Soil Dynamics in an Urban Forest and Its Contribution as an Ecosystem Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Campaign and Classification of Sampling Areas
2.3. Soil Sampling and Analyses
2.4. Statistical Analysis
3. Results
3.1. Environmental Parameters and Physicochemical Properties of the Soil
3.2. Heavy Metals, Cations, and Anions in Soils
3.3. Soil CO2 Efflux (Rs) and Soil Carbon Stock
3.4. Principal Component Analysis
4. Discussion
4.1. Soil Physicochemical Properties and Its Quality and Fertility
4.2. Variability of Soil CO2 Efflux
4.3. Influence of Management Type of BT on Soil Carbon Stock
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pouyat, R.V.; Page-Dumroese, D.S.; Patel-Weynand, T.; Geiser, L.H. Forest and Rangeland Soils of the United States under Changing Conditions: A Comprehensive Science Synthesis; Springer Nature: Cham, Switzerland, 2020; p. 289. [Google Scholar]
- Dovletyarova, E.A.; Mosina, L.V.; Vasenev, V.I.; Ananyeva, N.D.; Patlseva, A.; Ivashchenko, K.V. Monitoring and assessing anthropogenic influence on soil’s health in urban forests: The case from Moscow City. In Adaptive Soil Management: From Theory to Practices; Springer: Berlin/Heidelberg, Germany, 2017; pp. 531–557. [Google Scholar]
- O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Cram, S.; Cotler, H.; Morales, L.M.; Sommer, I.; Carmona, E. Identificación de los servicios ambientales potenciales de los suelos en el paisaje urbano del Distrito Federal. Investig. Geográficas 2008, 66, 81–104. [Google Scholar]
- Denegri, G.; Rodríguez Vagaria, A.; Mijailoff, J.; Mársico, J.; Acciaresi, G. Bosques urbanos: Su aporte al turismo en la costa atlántica norte de Argentina. Estud. Perspect. Tur. 2018, 27, 316–335. [Google Scholar]
- Galicia, L.; Gamboa Cáceres, A.M.; Cram, S.; Chávez Vergara, B.; Peña Ramírez, V.; Saynes, V.; Siebe, C. Almacén y dinámica del carbono orgánico del suelo en bosques templados de México. Terra Latinoam. 2016, 34, 1–29. [Google Scholar]
- López-López, S.F.; Martínez-Trinidad, T.; Benavides-Meza, H.M.; García-Nieto, M.; Ángeles-Pérez, G. Reservorios de biomasa y carbono en el arbolado de la primera sección del Bosque de Chapultepec, Ciudad de México. Madera y Bosques 2018, 24, 1–1.4. [Google Scholar] [CrossRef]
- Mañon de la Cruz, R.; Orozco Hernández, M.E.; Mireles Lezama, P. Evaluación de los Servicios Ambientales del Parque Metropolitano Bicentenario, Toluca, México; Revista Iberoamericana de Ciencias: Brownsville, TX, USA, 2018; pp. 6–21. [Google Scholar]
- Bautista, R.J.D.; Baeza, A.T.; Acosta, S.D.C.R.; Morales, P.S.; Alcántara, A.G.; Rivera, A.A.; Hernández, R.S. Almacenamiento de carbono y agua en un área periurbana de Tabasco. Rev. Terra Latinoam. 2019, 37, 197. [Google Scholar] [CrossRef]
- Hyun, J.; Kim, Y.J.; Kim, A.; Plante, A.F.; Yoo, G. Ecosystem services-based soil quality index tailored to the metropolitan environment for soil assessment and management. Sci. Total. Environ. 2022, 820, 153301. [Google Scholar] [CrossRef]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J. Soils Sediments 2014, 15, 1659–1666. [Google Scholar] [CrossRef]
