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Abstract: To improve the adsorption performance of carbon dioxide, which is considered the main
culprit of greenhouse gases, the specific surface area and high pore volume of the adsorbing material
should be considered. For a porous material, the performance of carbon dioxide adsorption is deter-
mined by the amine groups supporting capacity; the larger the pore volume, the greater the capacity
to support the amine groups. In this study, a double-shell mesoporous hollow silica nanomaterial
with excellent pore volume and therefore increased amine support capacity was synthesized. A
core–shell structure capable of having a hollow shape was synthesized using polystyrene as a core
material, and a double-shell mesoporous shape was synthesized by sequentially using two types of
surfactants. The synthesized material was subjected to a sintering process of 600 degrees, and the N2

sorption analysis confirmed a specific surface area of 690 m2/g and a pore volume of 1.012 cm3/g.
Thereafter, the amine compound was impregnated into the silica nanomaterial, and then, a carbon
dioxide adsorption experiment was conducted, which confirmed that compared to the mesoporous
hollow silica nanomaterial synthesized as a single shell, the adsorption performance was improved
by about 1.36 times.

Keywords: double-shell mesoporous hollow silica sphere; CO2 adsorption; high pore volume

1. Introduction

With the industrial revolution, the use of fossil fuels has rapidly increased, resulting
in a gradual increase in carbon dioxide generation, which has had a significant impact
on the atmospheric environment [1–3]. Consequently, the impacts of global warming are
becoming more serious, and carbon dioxide adsorption has become an important research
subject worldwide [4–8].

Currently, there is active research on adsorption using porous materials, such as
zeolite [9–11], activated carbon [12–15], metal–organic frameworks (MOFs) [16–19], and
mesoporous silica with amine functional groups [20–23]. Among them, mesoporous
silica has shown the high specific surface area and tremendous porous characteristics
compared to other materials, and it is able to introduce various functional groups due
to the presence of numerous hydroxyl (-OH) groups on the surface. Owing to these
characteristics, mesoporous silica has demonstrated excellent gas adsorption properties [24].
In addition, the mesoporous silica with an amine functional group shows excellent carbon
dioxide adsorption properties, even in a moist environment; the amine group on the silica
surface combines with carbon dioxide even in the presence of moisture to form a hydrogen
carbonate salt, so that the porous silica can adsorb CO2 [25]. That is, in the case of porous
silica with an amine functional group, it has the advantage of supplementing the water
stability, which was lacking in the other existing materials, and it was identified as a
disadvantage [26].

So far, various studies on how to improve the physical and chemical properties of
mesoporous silica have been conducted. Especially, the research on mesoporous hollow
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silica, which is known to have a unique structure, has attracted a lot of interest [27].
Commendably, the advantage of providing a specific surface area and a three-dimensional
pore structure by synthesizing a porous hollow silica shell enables improvement in the
carbon dioxide adsorption performance. Therefore, the aim of the present study was to
further increase the advantages of the mesoporous hollow silica through a double-shell
mesoporous synthesizing method. In addition, the carbon dioxide adsorption performance
of a double-shell mesoporous hollow silica is compared with that of the single shell.

2. Experimental Section
2.1. Materials

Styrene (≥99%, Sigma–Aldrich, Burlington, MA, USA) was used as a core to make a
hollow structure, and 2,2’-azobis (2-methylpropionamidine) dihydrochloride (AIBA, 97%,
Sigma–Aldrich, Burlington, MA, USA) was used as an initiator for the polymerization of
styrene. To provide the porosity of the hollow silica, cetyltrimethylammonium chloride
(CTACl, 25 wt %, Sigma–Aldrich, Burlington, MA, USA) and surfactant of poly(ethylene
glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123, Sigma–Aldrich,
Burlington, MA, USA) were used, tetraethylorthosilicate (TEOS, 98%, Sigma–Aldrich,
Burlington, MA, USA) was used as a silica precursor, and aqueous ammonia (NH4OH,
(25–30)%, Duksan, Seoul, Korea) and hydrochloric acid (HCl, (35–37)%, SAMCHUN, Seoul,
Korea) were used for pH adjustment. Tetraethylenepentamine (TEPA, 93%, Kanto Chemical,
Tokyo, Japan) was used to introduce an amine group into the synthesized mesoporous
hollow silica.

