Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = mercury fluxes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 5238 KB  
Article
Chemodynamics of Mercury (Hg) in a Southern Reservoir Lake (Cane Creek Lake, Cookeville, TN, USA): II—Estimation of the Hg Water/Air Exchange Coefficient Using the Two-Thin Film Model and Field-Measured Data of Hg Water/Air Exchange and Dissolved Gaseous Hg
by Hong Zhang, Lesta S. Fletcher and William C. Crocker
Water 2025, 17(20), 2931; https://doi.org/10.3390/w17202931 - 10 Oct 2025
Viewed by 856
Abstract
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the [...] Read more.
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the Two-Thin Film (TTF) Model for Hg transfer together with the field-measured data of Hg emission flux (F), dissolved gaseous mercury concentration (DGM), air Hg concentration (Ca), and water temperature for Henry’s coefficient (KH) obtained from a separate field study at the CCL. The daily mean kw values range from 0.045 to 0.21 m h−1, with the min. at 0.0025–0.14 and the max. at 0.079–0.41 m h−1, generally higher for the summer, and from 0.0092 to 0.15, with the min. at 0.0032–0.033 and the max. at 0.017–0.31 m h−1, generally lower for the fall and winter, exhibiting an apparent seasonal trend. The highest kw values occur in August (mean: 0.21, max.: 0.41 m h−1). Our kw results add to and enrich the aquatic interfacial Hg transfer coefficient database and provide an alternative avenue to evaluate and select the coefficients for the TTF Model’s application. The kw results are of value in gaining insights into the Hg transfer actually occurring across the water/air interface under environmental influences (e.g., wind/wave, solar radiation). Our kw results do not show a clear, consistent correlation of kw with wind/wave effect, nor sunlight effect, in spite of some correlations in sporadic cases. Generally, the kw values do not exbibit the trends prescribed by the model sensitivity study. The comparisons of our kw results with those obtained using wind-based transfer models (the Liss/Merlivat Model, the Wanninkhof Model, and the modified linear model) show that they depart from each other. The findings of this study indicate that the TTF Model has limitations and weaknesses. One major assumption of the TTF Model is the equilibrium of the Hg distribution between the air and water films across the water/air interface. The predominant oversaturation of DGM shown by our DGM data evidently challenges this assumption. This study suggests that aquatic interfacial Hg transfer is considerably more complicated, involving a group of factors, more than just wind and wave. Full article
Show Figures

Figure 1

12 pages, 4079 KB  
Article
Freeze-Casting of Mining Wastes for Developing Sustainable Self-Supporting Ceramic Membranes
by Deyse Celestte S. Pereira, Vanderlane C. Silva, Josenildo I. Santos Filho, Juliana M. Cartaxo, Ieda Maria G. Santos, Lisiane N. L. Santana, Gelmires A. Neves and Romualdo R. Menezes
Sustainability 2024, 16(24), 11227; https://doi.org/10.3390/su162411227 - 21 Dec 2024
Viewed by 1419
Abstract
In this work, kaolin processing waste (KW) and columbite–tantalite waste (CTW) from mining activities were used to manufacture sustainable self-supporting ceramic membranes using the freeze-casting technique. The wastes were characterized, and formulations using only wastes were developed. Gelatin was used in the freeze-casting [...] Read more.
In this work, kaolin processing waste (KW) and columbite–tantalite waste (CTW) from mining activities were used to manufacture sustainable self-supporting ceramic membranes using the freeze-casting technique. The wastes were characterized, and formulations using only wastes were developed. Gelatin was used in the freeze-casting as a processing aid to avoid dendritic or lamellar pores. The membranes were sintered at different temperatures (1100 °C, 1200 °C and 1300 °C) and analyzed by X-ray diffraction, scanning electron microscopy, flexural strength measurement, and mercury porosimetry. The flux through the membranes was measured using a gravity-driven dead-end filtration system. The membranes containing 80% KW and 20% CTW sintered at 1200 °C showed high porosity (59%), a water permeate flux of 126.5 L/hm2, and a mechanical strength of 1.5 MPa. Filtration tests demonstrated effective turbidity removal (>99%) for synthetic water consisting of tap water and bentonite, reaching 0.1 NTU. The use of mining waste has shown considerable promise for the development of sustainable and affordable membranes for water treatment applications. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Graphical abstract

