Process Intensification for CO2 Hydrogenation to Liquid Fuels
Abstract
:1. Introduction
- -
- Fossil fuels are being progressively depleted, which is inevitable since they are finite resources. This depletion will reduce the production of fossil fuels and increase their prices.
- -
- Reducing CO2 emissions is desirable as they are the main cause of climate change.
- -
- Renewable electric energy is available at an increasingly lower price, even though renewable sources such as wind and photovoltaics are intermittent and difficult to control. Hence, this availability comes with the drawback of needing to store surplus energy, which increases as the percentage of electrical energy produced from renewable sources increases.
- -
- Using batteries as energy sources in heavy transportation, such as trucks or ships, as well as in aviation, is difficult. In general, the high weight of batteries (i.e., low energy density) makes it unfeasible for them to be used as the primary energy source for these types of vehicles.
- -
- There is a limited amount of biomass available to produce biofuels. Fuels derived from fats and exhausted oils can only cover a small percentage of the energy currently employed in transportation. In most countries, the energy provided by biofuels is only 2–5% of the energy provided by oil. Even if all available biomass, including lignocellulosic residues, was employed, only 10–20% of the energy demand will be obtained [1].
- -
- Electrolysers are decreasing in cost [2]. As the cost has decreased, obtaining hydrogen via electrolysis has become easier. In particular, the cost of electrolysers becomes dominant when they are employed for short-time periods [3], as it would happen if only excess electricity was used (i.e., in periods when the production of renewable energy overcomes the electrical system requirements).
1.1. Types of E-Fuels
1.1.1. Methanol
1.1.2. Dimethyl Ether
1.1.3. Fischer–Tropsch Liquid Hydrocarbons
1.2. Process Intensification
2. Membrane Reactors
2.1. Membrane Reactors for Methanol
2.1.1. Experimental Works
2.1.2. Mathematical Models
2.1.3. Developments in Membrane
2.2. Membrane Reactors for DME
2.3. Membrane Reactors for Fischer–Tropsch
2.4. Summary and Outlooks for Membrane Reactors
3. Sorption-Enhanced Reactors
3.1. Sorption-Enhanced Methanol Synthesis
3.1.1. Experimental Studies
3.1.2. Mathematical Modelling
3.2. Sorption-Enhanced DME Synthesis
3.2.1. Experimental
3.2.2. Model
3.3. Sorption-Enhanced Fischer–Tropsch Process
3.4. Summary and Outlooks for Sorption-Enhanced Reaction
4. Structured Catalyst Reactors
5. Other Process Intensification Systems
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCS | Carbon Capture and Storage |
CFFBR | Circulating Fast Fluidized-Bed Reactor |
CZA | Copper-zinc-alumina |
DME | Dimethyl Ether |
GSSTF | Gas–Solid–Solid Trickle Flow |
LPG | Liquefied Petroleum Gas |
MTG | Methanol-to-Gasoline |
MTO | Methanol-to-Olefins |
POC | Periodic Ordered Catalysts |
PTA | Phosphotungstic Acid |
rWGS | Reverse Water Gas Shift |
SE-WGS | Sorption-Enhanced Water–Gas Shift |
SEDMES | Sorption-enhanced Dimethyl Ether Synthesis |
SEMS | Sorption-enhanced Methanol Synthesis |
SER | Sorption-enhanced Reaction |
WGS | Water–Gas Shift |
References
- IEA. IEA Bioenergy Annual Report; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Saba, S.M.; Müller, M.; Robinius, M.; Stolten, D. The Investment Costs of Electrolysis—A Comparison of Cost Studies from the Past 30 Years. Int. J. Hydrogen Energy 2018, 43, 1209–1223. [Google Scholar] [CrossRef]
- Proost, J. State-of-the Art CAPEX Data for Water Electrolysers, and Their Impact on Renewable Hydrogen Price Settings. Int. J. Hydrogen Energy 2019, 44, 4406–4413. [Google Scholar] [CrossRef]
