Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = mercury trace analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9615 KB  
Article
Organic Matter Enrichment and Reservoir Nanopore Characteristics of Marine Shales: A Case Study of the Permian Shales in the Kaijiang–Liangping Trough
by Xinrui Yang, Liangjun Xu, Huilin Li, Mingkai Zhang, Sirui Liu, Lu Xu, Dongxi Liu, Tong Xia and Jia Wang
Nanomaterials 2025, 15(24), 1870; https://doi.org/10.3390/nano15241870 - 12 Dec 2025
Viewed by 336
Abstract
To clarify the organic matter enrichment regularity of Permian shales in the Kaijiang–Liangping Trough, as well as the differential characteristics of their reservoir lithology, mineral assemblage, and nanopore structure—and thereby provide a geological basis for the exploration and development of Permian marine shales [...] Read more.
To clarify the organic matter enrichment regularity of Permian shales in the Kaijiang–Liangping Trough, as well as the differential characteristics of their reservoir lithology, mineral assemblage, and nanopore structure—and thereby provide a geological basis for the exploration and development of Permian marine shales in the eastern Sichuan Basin—core samples from different depths of the Wujiaping Formation and Dalong Formation in Well DY-1H were analyzed using a series of micro–nano technical research methods, including whole-rock X-ray diffraction, major/trace element analysis, conventional porosity-permeability measurement, high-pressure mercury intrusion porosimetry, nitrogen adsorption, and field emission scanning electron microscopy. Research finds that the Dalong Formation shale contains Type I organic matter with high abundance, whereas the Wujiaping Formation shale is dominated by Type II2 organic matter. The Wujiaping Formation experienced stronger terrigenous input and higher weathering intensity, while the Dalong Formation was deposited under persistently anoxic conditions, in contrast to the frequent oxic–anoxic alternations in the Wujiaping Formation. Paleoproductivity indicators suggest higher productivity in the Dalong Formation than in the Wujiaping Formation. Mo/TOC ratios below 4.5 indicate deposition in a strongly restricted water body. Enrichment factors of multiple elements further support the enhanced paleoproductivity of the Dalong Formation. The Dalong Formation shale has higher contents of quartz and carbonate minerals, while the Wujiaping Formation shale has a higher content of clay minerals. The Wujiaping Formation shale is more developed with inorganic micropores, whereas the Dalong Formation shale is characterized by more developed organic nanopores. During the sedimentary period of the Dalong Formation shale, the paleoproductivity was high, the sedimentary waterbody had high reducibility and restriction, and the reservoir was well-developed with nanopores. The Dalong Formation is a more favorable interval for Permian shale gas exploration and development in the Kaijiang–Liangping Trough. Full article
(This article belongs to the Special Issue Nanopores and Nanostructures in Tight Reservoir Rocks)
Show Figures

