, cosmetics, and drugs [1–7].
Among the LMWGs, chiral LMWGs are the most attractive, and they can self-assemble into
chiral nanostructures by hydrogen (H)-bonding, static electric interactions, π–π interactions, and
hydrophobic/oleophobic association. For example, lipopeptides can self-assemble into twisted
and coiled nanoribbons [8–10], and glucosides with long hydrocarbon chains can self-assemble
into coiled nanoribbons [11,12]. Over the past few decades, much effort has been focused on
transferring the chirality of LMWGs to compounds and nanomaterials. It has been reported that chiral
gelators can be used as both media and catalysts for chiral compound synthesis [13–15]. Shinkai’s
group performed pioneering research on sol–gel transcription using LMWG as external templates
for nanomaterial preparation [16]. Single-handed helical silica [17,18], Ta2O5 [19,20], TiO2 [19,21],
ZrO2 [22], CdS [23], and 3-aminophenol-formaldehyde resin nanotubes [24] have been successfully
prepared by this external templating approach. With the development of this external templating
approach, a cooperation mechanism was found [25]. Based on this mechanism, mesoporous silicas
with helical morphologies have been prepared [26–29].
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Bridged polysilsesquioxanes are a family of organic–inorganic hybrid materials [30]. During the
last decades, they have been successfully shaped at the nanoscale. Among these nanostructures,
helical nanostructures are the most attractive because of their potential applications in asymmetric
autocatalysis and enantiomer separation, and optical materials. Helical polysilsesquioxanes can be
prepared using achiral surfactants, and chiral defects, surface free energy, shearing forces, and entropy
are considered to drive the formation of the helixes [31–36]. Nevertheless, it is difficult to control helical
polysilsesquioxanes in enantiopure form, even after addition of chiral dopants [37–39]. To control the
handedness, Moreau’s group performed pioneering research on sol–gel transcription using LMWGs as
self-templates [40–44]. Here, we discuss polybissilsesquioxanes with helical morphologies prepared
by an external approach using LMWGs [45–59].

2. Preparation and Formation Mechanism

2.1. Single-Handed Helical Mesoporous Nanofibers

The chiral cationic LMWGs shown in Figure 1 can self-assemble into helical nanofibers or
twisted nanoribbons in deionized water or ethanol [45–51]. Single-handed helical mesoporous
polybissilsesquioxane nanofibers, including methylene-, 1,2-ethylene-, 1,2-ethenylene-, 1,4-phenylene-,
and 4,4′-biphenylene-bridged nanofibers, have been successfully prepared by sol–gel polymerization
using these chiral cationic LMWGs. HCl, NaOH, and ammonium hydroxide are usually used as the
catalysts. When the reactions are carried out under acid conditions, sponge-like materials are obtained
(Figure 2) [45,46]. The fibrous structure is visible to the naked eye when they are suspended in methanol.
Right-handed helical mesoporous 1,4-phenylene-bridged polybissilsesquioxane bundles have been
synthesized using 1 or DD-2. Left-handed helical 1,4-phenylene-, 1,3-phenylene-, 1,2-ethylene-,
and 1,2-ethenylene-bridged polybissilsesquioxane bundles have also been prepared using LL-2.
These helical bundles can be aligned under shear flow. The pore channels are coiled around the
long axes of the nanofibers and do not arrange in a periodic fashion. The mesoporous bundles
exhibit nitrogen Brunauer–Emmett–Teller surface areas larger than 500 m2/g, and they seem to be
a suitable material for catalyst support applications. The X-ray diffraction patterns indicate that
1,4-phenylene-bridged polybissilsesquioxanes synthesized using HCl as the catalyst do not have high
molecular-scale periodicity [46,60]. When the reactions are carried out under basic conditions, powders
are usually obtained. For example, right-handed twisted 4,4′-biphenylene-bridged mesoporous
nanoribbons have been prepared using the self-assemblies of 3 as the template and NaOH as the
catalyst [50]. The X-ray diffraction patterns typically show peaks at 2θ = 7.46◦, 14.76◦, 21.09◦, 30.83◦,
and 38.00◦, indicating a lamellar structure [61]. The smallest repeat units of the samples arrange with a
high degree of order.