- Kamkeng, A.D.N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation Technologies for CO2 Utilisation: Current Status, Challenges and Future Prospects. Chem. Eng. J. 2021, 409, 128138. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Vo, D.V.N.; Jeevanantham, S.; Bhuvaneswari, V.; Anantha Narayanan, V.; Yaashikaa, P.R.; Swetha, S.; Reshma, B. A Comprehensive Review on Different Approaches for CO2 Utilization and Conversion Pathways. Chem. Eng. Sci. 2021, 236, 116515. [Google Scholar] [CrossRef]
- Busca, G.; Spennati, E.; Riani, P.; Garbarino, G. Mechanistic and Compositional Aspects of Industrial Catalysts for Selective CO2 Hydrogenation Processes. Catalysts 2024, 14, 95. [Google Scholar] [CrossRef]
- Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide. Energy Environ. Sci. 2010, 3, 43–81. [Google Scholar] [CrossRef]
- Olah, G.A. Beyond Oil and Gas: The Methanol Economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2639. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Prakash, G.K.S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 2009, 74, 487–498. [Google Scholar] [CrossRef]
- Olah, G.A. Towards Oil Independence through Renewable Methanol Chemistry. Angew. Chem. Int. Ed. 2013, 52, 104–107. [Google Scholar] [CrossRef]
- Goeppert, A.; Czaun, M.; Jones, J.-P.; Surya Prakash, G.K.; Olah, G.A. Recycling of Carbon Dioxide to Methanol and Derived Products—Closing the Loop. Chem. Soc. Rev. 2014, 43, 7995–8048. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Heterogeneous Catalytic Reactions with CO2: Status and Perspectives. Stud. Surf. Sci. Catal. 2004, 153, 1–8. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Opportunities and Prospects in the Chemical Recycling of Carbon Dioxide to Fuels. Catal. Today 2009, 148, 191–205. [Google Scholar] [CrossRef]
- Quadrelli, E.A.; Centi, G.; Duplan, J.L.; Perathoner, S. Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential. ChemSusChem 2011, 4, 1194–1215. [Google Scholar] [CrossRef]
- Centi, G.; Quadrelli, E.A.; Perathoner, S. Catalysis for CO2 Conversion: A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries. Energy Environ. Sci. 2013, 6, 1711–1731. [Google Scholar] [CrossRef]
- Perathoner, S.; Centi, G. CO2 Recycling: A Key Strategy to Introduce Green Energy in the Chemical Production Chain. ChemSusChem 2014, 7, 1274–1282. [Google Scholar] [CrossRef]
- Ampelli, C.; Carreon, M.L.; Liu, Y. New Paths and Research Directions in CO2 Conversion by Electro-, Photo- and Plasma Catalysis. J. Energy Chem. 2024, 99, 300–301. [Google Scholar] [CrossRef]
- Aresta, M. My Journey in the CO2-Chemistry Wonderland. Coord. Chem. Rev. 2017, 334, 150–183. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Angelini, A. The Changing Paradigm in CO2 Utilization. J. CO2 Util. 2013, 3–4, 65–73. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Quaranta, E. State of the Art and Perspectives in Catalytic Processes for CO2 Conversion into Chemicals and Fuels: The Distinctive Contribution of Chemical Catalysis and Biotechnology. J. Catal. 2016, 343, 2–45. [Google Scholar] [CrossRef]
- Arakawa, H.; Aresta, M.; Armor, J.N.; Barteau, M.A.; Beckman, E.J.; Bell, A.T.; Bercaw, J.E.; Creutz, C.; Dinjus, E.; Dixon, D.A.; et al. Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities. Chem. Rev. 2001, 101, 953–996. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A. Utilisation of CO2 as a Chemical Feedstock: Opportunities and Challenges. Dalton Trans. 2007, 28, 2975–2992. [Google Scholar] [CrossRef] [PubMed]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef] [PubMed]
- Tursunov, O.; Kustov, L.; Kustov, A. A Brief Review of Carbon Dioxide Hydrogenation to Methanol Over Copper and Iron Based Catalysts. Oil Gas Sci. Technol.–Revue IFP Energ. Nouv. 2017, 72, 30. [Google Scholar] [CrossRef]