Figure 1

44 pages, 7915 KB  
Article
Geochemistry of Water and Bottom Sediments in Mountain Rivers of the North-Eastern Caucasus (Russia and Azerbaijan)
by Olga Chuzhikova, Vladimir Tabunshchik, Roman Gorbunov, Vladislav Proskurnin, Tatiana Gorbunova, Natalia Mirzoeva, Elena Tikhonova, Oleg Mironov, Artem Paraskiv, Veronika Voitsekhovskaya, Ibragim Kerimov and Ekaterina Chuprina
Water 2025, 17(23), 3390; https://doi.org/10.3390/w17233390 - 28 Nov 2025
Viewed by 996
Abstract
This study provides a comprehensive assessment of the geoecological status of selected mountain rivers in the North-Eastern Caucasus—specifically, the Sunzha, Sulak, Ulluchay, Karachay, and Atachay—through an analysis of chemical element concentrations, including heavy metals (HMs), in surface water, suspended particulate matter (SPM), and [...] Read more.
This study provides a comprehensive assessment of the geoecological status of selected mountain rivers in the North-Eastern Caucasus—specifically, the Sunzha, Sulak, Ulluchay, Karachay, and Atachay—through an analysis of chemical element concentrations, including heavy metals (HMs), in surface water, suspended particulate matter (SPM), and bottom sediments. The elemental composition was determined using inductively coupled plasma mass spectrometry (ICP-MS) on a PlasmaQuant MS Elite instrument (Analytik Jena, Germany), enabling high-precision quantification of 70 chemical elements. Element concentrations in surface water were compared against regulatory limits (e.g., maximum permissible concentrations (MPCs)) defined in international and national guidelines; concentrations in SPM were assessed relative to global average riverine values; and those in bottom sediments were evaluated with reference to average upper continental crust abundances (Clarke values). To trace potential sources of heavy metals entering the riverine systems, enrichment factors (EFs) were calculated for bottom sediments. The results indicate that surface water, suspended particulate matter, and bottom sediments in the investigated rivers exhibit enrichment in numerous chemical elements to levels exceeding their respective reference values (MPCs, global river means, or crustal Clarke values). Significant regional variations in abiotic parameters were observed. Water temperature ranges were 4.6–28 °C (Russian rivers) and 6.9–13.6 °C (Azerbaijan rivers). The pH of Russian rivers was circumneutral to mildly alkaline (7.12–8.83), whereas Azerbaijani rivers were distinctly alkaline, with values reaching 9.88. Reducing conditions in sediments (Eh as low as −206 mV) were prevalent at several stations across both regions. This enrichment reflects an overall unfavorable geoecological status of the studied river systems. Elevated concentrations of several rare earth elements (REEs), observed across multiple sampling locations, suggest a substantial lithogenic contribution linked to the geological structure of the catchments, including the composition of the drained rocks and the presence of ore-bearing formations. Furthermore, localized increases in the concentrations of key heavy metals—such as copper, zinc, cadmium, arsenic, and mercury—point to anthropogenic inputs, most likely associated with mining operations, industrial activities, or other human-induced sources. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

23 pages, 6839 KB  
Article
Source Apportionment and Potential Health Risks of Trace Metals in a Contaminated Urban River in New York/New Jersey Harbor System
by Md Shahnul Islam, Sana Mirza, Huan Feng, Tapos Kumar Chakraborty, Yu Qian and Shinjae Yoo
Water 2025, 17(22), 3254; https://doi.org/10.3390/w17223254 - 14 Nov 2025
Viewed by 940
Abstract
The Lower Passaic River (LPR), located within the New York/New Jersey Harbor Estuarine System, has experienced long-term industrial activities, resulting in elevated concentrations of trace metals in sediment and water. This study aims to assess the bioaccumulation behavior, potential human health risks, and [...] Read more.
The Lower Passaic River (LPR), located within the New York/New Jersey Harbor Estuarine System, has experienced long-term industrial activities, resulting in elevated concentrations of trace metals in sediment and water. This study aims to assess the bioaccumulation behavior, potential human health risks, and sources of copper (Cu), lead (Pb), and mercury (Hg) in the LPR. Trace metal concentrations were measured in water, sediment, and seven edible aquatic species. Data were analyzed using statistical approaches, and evaluated by bioaccumulation factors (BAFs) and human health risk assessments based on U.S. Environmental Protection Agency (USEPA) guidelines. Results showed that Hg exhibited the highest bioaccumulation potential among the studied metals, except for Cu in Callinectes sapidus. Non-carcinogenic risks from the consumption of aquatic species followed the order Cu > Hg > Pb, with total target hazard quotient (TTHQ) values below 1, suggesting the non-carcinogenic health risk is negligible for adults and for most species in children, except C. sapidus and Morone americana. Carcinogenic risks for all species were within the acceptable threshold (Target Risk < 1 × 10−4). Sensitivity analysis indicated that body weight and exposure duration primarily influenced children’s carcinogenic risk, whereas trace metal concentrations were more significant for adults. Overall, this study provides insight into contaminant dynamics and health implications in a legacy-contaminated urban river system. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

