Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (560)

Search Parameters:
Keywords = membranes reactors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 (registering DOI) - 2 Aug 2025
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 606
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 554
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 325
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

26 pages, 10819 KiB  
Review
Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors
by Jingjun Li, Qing Yang, Jie Liu, Qiangchao Sun and Hongwei Cheng
Membranes 2025, 15(7), 203; https://doi.org/10.3390/membranes15070203 - 4 Jul 2025
Viewed by 841
Abstract
Under the accelerating global energy restructuring and the deepening carbon neutrality strategy, hydrogen energy has emerged with increasing strategic value as a zero-carbon secondary energy carrier. Water electrolysis technology based on renewable energy is regarded as an ideal pathway for large-scale green hydrogen [...] Read more.
Under the accelerating global energy restructuring and the deepening carbon neutrality strategy, hydrogen energy has emerged with increasing strategic value as a zero-carbon secondary energy carrier. Water electrolysis technology based on renewable energy is regarded as an ideal pathway for large-scale green hydrogen production. However, polymer electrolyte membrane (PEM) conventional water electrolysis faces dual constraints in economic feasibility and scalability due to its high electrical energy consumption and reliance on noble metal catalysts. The mixed ionic-electronic conducting oxygen transport membrane (MIEC–OTM) reactor technology offers an innovative solution to this energy efficiency-cost paradox due to its thermo-electrochemical synergistic energy conversion mechanism and process integration. This not only overcomes the thermodynamic equilibrium limitations in traditional electrolysis but also reduces electrical energy demand by effectively coupling with medium- to high-temperature heat sources such as industrial waste heat and solar thermal energy. Therefore, this review, grounded in the physicochemical mechanisms of oxygen transport membrane reactors, systematically examines the influence of key factors, including membrane material design, catalytic interface optimization, and parameter synergy, on hydrogen production efficiency. Furthermore, it proposes a roadmap and breakthrough directions for industrial applications, focusing on enhancing intrinsic material stability, designing multi-field coupled reactors, and optimizing system energy efficiency. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

22 pages, 23349 KiB  
Article
Ag/AgCl-Decorated Layered Lanthanum/Niobium Oxide Microparticles as Efficient Photocatalysts for Azo Dye Remediation and Cancer Cell Inactivation
by Elmuez Dawi and Mohsen Padervand
Catalysts 2025, 15(7), 638; https://doi.org/10.3390/catal15070638 - 30 Jun 2025
Viewed by 393
Abstract
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), [...] Read more.
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) techniques were used to illustrate the physicochemical properties of the materials. The photoactivity was evaluated for the degradation of Acid Blue 92 (AB92) azo dye, a typical organic contaminant from the textile industry, and U251 cancer cell inactivation. According to the results, Nb2O5–Ag/AgCl was able to remove >99% of AB92 solution in 35 min with the rate constant of 0.12 min−1, 2.4 times higher than that of La2O3–Ag/AgCl. A pH of 3 and a catalyst dosage of 0.02 g were determined as the optimized factors to reach the highest degradation efficiency under solar energy at noon, which was opted to have the highest sunlight intensity over the reactor. Also, 0.02 mg/mL of Nb2O5–Ag/AgCl was determined to be of great potential to reduce cancer cell viability by more than 50%, revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and mitochondrial membrane potential (MMP) examinations. The mechanism of degradation was also discussed, considering the key role of Ag0 nanoparticles in inducing a plasmonic effect and improving the charge separation. This work provides helpful insights to opt for an efficient rare metal oxide with good biocompatibility as support for the plasmonic photocatalysts with the goal of environmental purification under sunlight. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