2.2. Polystyrene Synthesis

Polystyrene is required as a template to synthesize the mesoporous hollow silica. For
the synthesis of polystyrene as a template, first, 20 mL of styrene was added to 600 mL of
water in a three-necked flask, and then, it was stirred at 400 rpm. After stirring at room
temperature (RT) for 30 min, 2.0 g of AIBA was added, and the temperature was raised to
95 degrees and stirred for 18 h; then, the solution turned white, and spherical polystyrene
was synthesized.

2.3. Synthesis of Mesoporous Hollow Silica

First, 3400 mL of a solvent obtained by mixing distilled water and ethanol in a
4:3 volume ratio was added into 600 mL of the synthesized polystyrene solution and stirred.
After stirring at RT for 30 min, 30 mL of CTACI was added, which was followed by stirring
at RT for 10 min, and 60 mL of TEOS, a silica precursor, was added. After adding the
TEOS, the mixture was stirred at RT for 30 min, and then aqueous ammonia was added
dropwise until the pH was 9, which was followed by stirring at RT for 15 h. After the
stirring was completed, the solution was precipitated and settled. Then, the material was
filtered, washed three times with distilled water, and dried in an oven at 80 ◦C for 24 h.
After the dried sample was finely ground and calcined at 600 ◦C for 5 h, mesoporous
hollow silica material (MHS) was synthesized.

For comparison, mesoporous hollow silica (PHMS) using P123 was synthesized. After
adding the same amount to the synthesized polystyrene solution at the same solvent ratio,
hydrochloric acid was added dropwise until the pH was pH = (3–4). After the addition
of hydrochloric acid, 50 mL of P123 was added, stirred at RT for 3 h, and then 60 mL of
TEOS, a silica precursor, was added, and stirred at RT for 30 min. Next, ammonia water
was added dropwise until the pH was 9, and it was stirred at RT for 15 h. After the stirring,
the solution was precipitated and settled. The material was filtered, washed three times
with distilled water, and dried in an oven at 80 ◦C for 24 h.

2.4. Synthesis of the Double-Shell Mesoporous Hollow Silica

To synthesize double-shell mesoporous hollow silica, 3400 mL of the solvent obtained
by mixing distilled water and ethanol in a 4:3 volume ratio was added into 600 mL of the
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synthesized polystyrene solution and stirred. After stirring at RT for 30 min, 30 mL of
CTACI was added, which was followed by stirring at RT for 10 min, and 40 mL of TEOS,
a silica precursor, was added. After adding the TEOS, the mixture was stirred at RT for
30 min, and then aqueous ammonia was added dropwise until the pH was 9, which was
followed by stirring at RT for 15 h. After the stirring, 20 mL of P123, a nonionic surfactant,
was continuously added without filtering, and the stirred solution was dried. Next, HCl
was added until the pH was pH = (3–4), to form a pH range for constituting the micelles
of P123. Then, 20 mL of TEOS, a silica precursor, was added, the solution was stirred at
RT for 30 min, and then aqueous ammonia was added dropwise until the pH was 9. The
resulting solution was stirred at RT for 15 h to obtain a precipitate, which was washed
3 times with distilled water and then calcined at 600 ◦C for 5 h. Then, the double-shell
mesoporous hollow silica material (DMHS) was synthesized. This synthesis process is
shown in Scheme 1.
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Scheme 1. Synthesis scheme of double-shell mesoporous hollow silica.

2.5. Introduction of the Amine Group

The synthesized mesoporous hollow silica (MHS, PMHS) and double-shell meso-
porous hollow silica (DMHS) were used as amine supporters for CO2 adsorption. Each
0.5 g of the synthesized MHS, PHMS, and DMHS were added into 50 mL of absolute
ethanol, respectively, and dispersed by stirring at RT for 30 min. After adding 1 g of TEPA
into each dispersed solution and stirring at RT for 1 h, each solvent was removed from the
solution by stirring at 50 ◦C for 20 min using a rotary evaporator. After the removal of the
solvent, each sample was dried in an oven at 100 ◦C for 1 h to obtain MHS, PHMS, and
DMHS introduced with amine groups.