22 pages, 51772 KB  
Article
On a Software Framework for Automated Pore Identification and Quantification for SEM Images of Metals
by Michael Mulligan, Oliver Fowler, Joshua Voell, Mark Atwater and Howie Fang
Computers 2025, 14(10), 442; https://doi.org/10.3390/computers14100442 - 16 Oct 2025
Viewed by 548
Abstract
The functional performance of porous metals and alloys is dictated by pore features such as size, connectivity, and morphology. While methods like mercury porosimetry or gas pycnometry provide cumulative information, direct observation via scanning electron microscopy (SEM) offers detailed insights unavailable through other [...] Read more.
The functional performance of porous metals and alloys is dictated by pore features such as size, connectivity, and morphology. While methods like mercury porosimetry or gas pycnometry provide cumulative information, direct observation via scanning electron microscopy (SEM) offers detailed insights unavailable through other means, especially for microscale or nanoscale pores. Each scanned image can contain hundreds or thousands of pores, making efficient identification, classification, and quantification challenging due to the processing time required for pixel-level edge recognition. Traditionally, pore outlines on scanned images were hand-traced and analyzed using image-processing software, a process that is time-consuming and often inconsistent for capturing both large and small pores while accurately removing noise. In this work, a software framework was developed that leverages modern computing tools and methodologies for automated image processing for pore identification, classification, and quantification. Vectorization was implemented as the final step to utilize the direction and magnitude of unconnected endpoints to reconstruct incomplete or broken edges. Combined with other existing pore analysis methods, this automated approach reduces manual effort dramatically, reducing analysis time from multiple hours per image to only minutes, while maintaining acceptable accuracy in quantified pore metrics. Full article
(This article belongs to the Section Human–Computer Interactions)
Show Figures

Figure 1

14 pages, 2238 KB  
Article
Functional Biopolymer-Stabilized Silver Nanoparticles on Glassy Carbon: A Voltammetric Sensor for Trace Thallium(I) Detection
by Bożena Karbowska, Maja Giera, Anna Modrzejewska-Sikorska and Emilia Konował
Int. J. Mol. Sci. 2025, 26(19), 9658; https://doi.org/10.3390/ijms26199658 - 3 Oct 2025
Cited by 1 | Viewed by 491
Abstract
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in [...] Read more.
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in environmental systems. However, in this chemical form, thallium remains highly toxic. This study focuses on the modification of a glassy carbon electrode (GCE) with silver nanostructures stabilised by potato starch derivatives. The modified electrode (GCE/AgNPs-E1451) was used for the determination of trace amounts of thallium ions using anodic stripping voltammetry. Emphasis was placed on assessing the effect of surface modification on key electrochemical performance parameters of the electrode. Measurements were carried out in a base electrolyte (EDTA) and in a real soil sample collected from Bali. The stripping peak current of thallium exhibited linearity over the concentration range from 19 to 410 ppb (9.31 × 10−8 to 2.009 × 10−6 mol/dm3). The calculated limit of detection (LOD) was 18.8 ppb (9.21 × 10−8 mol/dm3), while the limit of quantification (LOQ), corresponded to 56.4 ppb (2.76 × 10−7 mol/dm3). The GCE/AgNPs-E1451 electrode demonstrates several significant advantages, including a wide detection range, reduced analysis time due to the elimination of time-consuming pre-concentration steps, and non-toxic operation compared to mercury-based electrodes. Full article
(This article belongs to the Special Issue New Advances in Metal Nanoparticles)
Show Figures