The formation and alignment of the mesoporous polybissilsesquioxane bundles occurs as
follows: first, helical gel bundles are constructed by self-assembly of LMWGs and they align under
shearing; second, polybissilsesquioxane oligomers penetrate into the gel bundles and adsorb on the
surfaces of the helical single-strand gel fibers as a result of electrostatic interactions; third, sol–gel
polymerization of the polybissilsesquioxane oligomers occurs; finally, after removing the templates,
aligned single-handed helical polybissilsesquioxane mesoporous bundles are obtained. The pore
channels should be inner helical and their length can reach 100 µm.
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Figure 1. Molecular structures of the low-molecular-weight gelators (LMWGs). 

Because the handedness of polybissilsesquioxane nanofibers can be controlled using chiral 
LMWGs and the periodic arrangement of the pore channels can be controlled using achiral 
surfactants, it is preferable to synthesize chiral compounds that can control both handedness and 
pore arrangement. When sol–gel transcriptions are performed using L- or D-4, single-handed helical 
1,4-phenylene-bridged polybissilsesquioxane nanorods are obtained (Figure 3) [50]. Both the 
transmission electron microscopy (TEM) images and X-ray diffraction (XRD) patterns indicate a 
two-dimensional hexagonal symmetry (p6mm). The formation of the hexagonal structure has been 
investigated by taking field-emission scanning electron microscopy (FESEM) images after different 
reaction times. After 1,4-phenylene-bridged bis(silsesquioxane) drops into the reaction mixture, D-4 
and the hybrid silica oligomers coassemble into right-handed helical bundles. With increasing 
reaction time, hexagonal rods form. Apparently, this structural transition drives formation of 
single-handed nanorods with periodic mesopores. Based on this structural transition, an artificial 
frustule has also been prepared [62]. 

Figure 1. Molecular structures of the low-molecular-weight gelators (LMWGs).

Because the handedness of polybissilsesquioxane nanofibers can be controlled using chiral
LMWGs and the periodic arrangement of the pore channels can be controlled using achiral
surfactants, it is preferable to synthesize chiral compounds that can control both handedness and
pore arrangement. When sol–gel transcriptions are performed using L- or D-4, single-handed
helical 1,4-phenylene-bridged polybissilsesquioxane nanorods are obtained (Figure 3) [50]. Both the
transmission electron microscopy (TEM) images and X-ray diffraction (XRD) patterns indicate a
two-dimensional hexagonal symmetry (p6mm). The formation of the hexagonal structure has been
investigated by taking field-emission scanning electron microscopy (FESEM) images after different
reaction times. After 1,4-phenylene-bridged bis(silsesquioxane) drops into the reaction mixture,
D-4 and the hybrid silica oligomers coassemble into right-handed helical bundles. With increasing
reaction time, hexagonal rods form. Apparently, this structural transition drives formation of
single-handed nanorods with periodic mesopores. Based on this structural transition, an artificial
frustule has also been prepared [62].
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Figure 2. (a–c) Field-emission scanning electron microscopy (FESEM) and (d) transmission electron 
microscopy (TEM) images of left-handed multiple helical mesoporous 1,4-phenylene-silica 
nanofibers; (e) FESEM image of right-handed multiple helical mesoporous 1,4-phenylene-silica 
nanofibers. Reproduced with permission from [46]. Copyright 2009 American Chemical Society. 

 
Figure 3. (a) FESEM and (b) TEM images of helical 1,4-phenylene-bridged polybissilsesquioxane 
nanorods prepared using L-4; (c) FESEM and (d) TEM images of nanorods prepared using D-4. 
Reproduced with permission from [50]. Copyright 2011 Royal Society of Chemistry. 

Figure 2. (a–c) Field-emission scanning electron microscopy (FESEM) and (d) transmission electron
microscopy (TEM) images of left-handed multiple helical mesoporous 1,4-phenylene-silica nanofibers;
(e) FESEM image of right-handed multiple helical mesoporous 1,4-phenylene-silica nanofibers.
Reproduced with permission from [46]. Copyright 2009 American Chemical Society.
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Figure 3. (a) FESEM and (b) TEM images of helical 1,4-phenylene-bridged polybissilsesquioxane
nanorods prepared using L-4; (c) FESEM and (d) TEM images of nanorods prepared using D-4.
Reproduced with permission from [50]. Copyright 2011 Royal Society of Chemistry.
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2.2. Single-Handed Helical Nanotubes