- Tursunov, O.; Kustov, L.; Tilyabaev, Z. Methanol Synthesis from the Catalytic Hydrogenation of CO2 over CuO–ZnO Supported on Aluminum and Silicon Oxides. J. Taiwan Inst. Chem. Eng. 2017, 78, 416–422. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. A Short Review of Recent Advances in CO2 Hydrogenation to Hydrocarbons over Heterogeneous Catalysts. RSC Adv. 2018, 8, 7651–7669. [Google Scholar] [CrossRef]
- Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J.L.G.; Navarro, R.M. Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis. Materials 2019, 12, 3902. [Google Scholar] [CrossRef]
- Din, I.U.; Usman, M.; Khan, S.; Helal, A.; Alotaibi, M.A.; Alharthi, A.I.; Centi, G. Prospects for a Green Methanol Thermo-Catalytic Process from CO2 by Using MOFs Based Materials: A Mini-Review. J. CO2 Util. 2021, 43, 101361. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Song, C.; Guo, X. Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Front. Energy Res. 2021, 8, 621119. [Google Scholar] [CrossRef]
- Darji, H.R.; Kale, H.B.; Shaikh, F.F.; Gawande, M.B. Advancement and State-of-Art of Heterogeneous Catalysis for Selective CO2 Hydrogenation to Methanol. Coord. Chem. Rev. 2023, 497, 215409. [Google Scholar] [CrossRef]
- Alaba, P.A.; Abbas, A.; Daud, W.M.W. Insight into Catalytic Reduction of CO2: Catalysis and Reactor Design. J. Clean. Prod. 2017, 140, 1298–1312. [Google Scholar] [CrossRef]
- Sick, V. Spiers Memorial Lecture: CO2utilization: Why, Why Now, and How? Faraday Discuss. 2021, 230, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Guo, X.; He, Y.; Tsubaki, N. CO2 Heterogeneous Hydrogenation to Carbon-Based Fuels: Recent Key Developments and Perspectives. J. Mater. Chem. A Mater. 2023, 11, 11637–11669. [Google Scholar] [CrossRef]
- Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chem. Rev. 2017, 117, 9804–9838. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Peppel, T.; Seeburg, D.; Kondratenko, V.A.; Kalevaru, N.; Martin, A.; Wohlrab, S. Methane Conversion into Different Hydrocarbons or Oxygenates: Current Status and Future Perspectives in Catalyst Development and Reactor Operation. Catal. Sci. Technol. 2017, 7, 366–381. [Google Scholar] [CrossRef]
- Dorner, R.W.; Hardy, D.R.; Williams, F.W.; Willauer, H.D. Heterogeneous Catalytic CO2 Conversion to Value-Added Hydrocarbons. Energy Environ. Sci. 2010, 3, 884. [Google Scholar] [CrossRef]
- Cui, L.; Liu, C.; Yao, B.; Edwards, P.P.; Xiao, T.; Cao, F. A Review of Catalytic Hydrogenation of Carbon Dioxide: From Waste to Hydrocarbons. Front. Chem. 2022, 10, 1037997. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the Art and Perspectives in Heterogeneous Catalysis of CO2 Hydrogenation to Methanol. Chem. Soc. Rev. 2020, 49, 1385–1413. [Google Scholar] [CrossRef]
- Velty, A.; Corma, A. Advanced Zeolite and Ordered Mesoporous Silica-Based Catalysts for the Conversion of CO2 to Chemicals and Fuels. Chem. Soc. Rev. 2023, 52, 1773–1946. [Google Scholar] [CrossRef]
- Yan, P.; Peng, H.; Vogrin, J.; Rabiee, H.; Zhu, Z. Selective CO2 Hydrogenation over Zeolite-Based Catalysts for Targeted High-Value Products. J. Mater. Chem. A Mater. 2023, 11, 17938–17960. [Google Scholar] [CrossRef]
- Dokania, A.; Ramirez, A.; Bavykina, A.; Gascon, J. Heterogeneous Catalysis for the Valorization of CO2: Role of Bifunctional Processes in the Production of Chemicals. ACS Energy Lett. 2019, 4, 167–176. [Google Scholar] [CrossRef]
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- Joo, O.S.; Jung, K.D.; Moon, I.; Rozovskii, A.Y.; Lin, G.I.; Han, S.H.; Uhm, S.J. Carbon Dioxide Hydrogenation to Form Methanol via a Reverse-Water-Gas- Shift Reaction (the CAMERE Process). Ind. Eng. Chem. Res. 1999, 38, 1808–1812. [Google Scholar] [CrossRef]
- Anicic, B.; Trop, P.; Goricanec, D. Comparison between Two Methods of Methanol Production Fromcarbon Dioxide. Energy 2014, 77, 279–289. [Google Scholar] [CrossRef]
- Methanol Institute. Available online: https://www.methanol.org/renewable (accessed on 17 March 2025).