Figure 1

25 pages, 1077 KB  
Review
Heavy Metals in Milk and Dairy Products: Safety and Analysis
by Maria Renata S. Souto, Adriana M. Pimenta, Rita I. L. Catarino, Maria Fernanda C. Leal and Eugénia T. R. Simões
Pollutants 2025, 5(3), 29; https://doi.org/10.3390/pollutants5030029 - 10 Sep 2025
Cited by 3 | Viewed by 5405
Abstract
Milk and dairy products play a key role in the human diet but may also be vehicles for toxic contaminants, particularly heavy metals and metalloids (HMs), such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As). This integrative review examines peer-reviewed studies [...] Read more.
Milk and dairy products play a key role in the human diet but may also be vehicles for toxic contaminants, particularly heavy metals and metalloids (HMs), such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As). This integrative review examines peer-reviewed studies published between 2015 and 2025 to examine sources, occurrence, and health risks associated with HM contamination in milk and dairy products. Key sources include industrial emissions, agricultural runoff, contaminated feed and water, and inadequate packaging. This review highlights regulatory inconsistencies, limited surveillance, and underuse of metal speciation analysis, which hinder accurate toxicity assessment. Advances in trace-level HM detection systems are discussed in terms of sensitivity, accessibility, and feasibility. Studies from diverse geographic regions frequently report high levels of Pb and Cd in samples originating from industrialized areas in low- and middle-income countries. Health risk indicators, such as target hazard quotients (THQs) and margins of exposure (MOEs), often exceed safety thresholds, particularly in children, indicating significant public health risks, especially with prolonged exposure. These findings underscore the urgent need for systematic contaminant monitoring, harmonized regulations, source-focused mitigation policies, and investment in rapid, cost-effective testing technologies to safeguard milk and dairy product safety worldwide. Full article
Show Figures

Graphical abstract

13 pages, 571 KB  
Review
Trace Elements in Post-Mortem Tissues: A Review of Current Evidence and Forensic Challenges
by Claudia Trignano, Angela Sabalic, Andrea Pisano, Davide Tutedde, Pablo Hernández-Camarero, Raffaele La Russa, Macarena Perán and Roberto Madeddu
Toxics 2025, 13(9), 743; https://doi.org/10.3390/toxics13090743 - 31 Aug 2025
Viewed by 1307
Abstract
Background: Trace elements and heavy metals can provide valuable forensic information for individual identification, lifestyle reconstruction, and association with the scene or time of death and may also assist in linking objects to criminal activities. However, the lack of standardized guidelines and post-mortem [...] Read more.
Background: Trace elements and heavy metals can provide valuable forensic information for individual identification, lifestyle reconstruction, and association with the scene or time of death and may also assist in linking objects to criminal activities. However, the lack of standardized guidelines and post-mortem reference values represents a significant limitation in forensic investigations. Methods: This review was conducted in accordance with the PRISMA statement. We performed a comprehensive literature study over the last ten years focusing on the analysis of trace elements and heavy metals in post-mortem tissues. Results: The search results from the databases yielded 247 records. The screening, according to PRISMA criteria, allowed us to select and include 19 articles. The results showed the need for standardized guidelines and reference values. Although post-mortem trace element analysis shows high potential for forensic applications, substantial methodological heterogeneity persists. Some studies have proposed preliminary reference values for cadmium (Cd) in kidneys and mercury (Hg) in hair but validated post-mortem reference ranges remain largely unavailable. Conclusions: The current literature demonstrates the forensic potential of trace element and heavy metals analysis including Cd, Hg, lead (Pb), Manganese (Mn), Aluminum (Al), Copper (Cu), Zinc (Zn), Iron (Fe), Thallium (Tl), Polonium (210Po) but also underlines the urgent need for standardized protocols and validated post-mortem reference values to improve interpretability and reliability in forensic contexts. Full article
(This article belongs to the Special Issue Forensic and Post-Mortem Toxicology)
Show Figures

Figure 1

16 pages, 7614 KB  
Article
Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium
by Davide Sartori, Simona Macchia, Giorgio Tranchida, Paolo Altemura, Vincenzo Tancredi, Alice Scuderi, Maria Elena Piccione, Stefano Ferrari and Andrea Gaion
Nitrogen 2025, 6(3), 62; https://doi.org/10.3390/nitrogen6030062 - 28 Jul 2025
Viewed by 1137
Abstract
This study assesses sediment toxicity in the historically contaminated Orbetello Lagoon (southern Tuscany) using Paracentrotus lividus embryo development bioassays. Elutriates from 15 sites were analysed for trace metals, organic matter, and ammonium. Despite elevated mercury concentrations, toxicity did not consistently correlate with metal [...] Read more.
This study assesses sediment toxicity in the historically contaminated Orbetello Lagoon (southern Tuscany) using Paracentrotus lividus embryo development bioassays. Elutriates from 15 sites were analysed for trace metals, organic matter, and ammonium. Despite elevated mercury concentrations, toxicity did not consistently correlate with metal levels. Instead, Principal Component Analysis (PCA) identified ammonium as a key driver of developmental toxicity, suggesting that it significantly influences both biological effects and metal bioavailability. These results demonstrate that ammonium, often overlooked, can confound sediment toxicity assessments and should be integrated into risk evaluation frameworks for coastal systems affected by legacy pollution. Full article
Show Figures