Single-handed helical polybissilsesquioxane tubular nanoribbons and nanotubes have also
been prepared using chiral cationic LMWGs [47–49]. Generally, the transcriptions were performed
in ethanol or a mixture of ethanol and water. Under these conditions, the hydrolysis speed of
bis(silsesquioxane) is slow. Formation of the tubular structures can be described as follows. Firstly,
helical one-dimensional nanostructures are constructed by the chiral LMWGs in the reaction mixture;
secondly, the bis(silsesquioxane) molecules hydrolyze and the formed polybissilsesquioxane oligomers
adsorb and polymerize on the surface of the gel fibers; finally, after removing the templates,
polybissilsesquioxane nanotubes are obtained. Aromatic ring-bridged polybissilsesquioxane nanotubes
have been synthesized in ethanol using compounds LL-7, DD-7, LL-8, and DD-8 (Figure 4) [47,48].
Right-handed helical nanotubes composed of double-coiled nanoribbons have been prepared using 8
in a mixture of ethanol and water [49].
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interactions and H-bonding, and the bridged silsesquioxanes by covalent bonding. A cooperation 
self-assembly mechanism was proposed. For example, the morphologies of the self-assemblies of 
anionic gelator 9 change with addition of 3-aminopropyltrimethoxysilane (APTMS) (Figure 5) [52]. 
Before addition of APTMS and 1,4-phenylene-bridged bis(silsesquioxane), only nanospheres are 
identified (Figure 5a). Twisted nanoribbons are then identified at 90 s (Figure 5b). The change of the 
morphology is due to interactions between gelator 9 and APTMS. Up to now, single-handed helical 
nanotubes and coiled/twisted tubular nanoribbons have been prepared using anionic LMWGs with 
the addition of a co-structure-directing agent. 

Figure 4. FESEM images of (a,b) 4,4′-biphenylene bridged polybissilsesquioxane nanotubes;
(c,d) carbon/silica nanotubes; and (e,f) carbonaceous nanotubes. The samples were prepared using
(a,c,e) LL-8 and (b,d,f) DD-8. Reproduced with permission from [47]. Copyright 2013 WILEY-VCH
Verlag GmbH & Co. KGaA.

For sol–gel transcriptions using anionic LMWGs, addition of co-structure-directing agents is
essential [52–59]. The co-structure-directing agents link the anionic self-assemblies by electrostatic
interactions and H-bonding, and the bridged silsesquioxanes by covalent bonding. A cooperation
self-assembly mechanism was proposed. For example, the morphologies of the self-assemblies of
anionic gelator 9 change with addition of 3-aminopropyltrimethoxysilane (APTMS) (Figure 5) [52].
Before addition of APTMS and 1,4-phenylene-bridged bis(silsesquioxane), only nanospheres are
identified (Figure 5a). Twisted nanoribbons are then identified at 90 s (Figure 5b). The change of the
morphology is due to interactions between gelator 9 and APTMS. Up to now, single-handed helical
nanotubes and coiled/twisted tubular nanoribbons have been prepared using anionic LMWGs with
the addition of a co-structure-directing agent.
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Figure 5. TEM images of the reaction mixture after (a) 0 s; (b) 90 s; (c) 3.0 min; and (d) 4.0 min.
Reproduced with permission from [52]. Copyright 2008 Royal Society of Chemistry.

This cooperation self-assembly process is also found in other sol–gel transcriptions. Although
the morphologies of the L-10 and D-10 self-assemblies are not sensitive to the surrounding conditions
(including the pH value, concentration, and ethanol/water volume ratio), handedness inversion
of the 4,4′-biphenylene-bridged polybissilsesquioxane nanostructures is found by tuning these
conditions [55,59]. Namely, the handedness inversion is driven by cooperation self-assembly.
For example, left-handed twisted nanotubes were obtained using D-10 at pH = 8.05 and a concentration
of 5.0 g·L−1. However, right-handed twisted nanoribbons were obtained at pH = 11.93 and a
concentration of 5.0 g·L−1; and right-handed twisted nanotubes were obtained at pH = 9.89 and
a concentration of 10.0 g·L−1 [55]. When the ethanol/water volume ratio decreases from 1.8/2.2
to 1.5/2.5, polybissilsesquioxanes with opposite handedness are obtained [59]. Not only aromatic
ring-bridged polybissilsesquioxane nanotubes, but also ethylene-, ethenylene-, and methylene-bridged
ones can be prepared using 11, indicating that this approach is powerful to control the morphologies
of bridged polybissilsesquioxanes [57]. Single-handed twisted nanoribbons have also been prepared
using the 14 dipeptide in a mixture of ethanol and water under a basic condition. After carbonization
and silica removal, single-handed twisted carbonaceous tubular nanoribbons with optical activity
were obtained [58].