- Fleisch, T.H.; Basu, A.; Sills, R.A. Introduction and Advancement of a New Clean Global Fuel: The Status of DME Developments in China and Beyond. J. Nat. Gas Sci. Eng. 2012, 9, 94–107. [Google Scholar] [CrossRef]
- Ateka, A.; Rodriguez-Vega, P.; Ereña, J.; Aguayo, A.T.; Bilbao, J. A Review on the Valorization of CO2. Focusing on the Thermodynamics and Catalyst Design Studies of the Direct Synthesis of Dimethyl Ether. Fuel Process. Technol. 2022, 233, 107310. [Google Scholar] [CrossRef]
- Dry, M.E. The Fischer-Tropsch Process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Dell’Aversano, S.; Villante, C.; Gallucci, K.; Vanga, G.; Di Giuliano, A. E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition. Energies 2024, 17, 3995. [Google Scholar] [CrossRef]
- Dieterich, V.; Buttler, A.; Hanel, A.; Spliethoff, H.; Fendt, S. Power-to-Liquid via Synthesis of Methanol, DME or Fischer–Tropsch-Fuels: A Review. Energy Environ. Sci. 2020, 13, 3207–3252. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Moulijin, J. Re-Engineering the Chemical Processing Plant: Process Intensification; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Stankiewicz, A. Reactive Separations for Process Intensification: An Industrial Perspective. Chem. Eng. Technol. 2003, 42, 137–144. [Google Scholar] [CrossRef]
- Meloni, E.; Cafiero, L.; Renda, S.; Martino, M.; Pierro, M.; Palma, V. Ru- and Rh-Based Catalysts for CO2 Methanation Assisted by Non-Thermal Plasma. Catalysts 2023, 13, 488. [Google Scholar] [CrossRef]
- Meloni, E.; Iervolino, G.; Ruocco, C.; Renda, S.; Festa, G.; Martino, M.; Palma, V. Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review. Energies 2022, 15, 3588. [Google Scholar] [CrossRef]
- Muccioli, O.; Meloni, E.; Renda, S.; Martino, M.; Brandani, F.; Pullumbi, P.; Palma, V. NiCoAl-Based Monolithic Catalysts for the N2O Intensified Decomposition: A New Path towards the Microwave-Assisted Catalysis. Processes 2023, 11, 1511. [Google Scholar] [CrossRef]
- Armor, J.N. Membrane Catalysis: Where Is It Now, What Needs to Be Done? Catal. Today 1995, 25, 199–207. [Google Scholar] [CrossRef]
- Sirkar, K.K. Membrane Separation Technologies: Current Developments. Chem. Eng. Commun. 1997, 157, 145–184. [Google Scholar] [CrossRef]
- Sanchez-Marcano, J.G.; Tsotsis, T.T. Catalytic Membranes and Membrane Reactors; Wiley-VCH: Hoboken, NJ, USA, 2002. [Google Scholar]
- Tan, X.; Li, K. Inorganic Membrane Reactors: Fundamentals and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Basile, A.; Gallucci, F. Membranes for Membrane Reactors: Preparation, Optimization and Selection; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Basile, A. Handbook of Membrane Reactors; Woodhead Publishing: Sawston, UK, 2013. [Google Scholar]
- Judd, S.; Judd, C. The MBR Book Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Struis, R.P.W.J.; Stucki, S.; Wiedorn, M. A Membrane Reactor for Methanol Synthesis. J. Memb. Sci. 1996, 113, 93–100. [Google Scholar] [CrossRef]