21 pages, 3556 KB  
Review
Aquaporin Modulation by Cations, a Review
by Robin Mom, Vincent Mocquet, Daniel Auguin and Stéphane Réty
Curr. Issues Mol. Biol. 2024, 46(8), 7955-7975; https://doi.org/10.3390/cimb46080470 - 24 Jul 2024
Cited by 1 | Viewed by 4066
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network [...] Read more.
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes’ water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2024)
Show Figures

Figure 1

9 pages, 700 KB  
Review
Review of the Influence of Climate Change on the Hydrologic Cycling and Gaseous Fluxes of Mercury in Boreal Peatlands: Implications for Restoration
by Randy Kolka, Caroline Pierce, Isabella Garrioch, Kevin Behrens and Brandy M. Toner
Water 2024, 16(8), 1154; https://doi.org/10.3390/w16081154 - 19 Apr 2024
Cited by 2 | Viewed by 2612
Abstract
Mercury (Hg) is a pollutant that bioaccumulates in the food web, leading to health issues in humans and other fauna. Although anthropogenic Hg deposition has decreased over the past 20 years, our watersheds continue to be sources of Hg to downstream communities. Wetlands, [...] Read more.
Mercury (Hg) is a pollutant that bioaccumulates in the food web, leading to health issues in humans and other fauna. Although anthropogenic Hg deposition has decreased over the past 20 years, our watersheds continue to be sources of Hg to downstream communities. Wetlands, especially peatlands in the Boreal Region of the globe, play a vital role in the formation of bioaccumulative methylmercury (MeHg). Few studies have assessed how increases in temperatures such as those that have already occurred and those predicted will influence the hydrologic transport of Hg to downstream communities or the net fluxes of gaseous Hg. The results indicate that peatland pore water concentrations of MeHg are increasing with ecosystem warming, and to some degree with elevated carbon dioxide (eCO2) in the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment at the Marcell Experimental Forest (MEF) in northern Minnesota, USA. Similar to SPRUCE, in the Biological Response to A Changing Environment (BRACE) experiment in Canada, mesocosm pore water MeHg concentrations increased with soil warming. However, long-term peatland watershed streamflow fluxes of MeHg at the MEF indicate that the competing effects of climate warming and decreased atmospheric deposition have led to overall decreases in watershed MeHg transport. Mesocosm studies in the PEATCOSM experiment in Upper Michigan, USA, indicate that simulated fluctuating water tables led to higher concentrations of MeHg in peatland pore water that is available for downstream transport when water tables rise and the next runoff event occurs. Results from a winter peatland soil freeze/thaw simulation from large mesocosm cores from Jennie’s Bog at the MEF indicate higher total Hg (THg) upon soil thawing but lower MeHg, likely a result of cold temperatures limiting methylation during thawing. Although there are lower MeHg concentrations after thawing, more THg is available for methylation once soils warm. Results from PEATCOSM and the literature also suggest that plant community changes that result in higher densities of sedges also lead to elevated MeHg in pore water. From a climate warming perspective, it appears that two complementary mechanisms, both related to decomposition, are at play that lead to increased pore water MeHg concentrations with warming. First, warming increases decomposition rates, leading to a higher availability of many ions, including Hg (and sulfur) species. Higher decomposition rates also lead to increases in soluble carbon which complexes with Hg species and assists in downstream hydrologic transport. However, if streamflow is decreasing with climate change as a result of landscape-level changes in evapotranspiration as suggested at MEF, the combination of less direct watershed Hg deposition and lower streamflow results in decreases in the watershed transport of MeHg. Given changes already occurring in extreme events and the rewetting and restoration of hydrology during peatland restoration, it is likely that methylation and pore water MeHg concentrations will increase. However, the landscape-level hydrologic cycle will be key to understanding the connection to downstream aquatic communities. Finally, gaseous Hg fluxes increase with warming and lead to decreases in peatland pools of Hg that may influence future availability for downstream transport. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