Figure 1

13 pages, 1647 KB  
Article
Electrochemical Sensing of Hg2+ Ions Using an SWNTs/Ag@ZnBDC Composite with Ultra-Low Detection Limit
by Gajanan A. Bodkhe, Bhavna Hedau, Mayuri S. More, Myunghee Kim and Mahendra D. Shirsat
Chemosensors 2025, 13(7), 259; https://doi.org/10.3390/chemosensors13070259 - 16 Jul 2025
Cited by 1 | Viewed by 1043
Abstract
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag [...] Read more.
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag nanoparticles and SWNTs without disrupting the crystalline structure of ZnBDC. Meanwhile, field-emission scanning electron microscopy and energy-dispersive spectroscopy mapping revealed a uniform elemental distribution. Thermogravimetric analysis indicated enhanced thermal stability. Electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) demonstrated improved charge transfer properties. Electrochemical sensing investigations using differential pulse voltammetry revealed that the SWNTs/Ag@ZnBDC-modified glassy carbon electrode exhibited high selectivity toward Hg2+ ions over other metal ions (Cd2+, Co2+, Cr3+, Fe3+, and Zn2+), with optimal performance at pH 4. The sensor displayed a linear response in the concentration range of 0.1–1.0 nM (R2 = 0.9908), with a calculated limit of detection of 0.102 nM, slightly close to the lowest tested point, confirming its high sensitivity for ultra-trace Hg2+ detection. The outstanding sensitivity, selectivity, and reproducibility underscore the potential of SWNTs/Ag@ZnBDC as a promising electrochemical platform for detecting trace levels of Hg2+ in environmental monitoring. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Figure 1

39 pages, 560 KB  
Review
Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis
by Marta López-Alonso, Inés Rivas and Marta Miranda
Nutrients 2025, 17(13), 2241; https://doi.org/10.3390/nu17132241 - 7 Jul 2025
Cited by 6 | Viewed by 5539
Abstract
Background/Objectives: Trace minerals (TMs), both essential and toxic, are integral to human physiology, participating in enzymatic reactions, oxidative balance, immune function, and the modulation of chronic disease risk. Despite their importance, imbalances due to deficiencies or toxic exposures are widespread globally. While [...] Read more.
Background/Objectives: Trace minerals (TMs), both essential and toxic, are integral to human physiology, participating in enzymatic reactions, oxidative balance, immune function, and the modulation of chronic disease risk. Despite their importance, imbalances due to deficiencies or toxic exposures are widespread globally. While low-income countries often face overt deficiencies and environmental contamination, middle- and high-income populations increasingly deal with subclinical deficits and chronic toxic metal exposure. This review aims to explore the relevance of serum as a matrix for evaluating TM status across diverse clinical and epidemiological, geographic, and demographic settings. Methods: A narrative literature review was conducted focusing on the physiological roles, health impacts, and current biomarker approaches for key essential (e.g., zinc, copper, selenium) and toxic (e.g., lead, mercury, cadmium, arsenic) trace elements. Particular emphasis was placed on studies utilizing serum analysis and on recent advances in multi-element detection using inductively coupled plasma mass spectrometry (ICP-MS). Results: Serum was identified as a versatile and informative matrix for TM assessment, offering advantages in terms of clinical accessibility, biomarker reliability, and capacity for the simultaneous quantification of multiple elements. For essential TMs, serum levels reflect nutritional status with reasonable accuracy. For toxic elements, detection depends on instrument sensitivity, but serum can still provide valuable exposure data. The method’s scalability supports applications ranging from public health surveillance to individualized patient care. Conclusions: Serum trace mineral analysis is a practical and scalable approach for nutritional assessment and exposure monitoring. Integrating it into clinical practice and public health strategies can improve the early detection of imbalances, guide interventions such as nutritional supplementation, dietary modifications, and exposure mitigation efforts. This approach also supports advanced personalized nutrition and preventive care. Full article
(This article belongs to the Special Issue A New Perspective: The Effect of Trace Elements on Human Health)
Show Figures