- Menendez, M.; Piera, E.; Coronas, J.; Santamaría, J. Zeolite Membrane Reactor for the Production of Methanol and Other Alcohols Form Synthesis Gas. OEPM Patent no. 2164544, 22 July 1999. [Google Scholar]
- Algieri, C.; Bruno, A.; Gomez, O.; Mallada, R.; Aguado, S.; Bernal, P.; Golemme, G.; Menéndez, M.; Santamaría, J.; Granato, T.; et al. Zeolite membranes for methanol synthesis in a membrane reactor (Comunicazione a convegno). In Proceedings of the 4th European Congress of Chemical Engineering, Granada, Spain, 21–25 September 2003; p. O-7.2-002. [Google Scholar]
- Gallucci, F.; Paturzo, L.; Basile, A. An Experimental Study of CO2 Hydrogenation into Methanol Involving a Zeolite Membrane Reactor. Chem. Eng. Proc. 2004, 43, 1029–1036. [Google Scholar] [CrossRef]
- Sea, B.; Lee, K. Hydrogen Using a Ceramic Membrane Reactor. React. Kinet. Catal. Lett. 2003, 80, 33–38. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, Q. Methanol Synthesis from CO2 Using a Silicone Rubber/Ceramic Composite Membrane Reactor. Sep. Purif. Technol. 2004, 34, 227–237. [Google Scholar] [CrossRef]
- Li, H.; Qiu, C.; Ren, S.; Dong, Q.; Zhang, S.; Zhou, F.; Liang, X.; Wang, J.; Li, S.; Yu, M. Na+–Gated Water-Conducting Nanochannels for Boosting CO2 Conversion to Liquid Fuels. Science 2020, 367, 667–671. [Google Scholar] [CrossRef]
- Seshimo, M.; Liu, B.; Lee, H.R.; Yogo, K.; Yamaguchi, Y.; Shigaki, N.; Mogi, Y.; Kita, H.; Nakao, S.I. Membrane Reactor for Methanol Synthesis Using Si-rich LTA Zeolite Membrane. Membranes 2021, 11, 505. [Google Scholar] [CrossRef]
- Struis, R.P.W.J.; Stucki, S. Verification of the Membrane Reactor Concept for the Methanol Synthesis. Appl. Catal. A Gen. 2001, 216, 117–129. [Google Scholar] [CrossRef]
- Barbieri, G.; Marigliano, G.; Golemme, G.; Drioli, E. Simulation of CO2 Hydrogenation with CH3OH Removal in a Zeolite Membrane Reactor. Chem. Eng. Commun. 2002, 85, 53–59. [Google Scholar] [CrossRef]
- Piera, E.; Salomón, M.A.; Coronas, J.; Menéndez, M.; Santamaría, J. Synthesis, Characterization and Separation Properties of a Composite Mordenite/ZSM-5/Chabazite Hydrophilic Membrane. J. Memb. Sci. 1998, 149, 99–114. [Google Scholar] [CrossRef]
- Gallucci, F.; Basile, A. Co-Current and Counter-Current Modes for Methanol Steam Reforming Membrane Reactor. Int. J. Hydrogen Energy 2006, 31, 2243–2249. [Google Scholar] [CrossRef]
- Gallucci, F.; Basile, A. A Theoretical Analysis of Methanol Synthesis from CO2 and H2 in a Ceramic Membrane Reactor. Int. J. Hydrogen Energy 2007, 32, 5050–5058. [Google Scholar] [CrossRef]
- Farsi, M.; Jahanmiri, A. Application of Water Vapor-Permselective Alumina-Silica Composite Membrane in Methanol Synthesis Process to Enhance CO2 Hydrogenation and Catalyst Life Time. J. Ind. Eng. Chem. 2012, 18, 1088–1095. [Google Scholar] [CrossRef]