36 pages, 6029 KiB  
Review
Research Progress of Computational Fluid Dynamics in Mixed Ionic–Electronic Conducting Oxygen-Permeable Membranes
by Jun Liu, Jing Zhao, Yulu Liu, Yongfan Zhu, Wanglin Zhou, Zhenbin Gu, Guangru Zhang and Zhengkun Liu
Membranes 2025, 15(7), 193; https://doi.org/10.3390/membranes15070193 - 27 Jun 2025
Viewed by 567
Abstract
Mixed ionic–electronic conducting (MIEC) oxygen-permeable membranes have emerged as a frontier in oxygen separation technology due to their high efficiency, low energy consumption, and broad application potential. In recent years, computational fluid dynamics (CFD) has become a pivotal tool in advancing MIEC membrane [...] Read more.
Mixed ionic–electronic conducting (MIEC) oxygen-permeable membranes have emerged as a frontier in oxygen separation technology due to their high efficiency, low energy consumption, and broad application potential. In recent years, computational fluid dynamics (CFD) has become a pivotal tool in advancing MIEC membrane technology, offering precise insights into the intricate mechanisms of oxygen permeation, heat transfer, and mass transfer through numerical simulations of coupled multiphysics phenomena. In this review, we comprehensively explore the application of CFD in MIEC membrane research, heat and mass transfer analysis, reactor design optimization, and the enhancement of membrane module performance. Additionally, we delve into how CFD, through multiscale modeling and parameter optimization, improves separation efficiency and facilitates practical engineering applications. We also highlight the challenges in current CFD research, such as high computational costs, parameter uncertainties, and model complexities, while discussing the potential of emerging technologies, such as machine learning, to enhance CFD modeling capabilities. This study underscores CFD’s critical role in bridging the fundamental research and industrial applications of MIEC membranes, providing theoretical guidance and practical insights for innovation in clean energy and sustainable technologies. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

18 pages, 2417 KiB  
Article
Fate of Dissolved Organic Matter and Cooperation Behavior of Coagulation: Fenton Combined with MBR Treatment for Pharmaceutical Tail Water
by Jian Wang, Chunxiao Zhao, Feng Qian, Jie Su and Hongjie Gao
Molecules 2025, 30(12), 2520; https://doi.org/10.3390/molecules30122520 - 9 Jun 2025
Viewed by 405
Abstract
In this study, the treatment of pharmaceutical tail water (PTW) by coagulation, Fenton combined with membrane bioreactor (MBR), was studied. Optimal parameters were obtained according to batch experiment and central composite design (CCD). Results showed that Polymeric Ferric Sulfate (PFS) was the best [...] Read more.
In this study, the treatment of pharmaceutical tail water (PTW) by coagulation, Fenton combined with membrane bioreactor (MBR), was studied. Optimal parameters were obtained according to batch experiment and central composite design (CCD). Results showed that Polymeric Ferric Sulfate (PFS) was the best coagulant for original pharmaceutical tailwater due to less dosage and higher removal efficiency to TOC, COD, NH4+-N and UV254m, with the optimized pH = 7.25 and 0.53 g/L PFS dosage. The best coagulation performance was achieved when the mixer was stirred at 250 rpm for 3 min, 60 rpm for 10 min, and then left to stand for 60 min. Coagulation mainly removed organics with molecular weight above 10 kDa. After treated by coagulation, 43.1% TOC removal efficiency of PTW was obtained by Fenton reaction with 11.6 mmol/L H2O2, 3.0 mmol/L FeSO4, pH = 3.3 and T = 50 min. A type of common macromolecule aromatic amino acid compounds which located Ex = 250 nm and Em = 500 nm was the main reason that caused the high TOC concentration in the effluent. Stable COD and NH4+-N removal efficiencies in the MBR reactor within 10 d were observed when the mixture of pre-treated PTW (20%, v) and domestic sewage (80%, v) was fed into the MBR reactor, and over 95% COD and 50% NH4+-N were removed. One kind of amino acid similar to tryptophan was the prime reason that caused PTW resistance to be degraded. Analysis of the microorganism community in the MBR suggested that norank_f__Saprospiraceae was the key microorganism in degrading of PTW. Full article
Show Figures

Figure 1

15 pages, 2234 KiB  
Article
Moving Rubber Blade (MRB) for Fouling Control in Anaerobic Ceramic Membrane Bioreactors (AnCMBRs) Treating High-Strength Food Wastewater: Development and Long-Term Application
by Young-Jae Lee, Hyung-Soo Kim, Hyunsup Jang, Sung-Gwan Park, Ji-Yeon Kim, Sung-Jae Lee, Youngjin Kim, Moon-Hyun Hwang and Sangyoup Lee
Membranes 2025, 15(6), 165; https://doi.org/10.3390/membranes15060165 - 1 Jun 2025
Viewed by 939
Abstract
This study investigates membrane fouling control in a submerged anaerobic ceramic membrane bioreactor (AnCMBR) treating high-strength food wastewater (chemical oxygen demand (COD): 10–30 g/L). A hybrid strategy combining mechanical cleaning via a moving rubber blade (MRB) (termed anaerobic ceramic blade MBR (AnCBMBR)) with [...] Read more.
This study investigates membrane fouling control in a submerged anaerobic ceramic membrane bioreactor (AnCMBR) treating high-strength food wastewater (chemical oxygen demand (COD): 10–30 g/L). A hybrid strategy combining mechanical cleaning via a moving rubber blade (MRB) (termed anaerobic ceramic blade MBR (AnCBMBR)) with intermittent salt-assisted backwash (SAB) was tested to manage transmembrane pressure (TMP) and sustain treatment performance. During more than 300 days of field operation, MRB alone maintained stable TMP below 0.15 kgf/cm2 without backwashing, achieving more than 90% COD removal at a very short hydraulic retention time (HRT) of 1–2 days. Introducing intermittent SAB further stabilized operations and enhanced total phosphorus (T-P) removal by facilitating struvite formation through the interaction of MgCl2 and phosphorus in the reactor. The AnCBMBR system demonstrated reliable, long-term fouling control and treatment efficiency, even under high organic loads, proving its viability for small-scale facilities managing concentrated food wastewater. This study advances practical strategies for sustainable anaerobic MBR operation under challenging industrial conditions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