11 pages, 1961 KB  
Article
A Pilot Study on Bioaccumulation and Tissue Distribution of Mercury in Barn Swallow (Hirundo rustica)
by Li Tian, Yujing Zhu, Ruiming Yu and Xiaobo Zheng
Toxics 2024, 12(3), 206; https://doi.org/10.3390/toxics12030206 - 8 Mar 2024
Cited by 3 | Viewed by 2746
Abstract
Although extensive research has been carried out on the occurrence of mercury (Hg) in biota, bioaccumulation and tissue distribution of Hg in songbirds have not been well characterized. In the present study, Hg was investigated in insects and barn swallows (Hirundo rustica [...] Read more.
Although extensive research has been carried out on the occurrence of mercury (Hg) in biota, bioaccumulation and tissue distribution of Hg in songbirds have not been well characterized. In the present study, Hg was investigated in insects and barn swallows (Hirundo rustica) to explore the bioaccumulation characteristics of Hg. Hg in swallow feathers and tissues including muscle, liver, and bone was investigated to determine the tissue distribution of Hg. The concentrations of Hg were 1.39 ± 1.01 μg/g, 0.33 ± 0.09 μg/g, 0.47 ± 0.10 μg/g, and 0.23 ± 0.09 μg/g in feather, muscle, liver, and bone samples, respectively. The trophic magnification factor of Hg in swallows and insects was higher than 1. However, the Hg concentrations in swallow feathers were not significantly correlated with stable isotope values of carbon or nitrogen, which implies the complex food sources and exposure processes of Hg for swallows. Feathers had significantly higher concentrations of Hg than liver, muscle, and bone samples (p < 0.01 for all comparisons). Feather, muscle, bone, and other organs had fractions of 64.4 ± 11.9%, 6.07 ± 2.06%, 20.0 ± 8.19%, and 9.56 ± 2.96% in total body burden of Hg in swallows. Hg in feathers contributed more than half of Hg in the whole body for most swallow individuals. Swallows may efficiently eliminate Hg by molting, and the excretion flux of Hg and other contaminants via molting deserves more investigation. Full article
Show Figures

Graphical abstract

19 pages, 1189 KB  
Review
Mercury Biogeochemistry and Biomagnification in the Mediterranean Sea: Current Knowledge and Future Prospects in the Context of Climate Change
by Roberto Bargagli and Emilia Rota
Coasts 2024, 4(1), 89-107; https://doi.org/10.3390/coasts4010006 - 4 Feb 2024
Cited by 11 | Viewed by 4657
Abstract
In the 1970s, the discovery of much higher mercury (Hg) concentrations in Mediterranean fish than in related species of the same size from the Atlantic Ocean raised serious concerns about the possible health effects of neurotoxic monomethylmercury (MMHg) on end consumers. After 50 [...] Read more.
In the 1970s, the discovery of much higher mercury (Hg) concentrations in Mediterranean fish than in related species of the same size from the Atlantic Ocean raised serious concerns about the possible health effects of neurotoxic monomethylmercury (MMHg) on end consumers. After 50 years, the cycling and fluxes of the different chemical forms of the metal between air, land, and marine environments are still not well defined. However, current knowledge indicates that the anomalous Hg accumulation in Mediterranean organisms is mainly due to the re-mineralization of organic material, which favors the activity of methylating microorganisms and increases MMHg concentrations in low-oxygen waters. The compound is efficiently bio-concentrated by very small phytoplankton cells, which develop in Mediterranean oligotrophic and phosphorous-limited waters and are then transferred to grazing zooplankton. The enhanced bioavailability of MMHg together with the slow growth of organisms and more complex and longer Mediterranean food webs could be responsible for its anomalous accumulation in tuna and other long-lived predatory species. The Mediterranean Sea is a “hotspot” of climate change and has a rich biodiversity, and the increasing temperature, salinity, acidification, and stratification of seawater will likely reduce primary production and change the composition of plankton communities. These changes will likely affect the accumulation of MMHg at lower trophic levels and the biomagnification of its concentrations along the food web; however, changes are difficult to predict. The increased evasion of gaseous elemental mercury (Hg°) from warming surface waters and lower primary productivity could decrease the Hg availability for biotic (and possibly abiotic) methylation processes, but lower oxygen concentrations in deep waters, more complex food webs, and the reduced growth of top predators could increase their MMHg content. Despite uncertainties, in Mediterranean regions historically affected by Hg inputs from anthropogenic and geogenic sources, such as those in the northwestern Mediterranean and the northern Adriatic Sea, rising seawater levels, river flooding, and storms will likely favor the mobilization of Hg and organic matter and will likely maintain high Hg bioaccumulation rates for a long time. Long-term studies will, therefore, be necessary to evaluate the impact of climate change on continental Hg inputs in the Mediterranean basin, on air–sea exchanges, on possible changes in the composition of biotic communities, and on MMHg formation and its biomagnification along food webs. In this context, to safeguard the health of heavy consumers of local seafood, it appears necessary to develop information campaigns, promote initiatives for the consumption of marine organisms at lower trophic levels, and organize large-scale surveys of Hg accumulation in the hair or urine of the most exposed population groups. Full article
Show Figures