2.6. Characterization

Transmission electron microscopy (TEM; JEM-2100F) was used to analyze the shape,
structure, size, and shell thickness of the polystyrene, the mesoporous hollow silica, and the
double-shell mesoporous hollow silica materials. After dispersing the sample in an ethanol
solution, a small amount of the colloidal solution was collected on a copper grid, dried,
and used as a sample. When measuring the sample, the accelerating voltage was 200 kV,
and the analysis was conducted with the resolution of 0.25 nm at maximum N2 sorption.
QUANTACHROME (Qudrasorb SI, Anton Paar, Graz, Austria) was used to determine
the specific surface area and the pore distributions of the mono-shell mesoporous hollow
silica and double-shell mesoporous hollow silica. The measurements were carried out
conducted at 77 K using liquid nitrogen, and the adsorbed nitrogen was normalized to
standard temperature and pressure. Prior to analysis, moisture and impurities adsorbed on
the surface were removed through heat treatment at 200 ◦C for 3 h. The Brunauer–Emmett–
Teller (BET) specific surface area was calculated from the linear part (P/P0 = (0.05–0.30)
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of the BET equation, and the volume and size of the pores were calculated using the
Barrett–Joyner–Halenda (BJH) equation. Fourier transform infrared spectroscopy (FTIR;
thermo, Nicolet iS50) was used to confirm whether functional groups were attached to the
double-shell mesoporous hollow silica introduced with the amine groups. Measurements
were carried under atmospheric environment, and the sample was in a powder state.
Energy-Dispersive X-ray Spectroscopy (EDS; JEOL, Tokyo, Japan, EX-746OOU4L2Q) was
used for elemental distribution analysis of the double-shell mesoporous hollow silica
introduced with the amine groups. At analysis, the Working Distance (WD) was adjusted
to 9.5–10.5 mm, and to ensure reliability, the Counts Per Second (CPS) was set to 300,000
or more during the total analysis time. To confirm the gas adsorption capacity of the
mono-shell and double-shell mesoporous hollow silica introduced with the amine groups,
the carbon dioxide adsorption gas chromatography (GC; HP 6890) equipped with a thermal
conductivity detector (TCD) was prepared. The adsorbed gas was mixed with nitrogen as
a base and a carbon oxide concentration of 30%. The gas flow rate was 5 mL/min through
a mass flow controller (MFC), and high-purity helium gas was used as the make-up gas.

3. Results and Discussion

Figure 1 shows TEM images of the polystyrene, mesoporous hollow silica, and double-
shell mesoporous hollow silica, which were synthesized in a spherical shape. Figure 1a
confirms that polystyrene is approximately 270 nm in shape and has a perfect spherical
shape. Figure 1b–d show TEM images of MHS, PMHS, and DMHS after polystyrene and
surfactant removal, and Figure 1e shows an enlarged TEM image of Figure 1d. The hollow
size in Figure 1b–d was 270 nm, which is the same size as that of polystyrene, and the shell
thicknesses of MHS, PMHS, and DMHS were 45, 45, and 50 nm, respectively. In particular,
in DMHS, the thickness of the primary shell was 30 nm, and the thickness of the secondary
shell was 20 nm (Figure 1d). As the PS used was the same size, all three samples had the
same hollow size. The pore size of the shell in MHS was small due to the use of CTACl,
but the pore size of the PMHS shell using P123 was relatively large. Furthermore, it was
observed that the primary shell of DMHS forms small pores, and the secondary shell forms
large pores; this is because the molecular weight of P123 is larger than that of CTACI, which
made relatively large micelles, and it was removed by calcination [28].
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Figure 2 shows the N2 adsorption–desorption isotherm graphs of MHS, PMHS, and
DMHS. All three samples of the MHS, PMHS, and DMHS showed type IV adsorption
isotherm with an H2 hysteresis loop.
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Figure 2. N2 adsorption–desorption isotherms for MHS, PMHS, and DMHS.

The adsorption and desorption curves were separated at the point where the relative
pressure was 0.5, therefore confirming the mesoporous morphology. The BET-specific
surface area of MHS was 1164 m2/g, and those of PHMS and DMHS were 609 and 690 m2/g,
respectively. Although there was a significant difference in the specific surface area, PHMS
and DHMS had higher volumetric adsorption values in the N2 adsorption–desorption
isotherm graphs, indicating superior pore formation than MHS.

Figure 3 shows the pore size distribution of MHS, PHMS, and DHMS. As predicted
from the N2 adsorption–desorption isotherm graphs, PHMS and DHMS have wider pore
sizes and larger pore volumes than MHS, while DHMS has a larger pore volume than
PHMS; this is because double shells with different pore sizes can form larger pores than
single shells [29]. This may mean that as the internal pore volume is large, there is sufficient
capacity to support more amine groups [30]. Table 1 summarizes the BET-specific surface
area, pore volume, and pore sizes of MHS, PHMS, and DHMS.
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Table 1. The textural properties of the MHS, PHMS, and DMHS.