- Farsi, M.; Jahanmiri, a. Dynamic Modeling of a H2O-Permselective Membrane Reactor to Enhance Methanol Synthesis from Syngas Considering Catalyst Deactivation. J. Nat. Gas Chem. 2012, 21, 407–414. [Google Scholar] [CrossRef]
- Hamedi, H.; Brinkmann, T.; Shishatskiy, S. Membrane-Assisted Methanol Synthesis Processes and the Required Permselectivity. Membranes 2021, 11, 596. [Google Scholar] [CrossRef]
- Hamedi, H.; Brinkmann, T. Rigorous and Customizable 1D Simulation Framework for Membrane Reactors to, in Principle, Enhance Synthetic Methanol Production. ACS Sustain. Chem. Eng. 2021, 9, 7620–7629. [Google Scholar] [CrossRef]
- Ountaksinkul, K.; Vas-Umnuay, P.; Kasempremchit, N.; Bumroongsakulsawat, P.; Kim-Lohsoontorn, P.; Jiwanuruk, T.; Assabumrungrat, S. Performance Comparison of Different Membrane Reactors for Combined Methanol Synthesis and Biogas Upgrading. Chem. Eng. Proc. 2019, 136, 191–200. [Google Scholar] [CrossRef]
- Hauth, T.; Pielmaier, K.; Dieterich, V.; Wein, N. Energy Advances Design Parameter Optimization of a Membrane Reactor for Methanol Synthesis Using a Sophisticated CFD Model. Energy Adv. 2025, 4, 565–577. [Google Scholar] [CrossRef]
- Bazmi, M.; Gong, J.; Jessen, K.; Tsotsis, T. Waste CO2 Capture and Utilization for Methanol Production via a Novel Membrane Contactor Reactor Process: Techno-Economic Analysis (TEA), and Comparison with Other Existing and Emerging Technologies. Chem. Eng. Proc. 2024, 201, 109825. [Google Scholar] [CrossRef]
- Dieterich, V.; Wein, N.; Spliethoff, H.; Fendt, S. Performance Requirements of Membrane Reactors for the Application in Renewable Methanol Synthesis: A Techno-Economic Assessment. Adv. Sust. Systems 2022, 6, 2200254. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Ghader, S. Theoretical Investigation of a Pd-Membrane Reactor for Methanol Synthesis. Chem. Eng. Technol. 2003, 26, 902–907. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Bayat, M.; Rahmani, F. Enhancement of Methanol Production in a Novel Cascading Fluidized-Bed Hydrogen Permselective Membrane Methanol Reactor. Chem. Eng. J. 2010, 157, 520–529. [Google Scholar] [CrossRef]
- Gong, J.; Sadat-Zebarjad, F.; Jessen, K.; Tsotsis, T. An Experimental and Modeling Study of the Application of Membrane Contactor Reactors to Methanol Synthesis Using Pure CO2 Feeds. Chem. Eng. Process. 2023, 183, 109241. [Google Scholar] [CrossRef]
- Jia, M.D.; Chen, B.; Noble, R.D.; Falconer, J.L. Ceramic-Zeolite Composite Membranes and Their Application for Separation of Vapor/Gas Mixtures. J. Memb. Sci. 1994, 90, 1–10. [Google Scholar] [CrossRef]
- Kita, H.; Horii, K.; Ohtoshi, Y.; Tanaka, K.; Okamoto, K.-I. Synthesis of a Zeolite NaA Membrane for Pervaporation of Water/Organic Liquid Mixtures. J. Mater. Sci. Lett. 1995, 14, 206–208. [Google Scholar] [CrossRef]