Figure 1

44 pages, 9502 KB  
Review
Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health
by Thomas M. Missimer, James H. MacDonald, Seneshaw Tsegaye, Serge Thomas, Christopher M. Teaf, Douglas Covert and Zoie R. Kassis
Int. J. Environ. Res. Public Health 2024, 21(1), 118; https://doi.org/10.3390/ijerph21010118 - 22 Jan 2024
Cited by 5 | Viewed by 10250
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of [...] Read more.
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1–514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg. Full article
(This article belongs to the Special Issue Environmental Geochemistry of Toxic Elements in the Environment)
Show Figures

Figure 1

16 pages, 3810 KB  
Article
Soil Dynamics in an Urban Forest and Its Contribution as an Ecosystem Service
by María de la Luz Espinosa Fuentes, Oscar Peralta, Rocío García, Eugenia González del Castillo, Rosa María Cerón Bretón, Julia Griselda Cerón Bretón, Eric Tun Camal and Faustino Zavala García
Land 2023, 12(12), 2098; https://doi.org/10.3390/land12122098 - 23 Nov 2023
Cited by 1 | Viewed by 2373
Abstract
Forests embedded in an urban matrix are an important site to investigate the effects of multiple anthropogenic influences that can lead to the modification of biogeochemical cycles and, consequently, of the ecosystem services they provide. In this study, the main soil properties, exchangeable [...] Read more.
Forests embedded in an urban matrix are an important site to investigate the effects of multiple anthropogenic influences that can lead to the modification of biogeochemical cycles and, consequently, of the ecosystem services they provide. In this study, the main soil properties, exchangeable cations, and heavy metal concentrations were measured to assess soil quality and fertility, as well as soil carbon stock (SCS) and CO2 effluxes (Rs) at the Natural Protected Area Bosque de Tlalpan (BT). Four study zones were considered: strict protection zone (Z1), restricted use protection zone (Z2), extensive public use zone (Z3), and intensive public use zone (Z4) during three climatic seasons (rainy, dry-cold, and dry-warm seasons). The concentration of heavy metals in the BT soil showed that these elements are within the reference limits accepted by Mexican standards and are not considered toxic to the environment, except for mercury, which exceeded the standard with double the concentration. The results revealed significant variations in the SCS and soil organic matter (SOM) among the different sites. The highest mean values of SCS (3.01 ± 0.63 and 4.96 ± 0.19 kg m−2) and SOM (7.5 ± 1.01% and 8.7 ± 0.93%) were observed in areas of high protection and extensive public use. CO2 effluxes showed significant differences between sampling seasons, with fluxes being highest during the rainy season (3.14 ± 1.01 µmol∙m−2∙s−1). The results suggest that the level of conservation and effective management of the sites played an important role in the carbon storage capacity and in the physicochemical properties of the soil. This not only provided insights into the current state of an urban forest within a large urban area but also emphasized the significance of conserving such ecosystems. Full article
(This article belongs to the Special Issue Urban Ecosystem Services IV)
Show Figures