- Hyun, J.; Kim, Y.J.; Yoo, G. A method for soil quality assessment in the metropolitan greenery: A comprehensive view of ecosystem services and soil functions. MethodsX 2023, 10, 102102. [Google Scholar] [CrossRef]
- Calzolari, C.; Tarocco, P.; Lombardo, N.; Marchi, N.; Ungaro, F. Assessing soil ecosystem services in urban and peri-urban areas: From urban soils survey to providing support tool for urban planning. Land Use Policy 2020, 99, 105037. [Google Scholar] [CrossRef]
- Sefati, Z.; Khalilimoghadam, B.; Nadian, H. Assessing urban soil quality by improving the method for soil environmental quality evaluation in a saline groundwater area of Iran. CATENA 2018, 173, 471–480. [Google Scholar] [CrossRef]
- Ziter, C.; Turner, M.G. Current and historical land use influence soil-based ecosystem services in an urban landscape. Ecol. Appl. 2018, 28, 643–654. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5, p. 563. [Google Scholar]
- Blum, W.E. Functions of soil for society and the environment. Rev. Environ. Sci. Bio/Technol. 2005, 4, 75–79. [Google Scholar] [CrossRef]
- Barroso-Tagua, R.; Alvarez, D.; Huera, T.; Changoluisa, D.; Bravo, C. La fertilidad del suelo como un servicio eco sistémico en cultivo de cacao (Theobroma cacao L.), en la provincia de Napo. In Libro de Memorias: Simposio Internacional Sobre Manejo Sostenible de Tierras y Seguridad Alimentaria; Alemán, R., Reyes, H., Bravo, C., Eds.; Universidad Estatal Amazónica: Puyo, Ecuador, 2017; pp. 99–106. [Google Scholar]
- Legout, A.; Hansson, K.; van der Heijden, G.; Laclau, J.-P.; Mareschal, L.; Nys, C.; Nicolas, M.; Saint-André, L.; Ranger, J. Chemical fertility of forest ecosystems. Part 2: Towards redefining the concept by untangling the role of the different components of biogeochemical cycling. For. Ecol. Manag. 2020, 461, 117844. [Google Scholar] [CrossRef]
- Bautista-Cruz, A.; del Castillo, R.F.; Etchevers-Barra, J.D.; Gutiérrez-Castorena, M.d.C.; Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 2012, 277, 74–80. [Google Scholar] [CrossRef]
- Estrada-Herrera, I.R.; Hidalgo-Moreno, C.; Guzmán-Plazola, R.; Almaraz Suárez, J.J.; Navarro-Garza, H.; Etchevers-Barra, J.D. Soil quality indicators to evaluate soil fertility. Agrociencia 2017, 51, 813–831. [Google Scholar]
- Hansson, K.; Laclau, J.-P.; Saint-André, L.; Mareschal, L.; van der Heijden, G.; Nys, C.; Nicolas, M.; Ranger, J.; Legout, A. Chemical fertility of forest ecosystems. Part 1: Common soil chemical analyses were poor predictors of stand productivity across a wide range of acidic forest soils. For. Ecol. Manag. 2020, 461, 117843. [Google Scholar] [CrossRef]
- Bikindou, F.D.A.; Gomat, H.Y.; Deleporte, P.; Bouillet, J.-P.; Moukini, R.; Mbedi, Y.; Ngouaka, E.; Brunet, D.; Sita, S.; Diazenza, J.-B.; et al. Are NIR spectra useful for predicting site indices in sandy soils under Eucalyptus stands in Republic of Congo? For. Ecol. Manag. 2012, 266, 126–137. [Google Scholar] [CrossRef]
- Burbano Orjuela, H. El carbono orgánico del suelo y su papel frente al cambio climático. Rev. Cienc. Agrícolas 2018, 35, 82–96. [Google Scholar] [CrossRef]