34 pages, 2339 KiB  
Review
Process Intensification for CO2 Hydrogenation to Liquid Fuels
by Simona Renda and Miguel Menéndez
Catalysts 2025, 15(6), 509; https://doi.org/10.3390/catal15060509 - 22 May 2025
Viewed by 1226
Abstract
Liquid fuels obtained from CO2 and green hydrogen (i.e., e-fuels) are powerful tools for decarbonizing economy. Improvements provided by Process Intensification in the existing conventional reactors aim to decrease energy consumption, increase yield, and ensure more compact and safe processes. This review [...] Read more.
Liquid fuels obtained from CO2 and green hydrogen (i.e., e-fuels) are powerful tools for decarbonizing economy. Improvements provided by Process Intensification in the existing conventional reactors aim to decrease energy consumption, increase yield, and ensure more compact and safe processes. This review describes the advances in the production of methanol, dimethyl ether, and hydrocarbons by Fischer–Tropsch using different Process Intensification tools, mainly membrane reactors, sorption-enhanced reactors, and structured reactors. Due to the environmental interest, this review article focused on discussing methanol and dimethyl ether synthesis from CO2 + H2, which also represented the most innovative approach. The use of syngas (CO + H2) is generally preferred for the Fischer–Tropsch process; hence, studies examining this process were included in the present review. Both mathematical models and experimental results are discussed. Achievements in the improvement of catalytic reactor performance are described. Experimental results in membrane reactors show increased performance in e-fuels production compared to the conventional packed bed reactor. The combination of sorption and reaction also increases the single-pass conversion and yield, although this improvement is limited by the saturation capacity of the sorbent in most cases. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Graphical abstract

11 pages, 1432 KiB  
Article
Energy-Saving Design of Urea Method for Hydrazine Hydrate Process
by Zhihao Wang, Xiaojing Wang, Haibin Wu, Shengting Li and Yongjie Xu
Processes 2025, 13(5), 1585; https://doi.org/10.3390/pr13051585 - 20 May 2025
Viewed by 584
Abstract
The conventional urea-based process for hydrazine hydrate production faces challenges including low product yield and high energy consumption. To overcome these limitations, we propose an innovative integrated approach combining jet reactor technology with membrane separation, further enhanced through heat network optimization. Through process [...] Read more.
The conventional urea-based process for hydrazine hydrate production faces challenges including low product yield and high energy consumption. To overcome these limitations, we propose an innovative integrated approach combining jet reactor technology with membrane separation, further enhanced through heat network optimization. Through process simulation and sensitivity analysis, the following optimal distillation parameters were identified: nine theoretical stages, feed entry at the fifth stage, a reflux ratio of 0.6, and a distillate flow rate of 354 kg/h. Systematic optimization of the heat exchanger network (HEN) using pinch technology achieved substantial energy savings, reducing hot utility consumption by 66.8% (to 1317 MJ/h) and cold utility usage by 62.7% (to 1503 MJ/h). The redesigned HEN prioritized temperature-cascaded heat recovery, enabling 67% energy recuperation from exothermic reaction streams. Operational costs decreased by 12%, underscoring the economic viability of coupling process intensification with thermal integration. This work establishes a sustainable framework for hydrazine hydrate synthesis, balancing industrial feasibility with reduced environmental impact in chemical manufacturing. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