Figure 1

17 pages, 11471 KB  
Article
Impermeability and Durability of Self-Compacting Concrete Prepared with Aeolian Sand and Recycled Coarse Aggregate
by Shiqi Zheng, Qing Liu, Fengxia Han, Shan Liu, Guoxing Zhang and Jiayan Zhu
Materials 2023, 16(23), 7279; https://doi.org/10.3390/ma16237279 - 22 Nov 2023
Cited by 7 | Viewed by 1656
Abstract
Self-compacting concrete has seen extensive application in both engineering and construction. In order to save building resources, aeolian sand—recycled coarse aggregate self-compacting concrete (ARSCC) is created by partially substituting recycled coarse aggregates (RCA) and aeolian sand (AS) for natural coarse aggregates. For ten [...] Read more.
Self-compacting concrete has seen extensive application in both engineering and construction. In order to save building resources, aeolian sand—recycled coarse aggregate self-compacting concrete (ARSCC) is created by partially substituting recycled coarse aggregates (RCA) and aeolian sand (AS) for natural coarse aggregates. For ten groups with different mechanical and durable properties, this study examined the effects of sulfate erosion, chloride penetration resistance, and related impermeability, as well as AS replacement ratios of 20%, 40%, and 60% and RCA replacement ratios of 25%, 50%, and 75% in ARSCC and a control group (A0-R0). According to the study’s findings, after sulfate attack, the highest relative dynamic elastic modulus and corrosion resistance factor were obtained with the 20% AS replacement ratio and 50% RCA replacement ratio (A20-R50). The highest impermeability grade and lowest electric flux were obtained with the 20% AS replacement ratio and 25% RCA replacement ratio (A20-R25). X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP) revealed that the addition of aeolian sand and recycled coarse aggregates improved the pore structure of the SCC and increased the densification of the self-compacting concrete, particularly following sulfate attack. This study highlights the importance of recycled aggregates and aeolian sand in engineering applications and the sustainable growth of the concrete industry, both of which support resource conservation and environmental protection. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

31 pages, 6805 KB  
Article
Enhancing Hydrophobic/Hydrophilic Dual-Layer Membranes for Membrane Distillation: The Influence of Polytetrafluoroethylene (PTFE) Particle Size and Concentration
by Mohammed Faleh Abd Al-Ogaili, Mohd Hafiz Dzarfan Othman, Mohammad Rava, Zhong Sheng Tai, Mohd Hafiz Puteh, Juhana Jaafar, Mukhlis A. Rahman, Tonni Agustiono Kurniawan, Ojo Samuel and Aniqa Imtiaz
Sustainability 2023, 15(20), 14931; https://doi.org/10.3390/su152014931 - 16 Oct 2023
Cited by 6 | Viewed by 3863
Abstract
This study assesses the effects of different polytetrafluoroethylene (PTFE) particle sizes and concentrations on the performance of dual-layer membranes in direct contact membrane distillation (DCMD). Specifically, particle sizes of 0.5 μm, 1 μm, and 6 μm were systematically evaluated at concentrations of 0 [...] Read more.
This study assesses the effects of different polytetrafluoroethylene (PTFE) particle sizes and concentrations on the performance of dual-layer membranes in direct contact membrane distillation (DCMD). Specifically, particle sizes of 0.5 μm, 1 μm, and 6 μm were systematically evaluated at concentrations of 0 wt%, 2 wt%, 4 wt%, and 6 wt%. Comprehensive analyses, including scanning electron microscopy (SEM), liquid entry pressure (LEP), contact angle, thermogravimetric analysis (TGA), mercury intrusion porosimetry (MIP), atomic force microscopy (AFM), permeate flux, nitrogen gas permeation, and salt rejection, were employed to characterize the membranes. Under conditions of a feed temperature of 70 °C and a salt concentration of 8000 ppm for a 24 h duration, the results clearly indicated that a 0.5 μm PTFE particle size combined with a 6 wt% concentration exhibited the highest performance. This configuration achieved a permeate flux of 11 kg·m2/h and a salt rejection rate of 99.8%. The outcomes of this research have significant implications for the optimization of membranes used in DCMD applications, with potential benefits for sustainable water treatment and energy conservation. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