- Antoniadis, V.; Robinson, J.; Alloway, B. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 2008, 71, 759–764. [Google Scholar] [CrossRef]
- Huaraca-Fernandez, J.N.; Pérez-Sosa, L.; Bustinza-Cabala, L.S.; Pampa-Quispe, N.B. Organic amendments in the immobilization of cadmium in contaminated agricultural soils: A review. Inf. Technol. 2020, 31, 139–152. [Google Scholar] [CrossRef]
- Kaninga, B.K.; Chishala, B.H.; Maseka, K.K.; Sakala, G.M.; Lark, M.R.; Tye, A.; Watts, M.J. Review: Mine tailings in an African tropical environment—Mechanisms for the bioavailability of heavy metals in soils. Environ. Geochem. Health 2019, 42, 1069–1094. [Google Scholar] [CrossRef]
- Setälä, H.; Francini, G.; Allen, J.; Jumpponen, A.; Hui, N.; Kotze, D. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ. Pollut. 2017, 231, 451–461. [Google Scholar] [CrossRef]
- Fenn, M.E.; Castro-Servín, J.M.; Hernández-Tejeda, T.; Krage, N.; Goodson, C.; Meixner, T. Heavy metals in forest soils, vegetation, and drainage waters in the Basin of Mexico. In Urban Air Pollution and Forests: Resources at Risk in the Mexico City Air Basin; Springer: New York, NY, USA, 2002; pp. 194–221. [Google Scholar]
- Romero, A.; García, F. Estimación del contenido de carbono en la zona ecológica y cultura Bosque de Tlalpan, Distrito Federal. In Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2013; Paz Pellat, F., Wong González, J., Bazan, M., Saynes, V., Eds.; Programa Mexicano del Carbono Colegio de Postgraduados Universidad Autónoma de Chapingo, Instituto Tecnológico y de Estudios Superiores de Monterrey: Texcoco, Mexico, 2013; pp. 149–154. ISBN 978-607-96490-1-2. [Google Scholar]
- Hernández-Guillén, A.; Rojas-García, F.; Benavides-Meza, H. Estimación del contenido y captura de carbono en la segunda sección del Bosque de Chapultepec, Distrito Federal. In Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2013; Pellat, F.P., González, J.W., Bazán, M., Saynes, V., Eds.; Ecosistemas Terrestres; Instituto Tecnológico y de Estudios Superiores de Monterrey: Monterrey, Mexico, 2013. [Google Scholar]
- GODF (Gaceta Oficial del Distrito Federal). Acuerdo por el que se Expide el Programa de Manejo del Área Natural Protegida “Bosque de Tlalpan”. 2011; pp. 10–111. Available online: http://centro.paot.org.mx/centro/leyes/df/pdf/GODF/GODF_20_06_2011.pdf?b=ce (accessed on 20 October 2023).
- Díaz-Limón, M.P.; Cano-Santana, Z.; Queijeiro-Bolaños, M.E. Mistletoe infection in an urban forest in Mexico City. Urban For. Urban Green. 2016, 17, 126–134. [Google Scholar] [CrossRef]
- Etchevers, B.; Jorge, D. Manual Para la Determinación de Carbono en la Parte Aérea y Subterránea de Sistemas de Producción en Laderas; No. CP FE, FOLLETO 678; Colegio de Postgraduados: Montecillo, Mexico, 2005. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis. Methods of Soil Analysis, Part 1; ASA and SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- TOC Aplication Handbook, Shimadzu. 2001. Available online: https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/pim/pim_document_file/ssi/applications/application_note/16415/TOC%20Application%20-%20TOC%20-%20%20TOC%20Application%20Handbook%20Version%202-PT.pdf (accessed on 20 October 2023).