54 pages, 15241 KiB  
Review
Heterogeneous Photocatalysis for Advanced Water Treatment: Materials, Mechanisms, Reactor Configurations, and Emerging Applications
by Maria Paiu, Doina Lutic, Lidia Favier and Maria Gavrilescu
Appl. Sci. 2025, 15(10), 5681; https://doi.org/10.3390/app15105681 - 19 May 2025
Cited by 2 | Viewed by 1525
Abstract
Heterogeneous photocatalysis has emerged as a versatile and sustainable technology for the degradation of emerging contaminants in water. This review highlights recent advancements in photocatalysts design, including band gap engineering, heterojunction formation, and plasmonic enhancement to enable visible-light activation. Various reactor configurations, such [...] Read more.
Heterogeneous photocatalysis has emerged as a versatile and sustainable technology for the degradation of emerging contaminants in water. This review highlights recent advancements in photocatalysts design, including band gap engineering, heterojunction formation, and plasmonic enhancement to enable visible-light activation. Various reactor configurations, such as slurry, immobilized, annular, flat plate, and membrane-based systems, are examined in terms of their efficiency, scalability, and operational challenges. Hybrid systems combining photocatalysis with membrane filtration, adsorption, Fenton processes, and biological treatments demonstrate improved removal efficiency and broader applicability. Energy performance metrics such as quantum yield and electrical energy per order are discussed as essential tools for evaluating system feasibility. Special attention is given to solar-driven reactors and smart responsive materials, which enhance adaptability and sustainability. Additionally, artificial intelligence and machine learning approaches are explored as accelerators for catalyst discovery and process optimization. Altogether, these advances position photocatalysis as a key component in future water treatment strategies, particularly in decentralized and low-resource contexts. The integration of material innovation, system design, and data-driven optimization underlines the potential of photocatalysis to contribute to global efforts in environmental protection and sustainable development. Full article
Show Figures

Graphical abstract

35 pages, 2409 KiB  
Review
Comparative Analysis of Electrochemical and Thermochemical Hydrogenation of Biomass-Derived Phenolics for Sustainable Biofuel and Chemical Production
by Halil Durak
Processes 2025, 13(5), 1581; https://doi.org/10.3390/pr13051581 - 19 May 2025
Viewed by 992
Abstract
The electrocatalytic hydrogenation (ECH) of biomass-derived phenolic compounds is a promising approach to the production of value-added chemicals and biofuels in a sustainable way under moderate reaction conditions. This study provides a comprehensive comparison of electrochemical and thermochemical hydrogenation processes, highlighting their relative [...] Read more.
The electrocatalytic hydrogenation (ECH) of biomass-derived phenolic compounds is a promising approach to the production of value-added chemicals and biofuels in a sustainable way under moderate reaction conditions. This study provides a comprehensive comparison of electrochemical and thermochemical hydrogenation processes, highlighting their relative advantages in terms of energy efficiency, product selectivity, and environmental impact. Several electrocatalysts (Pt, Pd, Rh, Ru), membranes (Nafion, Fumasep, GO-based PEMs), and reactor configurations are tested for the selective conversion of model compounds such as phenol, guaiacol, furfural, and levulinic acid. The contributions made by the electrode material, electrolyte composition, membrane nature, and reaction conditions are critically evaluated in relation to Faradaic efficiency, conversion rates, and product selectivity. The enhancement in the performance achieved by a new catalyst architecture is emphasized, such as MOF-based systems and bimetallic/trimetallic catalysts. In addition, a demonstration of graphite-based membranes and membrane-separated slurry reactors (SSERs) is provided, for enhanced ion transport and reaction control. The results illustrate the potential of using ECH as a low-carbon, scalable, and tunable method for the upgrading of biomass. This study offers valuable insights and guidelines for the rational design of next-generation electrocatalytic systems toward green chemical synthesis and emphasizes promising perspectives for the strategic development of electrochemical technologies in the pathway of a sustainable energy economy. Full article
(This article belongs to the Special Issue Advances in Electrocatalysts for the OER, HER and Biomass Conversion)
Show Figures