Sample Name Surface Area
(m2/g)

Pore Volume
(cm3/g)

Average
Pore Size a (nm)

MHS 1164 0.321 3.309
PHMS 609 0.933 5.679
DMHS 690 1.012 4.944

Note: a Diameter of the window, determined from the desorption branch according to the BJH method.

Figure 4 shows the FTIR measurements after adding amine groups to the three types
of mesoporous hollow silica, MHS, PMHS, and DMHS. The symmetry of N–H bonding and
the asymmetric stretching oscillations are observed at 3500–3300 cm−1, and the symmetry of
C–H bonding and the asymmetric stretching oscillations were observed at 3000–2800 cm−1.
In addition, C–H shear oscillation and N–H bending oscillation in amine were observed at
1457 and 1596 cm−1 [31]. It was confirmed that the intensity of this peak increased from
MHS to DMHS. From this, it is confirmed that the number of amines supported on the
mesoporous silica were in the order of MHS < PHMS < DMHS. The elemental analysis
result of EDS confirmed the actual supported amount of amine groups, as shown in Table 2.
Similar to the N–H peak intensity trend of the FTIR graph, the nitrogen content was also
the highest in DMHS. Therefore, DMHS, which has the largest pore volume, supports more
amines than the other samples [30]. For more accurate confirmation, Table 3 compares the
amounts of accommodated amines by comparing the weight of the sample before and after
adding amines. The amine-supporting efficiency was calculated as shown in Equation (1).
Table 3 confirmed that the number of amines increased with increasing pore volume. This
was consistent with the FTIR and EDS analysis.

After amine modification (g) − Before amine modification (g)
Before amine modification (g)

× 100 (1)
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Table 2. EDS spectra of MHS, PHMS, and DMHS.

Sample
Name

Pore Volume
(cm3/g)

Atom
Si (%)

Atom
N (%)

Atom
C (%)

Atom
O (%)

MHS 0.321 12.35 7.97 44.17 35.51
PMHS 0.933 18.65 8.33 37.21 35.81
DMHS 1.012 10.82 13.30 44.27 31.60
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Table 3. Amine modification percentage of MHS, PHMS, and DMHS.

Sample Name Before Amine
Modification (g)

After Amine
Modification (g)

Amine Modification
Percent (%)

MHS 0.5 0.8897 77.94
PHMS 0.5 0.9097 81.94
DMHS 0.5 0.9984 99.68

Figure 5 shows the CO2 adsorption performance of the MHS, PMHS, and DMHS,
which are amine-supported mesoporous hollow silica. The amine group is one of the
functional groups that has CO2 adsorption performance; to have excellent CO2 adsorption
performance, a large amount of amine should be supported on the mesoporous hollow
silica. Figure 5 shows that DMHS supported the largest amount of amines and therefore
the highest CO2 adsorption efficiency of 13.296 mmol/g, and PHMS supported the second
largest amount of amine and had an adsorption efficiency of 10.450 mmol/g. Based on
these findings, to improve CO2 adsorption, the amount of the amine supported on the
mesoporous silica should be increased; for that, the pore volume of the mesoporous silica
is needed for the increased amount of the supported amine. When the pore volume is
large, the amine is often located both inside and outside the support. However, Yan et al.
reported that the adsorption efficiency of amines located inside the support was better than
that of those located outside [32,33]. Table 4 summarizes the results.
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Table 4. CO2 adsorption amount according to pore volume and amine modification percentage.

Sample Name Pore Volume
(cm3/g)

Amine Modification
Percent(%)

CO2 Capacity
(mmol/g)

MHS 0.321 77.94 9.757
PHMS 0.933 81.94 10.450
DMHS 1.012 99.68 13.296

4. Conclusions

In this study, double-shell mesoporous hollow silica (DMHS) with excellent pore
volume was synthesized. The synthesized DMHS was introduced into an amine functional
group via a support method to have a selectivity for CO2 adsorption. The synthesized
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DMHS can be used as a solid amine support for carbon dioxide adsorption; since it has a
larger pore volume than single-shell mesoporous hollow silica, a large amount of amine
can be introduced. This is because the high pore volume of DMHS allowed the introduction
of amine groups inside and outside of the mesoporous hollow silica. This ensured a high
carbon dioxide adsorption efficiency of 13.296 mmol/g, which was 1.36 times higher than
that of MHS synthesized with CTACI, and it showed a higher amount of CO2 adsorption
than other CO2 adsorption materials. This double-shell mesoporous silica has a high pore
volume and therefore can support an increased amount of functional groups. This makes it
ideal for CO2 adsorption studies and also for various adsorbents and catalyst studies.
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