- Kerven, G.L.; Menzies, N.W.; Geyer, M.D. Soil carbon determination by high temperature combustion-a comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value. Commun. Soil Sci. Plant Anal. 2000, 31, 1935–1939. [Google Scholar] [CrossRef]
- Welles, J.; Demetriades-Shah, T.; McDermitt, D. Considerations for measuring ground CO2 effluxes with chambers. Chem. Geol. 2001, 177, 3–13. [Google Scholar] [CrossRef]
- Davidson, E.; Savage, K.; Verchot, L.; Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 2002, 113, 21–37. [Google Scholar] [CrossRef]
- Kandel, T.P.; Lærke, P.E.; Elsgaard, L. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods. Atmos. Environ. 2016, 141, 245–254. [Google Scholar] [CrossRef]
- NOM-147-SEMARNAT/SSA1-2004. (Norma Oficial Mexicana 2004). Que Establece Criterios para Determinar las Concentraciones de Remediación de Suelos Contaminados por Arsénico, Bario, Berilio, Cadmio, Cromo Hexavalente, Mercurio, níquel, Plata, Plomo, Selenio, Talio y/o Vanadio. Available online: https://www.gob.mx/cms/uploads/attachment/file/135331/48.-_NORMA_OFICIAL_MEXICANA_NOM-147-SEMARNAT-SSA1-2004.pdf (accessed on 20 October 2023).
- U.S. EPA. “IO Compendium Method IO-3.1: Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air: Selection, Preparation and Extraction of Filter Material.” EPA/625/R-96/010a. 1999. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa-io-3.1.pdf (accessed on 20 October 2023).
- Bech, J.; Roca, N.; Tume, P.; Ramos-Miras, J.; Gil, C.; Boluda, R. Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. CATENA 2016, 136, 66–73. [Google Scholar] [CrossRef]
- Benipal, G.; Harris, A.; Srirajayatsayai, C.; Tate, A.; Topalidis, V.; Eswani, Z.; Qureshi, M.; Hardaway, C.J.; Galiotos, J.; Douvris, C. Examination of Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Se, V, and Zn in sediments collected around the downtown Houston, Texas area, using inductively coupled plasma-optical emission spectroscopy. Microchem. J. 2017, 130, 255–262. [Google Scholar] [CrossRef]
- Sarstedt, M.; Mooi, E.; Sarstedt, M.; Mooi, E. Regression analysis. In A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 209–256. [Google Scholar]
- CEPA. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; National Guidelines and Standards Office: Gatineau, QC, Canada, 2007.
- Khaledian, Y.; Brevik, E.C.; Pereira, P.; Cerdà, A.; Fattah, M.A.; Tazikeh, H. Modeling soil cation exchange capacity in multiple countries. CATENA 2017, 158, 194–200. [Google Scholar] [CrossRef]
- Mishra, G.; Sulieman, M.M.; Kaya, F.; Francaviglia, R.; Keshavarzi, A.; Bakhshandeh, E.; Loum, M.; Jangir, A.; Ahmed, I.; Elmobarak, A.; et al. Machine learning for cation exchange capacity prediction in different land uses. CATENA 2022, 216, 106404. [Google Scholar] [CrossRef]
- Liao, K.; Xu, S.; Wu, J.; Zhu, Q.; An, L. Using support vector machines to predict cation exchange capacity of different soil horizons in Qingdao City, China. J. Plant Nutr. Soil Sci. 2014, 177, 775–782. [Google Scholar] [CrossRef]
- Liao, K.; Xu, S.; Zhu, Q. Development of ensemble pedotransfer functions for cation exchange capacity of soils of Qingdao in China. Soil Use Manag. 2015, 31, 483–490. [Google Scholar] [CrossRef]
- Ulusoy, Y.; Tekin, Y.; Tümsavaş, Z.; Mouazen, A.M. Prediction of soil cation exchange capacity using visible and near infrared spectroscopy. Biosyst. Eng. 2016, 152, 79–93. [Google Scholar] [CrossRef]
- Sulieman, M.; Saeed, I.; Hassaballa, A.; Rodrigo-Comino, J. Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals. CATENA 2018, 167, 327–339. [Google Scholar] [CrossRef]
- NOM-021-RECNAT-2000. Norma Oficial Mexicana que Establece las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis. Diario Oficial de la Federación. México, D.F. Available online: https://faolex.fao.org/docs/pdf/mex50674.pdf (accessed on 20 October 2023).