Figure 1

15 pages, 3481 KiB  
Article
Forensic Investigation of Stainless Steel 316 Hydrogen-Membrane and Ammonia-Cracking Reactors Through Mechanical Testing
by Alexander Ilyushechkin, Veronica Gray, Riley Ingle, Lachlan Carter and Liezl Schoeman
Corros. Mater. Degrad. 2025, 6(2), 17; https://doi.org/10.3390/cmd6020017 - 13 May 2025
Viewed by 532
Abstract
Knowledge of alloy behavior under industry-relevant conditions is critical to hydrogen production and processing, yet it is currently limited. To understand more about the impact of hydrogen damage on stainless steel 316 under realistic in-service conditions, we conducted a forensic investigation of two [...] Read more.
Knowledge of alloy behavior under industry-relevant conditions is critical to hydrogen production and processing, yet it is currently limited. To understand more about the impact of hydrogen damage on stainless steel 316 under realistic in-service conditions, we conducted a forensic investigation of two reactors exposed to various hydrogen-processing conditions. We examined samples of reactor walls exposed to hydrogen-containing atmospheres for >100 and ~1000 h at elevated temperatures during hydrogen separation and ammonia cracking. The samples were characterized by tensile testing, stretch–bend testing, and three-point bending. A loss in ductility and strength was observed for the reactor wall material compared with both untreated materials and materials annealed in neutral atmospheres at the same temperatures used during reactor operation. The three-point bend testing, which was conducted on inner and outer pipe-surface material extracted via electrical discharge machining, showed larger changes in the flexural modulus of exposed reactors but increases in the elastic limit. Microstructural observations revealed that hydrogen may play a role in stress relaxation, possibly promoting normalization at lower-than-expected temperatures. We also observed that materials exposed to ammonia undertake more damage from nitriding than from hydrogen. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

54 pages, 10398 KiB  
Article
Reduced-Order Modeling (ROM) of a Segmented Plug-Flow Reactor (PFR) for Hydrogen Separation in Integrated Gasification Combined Cycles (IGCC)
by Osama A. Marzouk
Processes 2025, 13(5), 1455; https://doi.org/10.3390/pr13051455 - 9 May 2025
Cited by 2 | Viewed by 1032
Abstract
In an integrated gasification combined cycle (IGCC), a gasification process produces a gas stream from a solid fuel, such as coal or biomass. This gas (syngas or synthesis gas) resulting from the gasification process contains carbon monoxide, molecular hydrogen, and carbon dioxide (other [...] Read more.
In an integrated gasification combined cycle (IGCC), a gasification process produces a gas stream from a solid fuel, such as coal or biomass. This gas (syngas or synthesis gas) resulting from the gasification process contains carbon monoxide, molecular hydrogen, and carbon dioxide (other gaseous components may also be present depending on the gasified solid fuel and the gasifying agent). Separating hydrogen from this syngas stream has advantages. One of the methods to separate hydrogen from syngas is selective permeation through a palladium-based metal membrane. This separation process is complicated as it depends nonlinearly on various variables. Thus, it is desirable to develop a simplified reduced-order model (ROM) that can rapidly estimate the separation performance under various operational conditions, as a preliminary stage of computer-aided engineering (CAE) in chemical processes and sustainable industrial operations. To fill this gap, we present here a proposed reduced-order model (ROM) procedure for a one-dimensional steady plug-flow reactor (PFR) and use it to investigate the performance of a membrane reactor (MR), for hydrogen separation from syngas that may be produced in an integrated gasification combined cycle (IGCC). In the proposed model, syngas (a feed stream) enters the membrane reactor from one side into a retentate zone, while nitrogen (a sweep stream) enters the membrane reactor from the opposite side into a neighbor permeate zone. The two zones are separated by permeable palladium membrane surfaces that are selectively permeable to hydrogen. After analyzing the hydrogen permeation profile in a base case (300 °C uniform temperature, 40 atm absolute retentate pressure, and 20 atm absolute permeate pressure), the temperature of the module, the retentate-side pressure, and the permeate-side pressure are varied individually and their influence on the permeation performance is investigated. In all the simulation cases, fixed targets of 95% hydrogen recovery and 40% mole-fraction of hydrogen at the permeate exit are demanded. The module length is allowed to change in order to satisfy these targets. Other dependent permeation-performance variables that are investigated include the logarithmic mean pressure-square-root difference, the hydrogen apparent permeance, and the efficiency factor of the hydrogen permeation. The contributions of our study are linked to the fields of membrane applications, hydrogen production, gasification, analytical modeling, and numerical analysis. In addition to the proposed reduced-order model for hydrogen separation, we present various linear and nonlinear regression models derived from the obtained results. This work gives general insights into hydrogen permeation via palladium membranes in a hydrogen membrane reactor (MR). For example, the temperature is the most effective factor to improve the permeation performance. Increasing the absolute retentate pressure from the base value of 40 atm to 120 atm results in a proportional gain in the permeated hydrogen mass flux, with about 0.05 kg/m2.h gained per 1 atm increase in the retentate pressure, while decreasing the absolute permeate pressure from the base value of 20 bar to 0.2 bar causes the hydrogen mass flux to increase exponentially from 1.15 kg/m2.h. to 5.11 kg/m2.h. This study is linked with the United Nations Sustainable Development Goal (SDG) numbers 7, 9, 11, and 13. Full article
Show Figures

Figure 1

Back to TopTop