20 pages, 3932 KB  
Article
Evasion of Gaseous Elemental Mercury from Forest and Urban Soils Contaminated by Historical and Modern Ore Roasting Processes (Idrija, Slovenia)
by Federico Floreani, Elena Pavoni, Mateja Gosar and Stefano Covelli
Atmosphere 2023, 14(6), 1036; https://doi.org/10.3390/atmos14061036 - 16 Jun 2023
Cited by 6 | Viewed by 3148
Abstract
Considerable amounts of gaseous elemental mercury (Hg0) can be released into the atmosphere from Hg-enriched substrates, such as those from former mining areas, posing a potential environmental threat. In this work, Hg0 fluxes at the soil–air interface under natural vegetation [...] Read more.
Considerable amounts of gaseous elemental mercury (Hg0) can be released into the atmosphere from Hg-enriched substrates, such as those from former mining areas, posing a potential environmental threat. In this work, Hg0 fluxes at the soil–air interface under natural vegetation covers were measured in various locations within the Idrija Hg mining area (Slovenia) and its surroundings. Sites were selected in order to compare Hg0 fluxes from both forest soils heavily impacted by historical ore roasting and urban soils characterised by a different degree of Hg enrichment due to the natural occurrence of Hg in rocks or recent mining and roasting processes. Replicate measurements at each site were conducted using a non-steady state flux chamber coupled with a real-time Hg0 analyser (Lumex RA-915M). Moreover, topsoil samples (0–2 cm) were analysed for Hg total concentration and speciation. Cinnabar was the predominant Hg form in almost all the sites. Despite Hg0 being undetectable in soils using thermo-desorption, substantial emissions were observed (70.7–701.8 ng m−2 h−1). Urban soils in a naturally enriched area showed on average the highest Hg0 fluxes, whereas relatively low emissions were found at the historical roasting site, which is currently forested, despite the significantly high total Hg content in soils (up to 219.0 and 10,400 mg kg−1, respectively). Overall, our findings confirm that shading by trees or litter may effectively limit the amount of Hg0 released into the atmosphere even from extremely enriched soils, thus acting as a natural mitigation. Full article
(This article belongs to the Special Issue Mercury in Atmosphere)
Show Figures