- Casanave, D.; Giroir-Fendler, A.; Sanchez, J.; Loutaty, R.; Dalmon, J.A. Control of Transport Properties with a Microporous Membrane Reactor to Enhance Yields in Dehydrogenation Reactions. Catal. Today 1995, 25, 309–314. [Google Scholar] [CrossRef]
- Coronas, J.; Santamaria, J. State-of-the-Art in Zeolite Membrane Reactors. Top. Catal. 2004, 29, 29–44. [Google Scholar] [CrossRef]
- Caro, J.; Noack, M. Zeolite Membranes—Recent Developments and Progress. Microporous Mesoporous Mater. 2008, 115, 215–233. [Google Scholar] [CrossRef]
- Téllez, C.; Menéndez, M. Zeolite Membrane Reactors. In Membranes for Membrane Reactors: Preparation, Optimization and Selection; Basile, A., Gallucci, F., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 243–273. [Google Scholar]
- Wenten, I.G.; Khoiruddin, K.; Mukti, R.R.; Rahmah, W.; Wang, Z.; Kawi, S. Zeolite Membrane Reactors: From Preparation to Application in Heterogeneous Catalytic Reactions. React. Chem. Eng. 2021, 6, 401–417. [Google Scholar] [CrossRef]
- Gorgojo, P.; de la Iglesia, Ó.; Coronas, J. Preparation and Characterization of Zeolite Membranes. Membr. Sci. Technol. 2008, 13, 135–175. [Google Scholar]
- Gorbe, J.; Lasobras, J.; Francés, E.; Herguido, J.; Menéndez, M.; Kumakiri, I.; Kita, H. Preliminary Study on the Feasibility of Using a Zeolite A Membrane in a Membrane Reactor for Methanol Production. Sep. Purif. Technol. 2018, 200, 164–168. [Google Scholar] [CrossRef]
- Lee, S.M.; Xu, N.; Grace, J.R.; Li, A.; Lim, C.J.; Kim, S.S.; Fotovat, F.; Schaadt, A.; White, R.J. Structure, Stability and Permeation Properties of NaA Zeolite Membranes for H2O/H2 and CH3OH/H2 Separations. J. Eur. Ceram. Soc. 2018, 38, 211–219. [Google Scholar] [CrossRef]
- Li, Z.; Deng, Y.; Wang, Z.; Hu, J.; Haw, K.G.; Wang, G.; Kawi, S. A Superb Water Permeable Membrane for Potential Applications in CO2 to Liquid Fuel Process. J. Memb. Sci. 2021, 639, 119682. [Google Scholar] [CrossRef]
- Juarez, E.; Lasobras, J.; Soler, J.; Herguido, J.; Menéndez, M. Polymer–Ceramic Composite Membranes for Water Removal in Membrane Reactors. Membranes 2021, 11, 472. [Google Scholar] [CrossRef]
- Pham, Q.H.; Goudeli, E.; Scholes, C.A. Selective Separation of Water and Methanol from Hydrogen and Carbon Dioxide at Elevated Temperature through Polyimide and Polyimidazole Based Membranes. J. Memb. Sci. 2023, 686, 121990. [Google Scholar] [CrossRef]
- Sawamura, K.I.; Shirai, T.; Takada, M.; Sekine, Y.; Kikuchi, E.; Matsukata, M. Selective Permeation and Separation of Steam from Water–Methanol–Hydrogen Gas Mixtures through Mordenite Membrane. Catal. Today 2008, 132, 182–187. [Google Scholar] [CrossRef]
- Hirota, Y.; Nakai, M.; Tani, K.; Sakane, K.; Ikeda, A.; Hasegawa, Y.; Araki, S. Gas and Steam Permeation Properties of Cation-Exchanged ZSM-5 Membrane. Membranes 2025, 15, 70. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Huang, A.; Caro, J. Hydrophilic SOD and LTA Membranes for Membrane-Supported Methanol, Dimethylether and Dimethylcarbonate Synthesis. Microporous Mesoporous Mater. 2015, 207, 33–38. [Google Scholar] [CrossRef]