Figure 1

22 pages, 3588 KB  
Article
Trace Metal and Metalloid Profiles in Hair Samples from Children in the Oil-Producing Region of Kazakhstan
by Gulnara Batyrova, Victoria Kononets, Gulmira Umarova, Gulaim Taskozhina, Yeskendir Umarov, Zhamilya Issanguzhina, Khatimya Kudabayeva and Rabbil Batyrov
Toxics 2025, 13(7), 522; https://doi.org/10.3390/toxics13070522 - 21 Jun 2025
Viewed by 1764
Abstract
Toxic elements are considered a significant threat to public health in oil-producing countries. Western Kazakhstan is experiencing serious environmental problems due to the development of the oil and gas industry. This study aimed to assess the concentrations of toxic trace elements—aluminum (Al), arsenic [...] Read more.
Toxic elements are considered a significant threat to public health in oil-producing countries. Western Kazakhstan is experiencing serious environmental problems due to the development of the oil and gas industry. This study aimed to assess the concentrations of toxic trace elements—aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), mercury (Hg), and lead (Pb)—in the hair of children residing in Kazakhstan’s oil and gas-producing region, and to evaluate the relationship between the concentration of toxic elements and the remoteness of their residence from oil and gas fields. A cross-sectional analysis was conducted involving 1595 school-aged children. Element levels in hair samples were quantified using inductively coupled plasma mass spectrometry (ICP-MS). The association between trace element concentrations and residential distance from oil and gas fields was examined across three distance-based groups and further analyzed through multiple linear regression. The highest concentration of Al = 4.824 μg/g and Hg = 0.096 μg/g was found in the hair of children living close to oil and gas fields (0–16 km). A decrease in levels of Al (−0.072 (CI: −0.109; −0.036)) and Hg (−0.293 (CI: −0.343; −0.243)) is associated with increasing distance from oil and gas fields. As, Cd, and Pb had the lowest median concentrations in the hair of children living near oil and gas fields (0.030, 0.010, and 0.122 µg/g, respectively). There is a tendency for levels of As, Cd, and Pb to increase with distance from the fields (0.064 (CI: 0.039; 0.089), 0.093 (CI: 0.045; 0.141), and 0.244 (CI: 0.202; 0.287), respectively). Our findings indicate the need for biomonitoring of toxic elements to determine long-term temporal trends in the influence of toxic trace elements on the health of the child population of Western Kazakhstan. Full article
Show Figures