- Legout, A.; Hansson, K.; Heijden, G.; Laclau, J.P.; Augusto, L.; Ranger, J. Chemical fertility of forest soils: Basic concepts. Rev. For. Française 2014, 66, 413–424. [Google Scholar] [CrossRef]
- Yin, X.; Wang, X.; Wu, H.; Takahashi, H.; Inaba, Y.; Ohnuki, T.; Takeshita, K. Effects of NH4+, K+, Mg2+, and Ca2+ on the cesium adsorption/desorption in binding sites of vermiculitized biotite. Environ. Sci. Technol. 2017, 51, 13886–13894. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Anderson, C.W.; Xing, Y.; Shang, L. Remediation of mercury contaminated sites—A review. J. Hazard. Mater. 2012, 221, 1–18. [Google Scholar] [CrossRef]
- He, S.; He, Z.; Yang, X.; Stoffella, P.J.; Baligar, V.C. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Adv. Agron. 2015, 134, 135–225. [Google Scholar]
- Chen, M.; Boyle, E.A.; Switzer, A.D.; Gouramanis, C. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore. Environ. Pollut. 2016, 213, 446–459. [Google Scholar] [CrossRef]
- Athira, M.; Jagadeeswaran, R.; Kumaraperumal, R. Influence of soil organic matter on bulk density in Coimbatore soils. Int. J. Chem. Stud. 2019, 7, 3520–3523. [Google Scholar]
- Saavedra-Romero LD, L.; Alvarado-Rosales, D.; Martínez-Trinidad, T.; Hernández-de la Rosa, P. Propiedades físicas y químicas del suelo urbano del Bosque San Juan de Aragón, Ciudad de México. Terra Latinoam. 2020, 38, 529–540. [Google Scholar] [CrossRef]
- Chávez-Aguilar, G.; Burrola-Aguilar, C.; González-Morales, A.; Pérez-Suárez, M. Almacén de carbono orgánico del suelo y abundancia ectomicorrízica bajo dos especies de coníferas en el Nevado de Toluca, México. Agro Product. 2020, 13. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Davies, Z.G.; McCormack, S.A.; Gaston, K.J.; Leake, J.R. Are soils in urban ecosystems compacted? A citywide analysis. Biol. Lett. 2011, 7, 771–774. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Lloyd, J.E.; Johnson-Maynard, J.L. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia 2005, 49, 283–296. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; Abu El Khair, D.; Padoa-Schioppa, E.; Comolli, R. Soil organic carbon stock in different urban land uses: High stock evidence in urban parks. Urban Ecosyst. 2019, 23, 159–171. [Google Scholar] [CrossRef]
- Huang, N.; Song, X.-P.; Black, T.A.; Jassal, R.S.; Myneni, R.B.; Wu, C.; Wang, L.; Song, W.; Ji, D.; Yu, S.; et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 2020, 6, eabb8508. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Baldocchi, D.; Tang, J.; Xu, L. How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Vargas, R.; Allen, M.F. Diel patterns of soil respiration in a tropical forest after Hurricane Wilma. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Cable, J.M.; Ogle, K.; Lucas, R.W.; Huxman, T.E.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Ewers, B.E.; Pendall, E.; Welker, J.M.; et al. The temperature responses of soil respiration in deserts: A seven desert synthesis. Biogeochemistry 2010, 103, 71–90. [Google Scholar] [CrossRef]