Formation of polybissilsesquioxane nanotubes and mesoporous nanofibers prepared by this
external templating approach is summarized in Figure 6. For the preparation of mesoporous nanofibers
(Figure 6, Routes A–C), the reactions are usually carried out in water [45]. Under this condition, the rate
of hydrolysis of the bis(silsesquioxane) is rapid. The bis(silsesquioxane) oligomers penetrate into the
organic self-assemblies and adsorb on the surfaces of single gel fibers. Due to the interactions between
LMWG molecule and bis(silsesquioxane) oligomer, the morphologies of the hybrids might change
during this step. Mesoporous structures form after the templates are removed. For the preparation of
nanotubes and double-twisted nanoribbons (Figure 6, Routes D–G), the reactions are usually carried
out in alcohols or a mixture of alcohol and water [47,49]. Under these conditions, the rate of hydrolysis
of the bis(silsesquioxane) is slow, and the bis(silsesquioxane) oligomers adsorb on the surfaces of the
thick gel nanofibers or nanoribbons. Finally, tubular structures are obtained after the templates are
removed. Namely, the hydrolysis rate of bis(silsesquioxane) plays an important role in controlling the
tubular and mesoporous structures.
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Figure 6. Schematic illustration of formation of single-handed helical polybissilsesquioxane
nanostructures. Formation of mesoporous nanofibers (Routes A–C) and that of nanotubes and
double-twisted nanoribbons (Routes D–G).

3. Optical Activity of the Aromatic Ring-Bridged Polybissilsesquioxanes

Because aromatic compounds are UV-active, the optical activity of the aromatic ring-bridged
polybissilsesquioxanes can be characterized by circular dichroism (CD) and diffuse reflectance CD
(DRCD). The CD spectra are usually taken in water or ethanol in suspension states. The optical activity
should originate from chiral defects. For example, 4,4′-biphenylene-bridged polybissilsesquioxane
tubular nanoribbons prepared using D-10 and L-10 exhibit optical activity [59]. When they shrink to
form nanoribbons, the inner surfaces merge. Because the chiral defects are partially destroyed, the
intensity of the CD signals decreases. For a better understanding of the origin of the CD signals, the CD
spectra of 4,4′-biphenylene-bridged bis(silsesquioxane) and 1,4-phenylene-bridged bis(silsesquioxane)
dimers have been simulated.

Time-dependent density functional theory (TD-DFT) at the B3LYP/6-311++G** level has been used
to calculate the CD spectrum of the 1,4-phenylene-bridged bis(silsesquioxane) dimer (Figure 7) [51].
When the phenylene groups stack in a right-handed fashion, a positive signal at 260 nm and a
negative one at 235 nm are present in the simulated CD spectrum. Electron transfer between the
phenylene groups is found. Although the signal at 260 nm is not usually observed in the experimental
data, the signal at 235 is strong enough to be observed [51]. The stacking handedness can be
determined from the sign of this signal. The relationship between the chirality of 1,4-phenylene-bridged
polybissilsesquioxanes at the nanoscale and molecular-scale can be fully understood based on the
results of FESEM and CD characterization. Although left-handed coiled 1,4-phenylene-bridged
polybissilsesquioxane nanoribbons have been prepared using L-6 and 13, they exhibit the opposite
optical activity [51]. The results indicated that there is no strong relationship between the chirality at
the angstrom level and the handedness at the nanolevel.
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Biphenyls typically exhibit a twisted conformation, with twisting angles of about 30◦–45◦. The CD
spectrum of the 4,4′-biphenylene-bridged bis(silsesquioxane) dimer has been also simulated (Figure 8).
The simulated CD signals are present at 319 and 278 nm [49]. If the biphenyl groups stack in
right-handedness, the CD signal at 319 nm is positive. If the biphenyl group twists in right-handedness,
the CD signal at 278 nm is negative. The simulated CD spectrum is similar as the experimental
one [44]. When the distance between neighbor biphenyl groups increases, the CD signals shift to short
wavelength. Because biphenyl typically exhibits a twisted conformation and the handedness of the
conformation can be revealed by CD spectroscopy, it can be used as a chirality sensor for silicas to
reveal the chirality at the angstrom level [49,63].
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4. TEM, XRD, and N2 Sorption Characterizations