Figure 1

20 pages, 5003 KB  
Article
Assessment of Mercury Contamination in the Chalk Aquifer of the Pays de Caux and Its Implications for Public Health (France)
by Lahcen Zouhri, Jacques Delépine and Lockman Zouhri
Water 2025, 17(7), 1087; https://doi.org/10.3390/w17071087 - 5 Apr 2025
Viewed by 1216
Abstract
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the [...] Read more.
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the detection of mercury anomalies during groundwater quality monitoring at the Pays de Caux study site (France), a comprehensive multidisciplinary research effort was initiated. This included geological and hydrogeological studies aimed at tracking mercury concentrations in piezometric wells and identifying the sources of these anomalies. This study seeks to assess the groundwater quality and characteristics from ten hydrogeological wells. The evaluation will focus on key hydrogeological parameters, including pH, redox potential (Eh), suspended solids, and groundwater levels, as well as a detailed geochemical analysis of elements such as Hg, Fe, Mn, Zn, Pb, and Cu. The mobilization of mercury and other metallic traces elements is strongly governed by environmental factors. Hydrochemical analyses highlight the complex interplay of various parameters that influence the chemical forms and behavior of mercury in both soil and groundwater. The results from the piezometric measurement campaigns (Pz1 to Pz7) have provided crucial insights, enabling the development of hypotheses about mercury’s behavior in the chalk aquifer. It is hypothesized that impermeable areas may trap groundwater for extended periods, leading to the accumulation and abnormal concentration of mercury. This could cause mercury to be intermittently released, potentially affecting the surrounding environment. Mercury concentrations in groundwater are highly sensitive to pH and redox potential (Eh), with low pH and reducing conditions promoting mercury mobilization and the formation of toxic methylated species. The study suggests the chalk aquifer is generally in equilibrium with mercury, but fluctuations in mercury levels between Pz7 and Pz4 are likely due to the heterogeneity of the clay and geological factors such as mineral composition and fracturing. This research provides insights into mercury transfer in heterogeneous environments and emphasizes the need for continuous hydrogeological monitoring, including piezometer readings, to manage mercury dispersion in the aquifer. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

25 pages, 1355 KB  
Article
Association of Trace Elements with Polycystic Ovary Syndrome in Women—A Case-Control Study
by Tinkara Srnovršnik, Bojana Pinter, Milena Horvat, Janja Snoj Tratnik, Ingrid Falnoga, Darja Mazej, Ivan Verdenik and Irma Virant-Klun
Metabolites 2025, 15(2), 79; https://doi.org/10.3390/metabo15020079 - 29 Jan 2025
Cited by 2 | Viewed by 2532
Abstract
Objectives: There are still limited or lacking data on the association of trace elements (TEs) with polycystic ovary syndrome (PCOS). This case–control study aimed to determine levels of essential TEs (manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo)) and non-essential TEs [...] Read more.
Objectives: There are still limited or lacking data on the association of trace elements (TEs) with polycystic ovary syndrome (PCOS). This case–control study aimed to determine levels of essential TEs (manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo)) and non-essential TEs (arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb)) in urine, whole blood, and serum to investigate a possible association with kidney and liver function, endocrine and metabolic parameters, and environmental and lifestyle sources of potential exposure and provide possible recommendations. Methods: In our case–control study, women with PCOS (n = 35) and healthy controls (n = 35) underwent clinical and ultrasonographic examination, filled in questionnaires targeting general, lifestyle, and environmental information, and provided fasting venous blood samples and first morning urine for biochemical, hormonal, and TE analysis. Multiple linear regression models were used to evaluate the association between TE levels and data obtained through questionnaires. Results: In women with PCOS, lower Mo levels in whole blood (p = 0.024) and serum (p = 0.011) and higher serum Cu levels (p = 0.026) were detected when compared to healthy controls. Results of this study show that amendments in Cu and Mo levels might be related to altered kidney and liver function and disrupted hormonal balance in PCOS women. Cu levels positively correlated with leukocyte count. There was a negative correlation of Mo levels with proteinuria and luteinizing hormone levels. Regarding liver function, Mo negatively correlated with urinary bilirubin levels, and there was a positive association with alanine and aspartate aminotransferase, respectively. Dietary supplement consumption and certain diet habits appeared to be important predictors of exposure to Cu (beef consumption) or Mo (cereal and boiled vegetable consumption) and modify Mo and Cu levels in women. Conclusions: Concentrations of the chemical elements Mo and Cu in biological samples of women appear to be related to PCOS and nutrition. To our knowledge, this is a novel finding for Mo. Additional research is needed to provide more insights into the causality of the PCOS relationship with Mo and Cu in humans. Full article
(This article belongs to the Special Issue Trace Metal Element Metabolism in Biological Systems)
Show Figures