- Leon, E.; Vargas, R.; Bullock, S.; Lopez, E.; Panosso, A.R.; La Scala, N. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem. Soil Biol. Biochem. 2014, 77, 12–21. [Google Scholar] [CrossRef]
- Vargas-Terminel, M.L.; Flores-Rentería, D.; Sánchez-Mejía, Z.M.; Rojas-Robles, N.E.; Sandoval-Aguilar, M.; Chávez-Vergara, B.; Robles-Morua, A.; Garatuza-Payan, J.; Yépez, E.A. Soil Respiration is influenced by seasonality, forest succession and contrasting biophysical controls in a Tropical Dry Forest in Northwestern Mexico. Soil Syst. 2022, 6, 75. [Google Scholar] [CrossRef]
- Grand, S.; Rubin, A.; Verrecchia, E.P.; Vittoz, P. Variation in soil respiration across soil and vegetation types in an alpine valley. PLoS ONE 2016, 11, e0163968. [Google Scholar] [CrossRef]
- Weissert, L.; Salmond, J.; Schwendenmann, L. Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types. Geoderma 2016, 271, 80–90. [Google Scholar] [CrossRef]
- Raciti, S.M.; Hutyra, L.R.; Finzi, A.C. Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environ. Pollut. 2012, 164, 248–251. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.; Golubiewski, N.E. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosyst. 2009, 12, 45–62. [Google Scholar] [CrossRef]
- Bae, J.; Ryu, Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc. Urban Plan. 2015, 136, 57–67. [Google Scholar] [CrossRef]
- Vogel, H.-J.; Bartke, S.; Daedlow, K.; Helming, K.; Kögel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; et al. A systemic approach for modeling soil functions. SOIL 2018, 4, 83–92. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2018, 333, 149–162. [Google Scholar] [CrossRef]
- Zacháry, D.; Filep, T.; Jakab, G.; Varga, G.; Ringer, M.; Szalai, Z. Kinetic parameters of soil organic matter decomposition in soils under forest in Hungary. Geoderma Reg. 2018, 14, e00187. [Google Scholar] [CrossRef]
- Juhos, K.; Madarász, B.; Kotroczó, Z.; Béni, Á.; Makádi, M.; Fekete, I. Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators—A comprehensive discussion of a long-term experiment on a detritus manipulation. Geoderma 2021, 385, 114918. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhao, Y.S.; Chen, X.W.; Zhou, Y.Y.; Chai, Y.F.; Wang, Q.B.; Chen, M. Effect of heavy machinery operation on soil aggregates character in Phaeozem region. Chin. Chin. J. Soil Sci. 2009, 40, 756–760. [Google Scholar]
- Zhang, P.; Cui, Y.; Zhang, Y.; Jia, J.; Wang, X.; Zhang, X. Changes in soil physical and chemical properties following surface mining and reclamation. Soil Sci. Soc. Am. J. 2016, 80, 1476–1485. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Sun, Z.; Hao, Z.; Day, S. How do urban forests with different land use histories influence soil organic carbon? Urban For. Urban Green. 2023, 83, 127918. [Google Scholar] [CrossRef]