Figure 1

24 pages, 2381 KB  
Article
Characteristics of Mercury Fluxes between Soil and Air in the Farming-Pastoral Ecotone of Songnen Grassland
by Yan Sun, Zhe Zhang, Gang Zhang, Jing Zong, Hongjie Zhang, Yuqi Deng, Kaili Yang, Zhaojun Wang, Dan Cui and Canchao Yang
Sustainability 2023, 15(6), 5416; https://doi.org/10.3390/su15065416 - 18 Mar 2023
Cited by 2 | Viewed by 2132
Abstract
In order to understand the characteristics and influencing factors of surface release fluxes in the typical agro-pastoral mosaic region of the Songnen grasslands of northern China, this study selected two sample plots to, respectively, represent the L. chinensis covered grassland (L), and the [...] Read more.
In order to understand the characteristics and influencing factors of surface release fluxes in the typical agro-pastoral mosaic region of the Songnen grasslands of northern China, this study selected two sample plots to, respectively, represent the L. chinensis covered grassland (L), and the Z. mays covered fields (Z) in the Waizi area of Changling County, with western Jilin Province as the study area. This study investigated the atmospheric mercury (Total Gaseous Mercury (TGM)) concentrations, surface soil mercury concentrations, the gaseous elemental mercury exchange fluxes, and related environmental factors. The results showed that the TGM concentrations in two sample plots in the study area were basically the same during the summer and autumn months, but were higher in summer than in autumn, and there was a clear diurnal pattern. The average mercury concentrations in the surface soil were also higher in summer than in autumn. Furthermore, the surface soil has a clear mercury release process, and the mercury release were higher in the sheep grass field than the maize field during the same season. The mercury release fluxes in each site within the ecotone were related to the solar radiation and soil temperature values, and the effects of them on the soil mercury release were independent from one another. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 3527 KB  
Article
Chemical-Physical Model of Gaseous Mercury Emissions from the Demolition Waste of an Abandoned Mercury Metallurgical Plant
by Rafael Rodríguez, Begoña Fernández, Beatriz Malagón and Efrén Garcia-Ordiales
Appl. Sci. 2023, 13(5), 3149; https://doi.org/10.3390/app13053149 - 28 Feb 2023
Cited by 3 | Viewed by 2102
Abstract
Soils from decommissioned Hg mine sites usually exhibit high levels of total mercury concentration. This work examines the behavior of mercury in the atmosphere on samples of contaminated debris of a demolished metallurgical plant present in La Soterraña mine, Asturias (Spain). Previously, a [...] Read more.
Soils from decommissioned Hg mine sites usually exhibit high levels of total mercury concentration. This work examines the behavior of mercury in the atmosphere on samples of contaminated debris of a demolished metallurgical plant present in La Soterraña mine, Asturias (Spain). Previously, a strong dependence of the Hg gas concentration Cmax (ng/m3) with the temperature T (K) was determined empirically. Hg gas concentration varied between 6500 ng/m3 at low temperatures, 278 K (5 °C), and up to almost 60,000 ng/m3 when the temperature reaches 303 K (30 °C). Then, two different models were proposed to explain the behavior of the mercury emitted from this source. The first model is based on Arrhenius theory. The gas flux per unit area perpendicular to the flow F (g/sm2) is an exponential function of the apparent activation energy Ea (J/mol): F = cf exp(-Ea/RT). The values of cf = 1.04·107 and Ea = 48.56 kJ/mol allows the model to fit well with the field measurements. The second model is based on Fick’s laws, and the flux F (g/sm2) can be estimated by F = (K′ MHg pv)/RT where K′ = 8.49·10−7, MHg = 200.56 g/mol and the partial vapor pressure of gaseous mercury pv (Pa) can be estimated from the saturation vapor pressure of gaseous mercury pv = 0.00196·ps and the August’s law log(ps) = 10.184–3210.29/T. This method is also validated with results measured in situ. Both methods are accurate enough to explain and predict emission rate G (g/s), gas flux F (g/sm2) and maximum Hg gas concentration over the debris Cmax (ng/m3) as a function the temperature T (K). Full article
Show Figures