Figure 1

14 pages, 3920 KB  
Article
Early Strength Enhancement Mechanism of CaO-Modified Electrolytic Manganese Residue-Based Supersulfate Cement
by Yundan Du, Qing Chen, Fufei Wu, Weiwei Li, Luxian Meng and Yang Liu
Materials 2025, 18(2), 270; https://doi.org/10.3390/ma18020270 - 9 Jan 2025
Cited by 5 | Viewed by 1085
Abstract
Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when [...] Read more.
Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator. This results in the preparation of CaO-modified electrolytic manganese residue-based supersulfate cement (Abbreviated as “SSC”), facilitating the harmless and resourceful utilization of EMR. This study aims to determine the optimal dosage of CaO as the alkali activator for GGBS in SSC. A comprehensive analysis was conducted on four groups, including a control group. The mass ratio of EMR, GGBS, and cement in SSC was fixed as 35:60:5, and the optimum mixing ratio of lime powder as an external admixture was investigated through mechanical tests and microscopic experiments. The hydration products and mechanism of the cementitious materials were analyzed using X-ray diffraction (XRD), pH measurements, thermogravimetric and differential thermogravimetric analysis (TG-DTG), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). The results indicated that, under the combined influence of trace cement and raw lime powder, EMR effectively activated GGBS. The primary hydration products of the SSC are AFt and hydrated calcium silicate (C-S-H), which contributed to the mechanical strength of the SSC. At a hydration age of 3 days, the optimal CaO blending ratio was found to be 8% by mass of dried EMR. With this ratio, the compressive strength of SSC reached 18.2 MPa, the pore size of hardened slurry was refined, the structure became dense, and hydration products increased. It could be concluded that CaO enhances the early strength of SSC when used as an alkali activator. Full article
Show Figures

Figure 1

20 pages, 5602 KB  
Article
Preferential Stripping Analysis of Post-Transition Metals (In and Ga) at Bi/Hg Films Electroplated on Graphene-Functionalized Graphite Rods
by Nastaran Ghaffari, Nazeem Jahed, Zareenah Abader, Priscilla G. L. Baker and Keagan Pokpas
C 2024, 10(4), 95; https://doi.org/10.3390/c10040095 - 12 Nov 2024
Viewed by 1731
Abstract
In this study, we introduce a novel electrochemical sensor combining reduced graphene oxide (rGO) sheets with a bismuth–mercury (Bi/Hg) film, electroplated onto pencil graphite electrodes (PGEs) for the high-sensitivity detection of trace amounts of gallium (Ga3+) and indium (In3+) [...] Read more.
In this study, we introduce a novel electrochemical sensor combining reduced graphene oxide (rGO) sheets with a bismuth–mercury (Bi/Hg) film, electroplated onto pencil graphite electrodes (PGEs) for the high-sensitivity detection of trace amounts of gallium (Ga3+) and indium (In3+) in water samples using square wave anodic stripping voltammetry (SWASV). The electrochemical modification of PGEs with rGO and bimetallic Bi/Hg films (ERGO-Bi/HgF-PGE) exhibited synergistic effects, enhancing the oxidation signals of Ga and In. Graphene oxide (GO) was accumulated onto PGEs and reduced through cyclic reduction. Key parameters influencing the electroanalytical performance, such as deposition potential, deposition time, and pH, were systematically optimized. The improved adsorption of Ga3+ and In3+ ions at the Bi/Hg films on the graphene-functionalized electrodes during the preconcentration step significantly enhanced sensitivity, achieving detection limits of 2.53 nmol L−1 for Ga3+ and 7.27 nmol L−1 for In3+. The preferential accumulation of each post-transition metal, used in transparent displays, to form fused alloys at Bi and Hg films, respectively, is highlighted. The sensor demonstrated effective quantification of Ga3+ and In3+ in tap water, with detection capabilities well below the USEPA guidelines. This study pioneers the use of bimetallic films to selectively and simultaneously detect the post-transition metals In3+ and Ga3+, highlighting the role of graphene functionalization in augmenting metal film accumulation on cost-effective graphite rods. Additionally, the combined synergistic effects of Bi/Hg and graphene functionalization have been explored for the first time, offering promising implications for environmental analysis and water quality monitoring. Full article
Show Figures

Graphical abstract

Back to TopTop