Season | Sites | pH | EC (dS cm−1) | BD (g cm−3) | SOM (%) | CEC (C mol (+) kg−1) |
---|---|---|---|---|---|---|
Rainy | Z1 | 5.91 ± 0.36 | 0.54 ± 0.02 | 0.85 ± 0.02 | 7.49 ± 1.01 (a) | 13.29 ± 0.28 |
Z2 | 6.50 ± 0.21 | 0.67 ± 0.03 | 0.92 ± 0.01 | 2.88 ± 0.75 (b) | 6.10 ± 0.12 | |
Z3 | 5.70 ± 0.21 | 0.69 ± 0.03 | 1.00 ± 0.06 | 8.66 ± 0.93 (c) | 15.73 ± 0.36 | |
Z4 | 5.22 ± 0.28 | 0.56 ± 0.03 | 1.26 ± 0.01 | 2.91 ± 0.11 (b) | 12.74 ± 0.31 | |
Dry-cold | Z1 | 5.72 ± 0.35 | 0.75 ± 0.04 | 0.84 ± 0.01 | 6.64 ± 1.08 (a) | 15.78 ± 0.36 |
Z2 | 6.10 ± 0.68 | 0.51 ± 0.02 | 0.95 ± 0.01 | 2.56 ± 0.46 (b) | 10.95 ± 0.36 | |
Z3 | 5.50 ± 0.21 | 0.53 ± 0.04 | 1.01 ± 0.08 | 8.18 ± 1.53 (c) | 18.29 ± 0.24 | |
Z4 | 5.70 ± 0.24 | 0.60 ± 0.04 | 1.24 ± 0.01 | 2.80 ± 0.22 (b) | 15.77 ± 0.39 | |
Dry-warm | Z1 | 5.64 ± 0.58 | 0.61 ± 0.02 | 0.83 ± 0.02 | 4.68 ± 1.47 (a) | 17.23 ± 0.58 |
Z2 | 6.10 ± 0.36 | 0.60 ± 0.04 | 0.91 ± 0.03 | 2.78 ± 0.18 (b) | 11.18 ± 0.14 | |
Z3 | 5.20 ± 0.28 | 0.79 ± 0.04 | 0.96 ± 0.02 | 8.82 ± 1.01 (c) | 21.86 ± 0.27 | |
Z4 | 5.72 ± 0.48 | 0.66 ± 0.02 | 1.25 ± 0.01 | 2.84 ± 0.49 (b) | 15.71 ± 0.25 |
Variable | PC1 | PC2 | ||
---|---|---|---|---|
Loadings | Contribution (%) | Loadings | Contribution (%) | |
Sand | −0.833 | 7.77 | 0.553 | 7.52 |
SM | 0.991 | 11.00 | −0.133 | 0.43 |
pH | −0.991 | 11.00 | 0.133 | 0.43 |
BD | 0.457 | 2.33 | 0.890 | 19.46 |
SCS | 0.936 | 9.81 | −0.352 | 3.04 |
K+ | 0.963 | 10.38 | 0.270 | 1.79 |
Ca2+ | 0.872 | 8.51 | −0.489 | 5.89 |
Mg2+ | 0.991 | 11.00 | −0.133 | 0.43 |
Cl− | −0.964 | 10.39 | −0.268 | 1.76 |
CEC | 0.992 | 11.01 | −0.129 | 0.41 |
PO43− | −0.220 | 0.54 | −0.975 | 23.39 |
SO42− | −0.105 | 0.12 | −0.994 | 24.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa Fuentes, M.d.l.L.; Peralta, O.; García, R.; González del Castillo, E.; Cerón Bretón, R.M.; Cerón Bretón, J.G.; Tun Camal, E.; Zavala García, F. Soil Dynamics in an Urban Forest and Its Contribution as an Ecosystem Service. Land 2023, 12, 2098. https://doi.org/10.3390/land12122098
Espinosa Fuentes MdlL, Peralta O, García R, González del Castillo E, Cerón Bretón RM, Cerón Bretón JG, Tun Camal E, Zavala García F. Soil Dynamics in an Urban Forest and Its Contribution as an Ecosystem Service. Land. 2023; 12(12):2098. https://doi.org/10.3390/land12122098
Chicago/Turabian StyleEspinosa Fuentes, María de la Luz, Oscar Peralta, Rocío García, Eugenia González del Castillo, Rosa María Cerón Bretón, Julia Griselda Cerón Bretón, Eric Tun Camal, and Faustino Zavala García. 2023. "Soil Dynamics in an Urban Forest and Its Contribution as an Ecosystem Service" Land 12, no. 12: 2098. https://doi.org/10.3390/land12122098
APA StyleEspinosa Fuentes, M. d. l. L., Peralta, O., García, R., González del Castillo, E., Cerón Bretón, R. M., Cerón Bretón, J. G., Tun Camal, E., & Zavala García, F. (2023). Soil Dynamics in an Urban Forest and Its Contribution as an Ecosystem Service. Land, 12(12), 2098. https://doi.org/10.3390/land12122098