The handedness and helical pitch of the single-handed helical structures can be identified using
FESEM and electron tomography [64]. The pore architectures are characterized using TEM. For the
helical nanofibers, the pore channels are coiled around the long axes (Figure 2d). For the hexagonal
rods, the pore channels arrange in a two-dimensional hexagonal structure (Figure 3b,d). Lattice fringes
are found in the TEM images of the helically hexagonal rods [50]. The periodicity of the pore channels
can be also identified using XRD. For the helical nanofibers, the pore channels do not arrange in a high
degree of order. Only one broad diffraction peak is identified in the small angle [46]. When the pore
channels arrange in a two-dimensional hexagonal structure, three diffraction peaks are identified at
the small angle [50]. The XRD patterns of the aromatic ring-bridged polybissilsesquioxanes usually
show several peaks at wide angle, which originate from the lamellar packing of the smallest repeat
units and the π–π stacking of the aromatic rings [49,50]. The N2 sorption plots of the mesoporous
polybissilsesquioxanes usually show typical IV isotherms, indicating rodlike pore channels [50].
The pore diameters are usually about 2–4 nm.

5. Other Nanotubes Prepared Using LMWGs

Single-handed helical platinum [65], Ta2O5 [19,20], TiO2 [19,21], ZrO2 [22], and CdS [23] nanotubes
or tubular nanoribbons have been prepared using sol-gel transcription. The formation mechanism
is similar to that of polybissilsesquioxane nanotubes. Although single-handed twisted platinum
and palladium tubular nanoribbons can be prepared using LL-5 and DD-5, gold and silver tubular
nanoribbons cannot be obtained. The interactions between the metal ion and the amide group of
the gelator have been suggested to drive this structural transcription. All of these single-handed
twisted platinum and palladium tubular nanoribbons exhibit optical activity. Based on TD-DFT
calculations, the optical activity of these nanotubes has been suggested to originate from chiral defects.
The TiO2 nanotube could be used as an asymmetric catalyst. The tube should exhibit chirality at
the angstrom level [66]. Moreover, although the Ta2O5 nanotubes prepared using L-12 and D-12 are
straight, they also exhibit optical activity. The results indicate that the optical activity does not have a
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strong relationship with the morphology. Organic polymer nanotubes have been also prepared by this
approach. Both 3-aminophenol-formaldehyde and 1,3-diamniobenzene-formaldehyde resin nanotubes
have been prepared [24]. N-doped carbonaceous nanotubes are obtained by carbonization. Based on
TD-DFT calculations, the optical activity is suggested to originate from π–π stacking of the aromatic
compounds formed by carbonization.

6. Summary and Outlook

Polybissilsesquioxane nanotubes and mesoporous nanofibers with single-handed helices have
been synthesized using self-assemblies of chiral LMWGs as external templates through an external
templating approach. They form by a hard templating or cooperation self-assembly process. Because
the self-assembly structures of the LMWGs are sensitive to pH value, temperature, and polarity of
solvents, both the handedness and the pore architecture of polybissilsesquioxanes can be controlled by
tuning the reaction conditions. The optical activity of aromatic ring-bridged polybissilsesquioxanes
has been suggested to originate from the π–π stacking and the chiral conformation of aromatic
groups. There is no strong relationship between the handedness at the nanolevel and the chirality
at the angstrom level. Chiral defects should exist on the inner surfaces of the nanotubes or
pore channels. These chiral polybissilsesquioxanes can potentially be used as a chiral stationary
phase for enantioseparation. Moreover, carbonaceous and SiC nanotubes can be prepared by
carbonization and carbothermal reduction of polybissilsesquioxane nanotubes, respectively. Based on
this external templating approach, single-handed helical metal, metal oxide, metal sulfide, and
organic polymeric nanotubes can also be prepared. Based on cooperation self-assembly mechanisms,
a variety of architectures can be formed, such as artificial frustules and hexagonal rods. Therefore,
external templating is a powerful approach for controlling the morphology and pore architecture
of nanomaterials.
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