Figure 1

12 pages, 3716 KB  
Article
Dry and Wet Deposition Fluxes and Source of Atmospheric Mercury in the Forest in Southeast China
by Hanying Dong, Xinyuan Kang, Sixin Deng, Minjuan Huang, Ming Chang and Xuemei Wang
Sustainability 2023, 15(4), 3213; https://doi.org/10.3390/su15043213 - 9 Feb 2023
Cited by 5 | Viewed by 3042
Abstract
Studying atmospheric mercury (Hg) deposition in a forest system is a key step to understanding Hg biogeochemical cycles. However, observations based on Hg deposition fluxes in worldwide stations under forest ecosystems tend to differ considerably. In this work, a sampling station was set [...] Read more.
Studying atmospheric mercury (Hg) deposition in a forest system is a key step to understanding Hg biogeochemical cycles. However, observations based on Hg deposition fluxes in worldwide stations under forest ecosystems tend to differ considerably. In this work, a sampling station was set up in Dinghu Mountain to study the atmospheric Hg’s dry and wet deposition in typical forest ecosystems in Southeast China. One hundred and two atmospheric dry and wet deposition samples were collected with an automatic sampler from March 2009 to February 2010, and concentrations of Hg, magnesium (Mg), calcium (Ca), cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr) were detected. The results showed that the annual rainfall weighted average Hg concentration was 56.8 ng L−1, and 79.8 ng L−1 in the dry deposition. The mean total deposition flux was 158.8 μg m−2, and the wet deposition was predominant. The highest and lowest concentrations were detected in the high-temperature rainy season. Generally, the wet deposition flux was notably positively correlated with the rainfall. The source of atmospheric Hg deposition in Dinghu Mountain was analyzed using principal component analysis (PCA). The main source of Hg in precipitation was soil dust, followed by coal and fuel (automobile exhaust). The primary source of Hg in dry deposition was fuel (automobile exhaust), followed by soil dust, which indicates that Dinghu Mountain has been polluted by the anthropogenic sources of Hg. Full article
(This article belongs to the Special Issue Advances in Land-Atmosphere Interactions)
Show Figures

Figure 1

14 pages, 1419 KB  
Article
Chemodynamics of Mercury (Hg) in a Southern Reservoir Lake (Cane Creek Lake, Cookeville, TN, USA): I—Estimation of the Kinetics of Photochemical Reduction of Aquatic Hg(II) Using Field-Measured Data of Hg Water/Air Exchange and Dissolved Gaseous Hg
by Lesta S. Fletcher, William C. Crocker and Hong Zhang
Water 2023, 15(1), 199; https://doi.org/10.3390/w15010199 - 3 Jan 2023
Cited by 1 | Viewed by 2660
Abstract
An alternative, independent estimation of the kinetics of aquatic Hg(II) photochemical reduction featuring dissolved gaseous mercury (DGM) emission from water in consideration was obtained by using a mass balance box model. An interactive Excel spreadsheet was constructed to implement the model equations to [...] Read more.
An alternative, independent estimation of the kinetics of aquatic Hg(II) photochemical reduction featuring dissolved gaseous mercury (DGM) emission from water in consideration was obtained by using a mass balance box model. An interactive Excel spreadsheet was constructed to implement the model equations to yield the rate constants and the rates of the Hg(II) photoreduction. The model calculations used field-measured data of DGM paired with its emission flux coupled with the corresponding field sampling times. This data set came from a previous, separate, year-long field study conducted at a southern reservoir lake (Cane Creek Lake, Cookeville, Putnam County, TN). The mean value of the model-calculated rate constants (kDGM) of the Hg(II) photoreduction for the warm season (June–August) (4.5 fM h−1/pg L−1) is higher than that for the cold season (October–January) (2.2 fM h−1/pg L−1). The rate constants were found to be the highest (22.5 fM h−1/pg L−1) in August whereas the lowest (0.03 fM h−1/pg L−1) in January. The model-calculated rate constants are clearly higher in value than but comparable in order of magnitude to the published kinetic data. The model-calculated rates (rDGM) of the Hg(II) photoreduction are significantly higher, by one order of magnitude (102 vs. 101) than the apparent rates calculated using the same field DGM data without consideration of the Hg emission from the water. A sensitivity analysis of the model parameters points to a high sensitivity of Hg emission flux to the rate constant under modeled realistic environmental conditions. The initial Hg(II) concentration is also a sensitive model parameter under certain conditions. The results of our model study support the conclusion that DGM emission from water has a strong impact on the kinetics of aquatic Hg(II) photoreduction and the model calculation can provide an independent, valuable approach for estimating the kinetics of aquatic Hg(II) photoreduction. Full article
(This article belongs to the Special Issue Transformation and Transport of Chemicals in Aquatic Systems)
Show Figures

Graphical abstract

Back to TopTop