- Rahimalimamaghani, A.; Gallucci, F.; Pacheco-Tanaka, D.A.; Llosa Tanco, M.A. Carbon Molecular Sieve Membrane Prepared from Hydroquinone and the Method of Manufacturing. Patent: US20240261736A1. U.S. Patent Application No. 18/566,48, 2022. [Google Scholar]
- Maghsoudi, H. Defects of Zeolite Membranes: Characterization, Modification and Post-treatment Techniques. Sep. Pur. Rev. 2015, 45, 169–192. [Google Scholar] [CrossRef]
- Aoki, K.; Kusakabe, K.; Morooka, S. Separation of Gases with an A-Type Zeolite Membrane. Ind. Eng. Chem. Res. 2000, 39, 2245–2251. [Google Scholar] [CrossRef]
- Bernal, M.P.; Piera, E.; Coronas, J.; Menéndez, M.; Santamaría, J. Mordenite and ZSM-5 Hydrophilic Tubular Membranes for the Separation of Gas Phase Mixtures. Catal. Today 2000, 56, 221–227. [Google Scholar] [CrossRef]
- Zhu, W.; Gora, L.; Van Den Berg, A.W.C.; Kapteijn, F.; Jansen, J.C.; Moulijn, J.A. Water Vapour Separation from Permanent Gases by a Zeolite-4A Membrane. J. Memb. Sci. 2005, 253, 57–66. [Google Scholar] [CrossRef]
- Rezai, S.A.S.; Lindmark, J.; Andersson, C.; Jareman, F.; Möller, K.; Hedlund, J. Water/Hydrogen/Hexane Multicomponent Selectivity of Thin MFI Membranes with Different Si/Al Ratios. Microporous Mesoporous Mater. 2008, 108, 136–142. [Google Scholar] [CrossRef]
- Poto, S.; Endepoel, J.G.H.; Llosa-Tanco, M.A.; Pacheco-Tanaka, D.A.; Gallucci, F.; Neira d’Angelo, M.F. Vapor/Gas Separation through Carbon Molecular Sieve Membranes: Experimental and Theoretical Investigation. Int. J. Hydrog. Energy 2022, 47, 11385–11401. [Google Scholar] [CrossRef]
- Poto, S.; van den Bogaard, H.; Gallucci, F.; Fernanda Neira d’Angelo, M. Evaluation of the Relevant Mass and Heat Transfer Phenomena in a Packed Bed Membrane Reactor for the Direct Conversion of CO2 to Dimethyl Ether. Fuel 2023, 350, 128783. [Google Scholar] [CrossRef]
- Poto, S.; Vink, T.; Oliver, P.; Gallucci, F.; Neira D’angelo, M.F. Techno-Economic Assessment of the One-Step CO2 conversion to Dimethyl Ether in a Membrane-Assisted Process. J. CO2 Util. 2023, 69, 102419. [Google Scholar] [CrossRef]
- Poto, S.; Llosa Tanco, M.A.; Pacheco Tanaka, D.A.; Neira d′Angelo, M.F.; Gallucci, F. Experimental Investigation of a Packed Bed Membrane Reactor for the Direct Conversion of CO2 to Dimethyl Ether. J. CO2 Util. 2023, 72, 102513. [Google Scholar] [CrossRef]
- Diban, N.; Urtiaga, A.M.; Ortiz, I.; Ereña, J.; Bilbao, J.; Aguayo, A.T.; Ereña, J.; Bilbao, J.; Aguayo, A.T. Influence of the Membrane Properties on the Catalytic Production of Dimethyl Ether with in Situ Water Removal for the Successful Capture of CO2. Chem. Eng. J. 2013, 234, 140–148. [Google Scholar] [CrossRef]
- Aguayo, A.T.; Ereña, J.; Mier, D.; Arandes, J.M.; Olazar, M.; Bilbao, J. Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO-ZnO-Al2O3/γ-Al2O3 Catalyst. Ind. Eng. Chem. Res. 2007, 46, 5522–5530. [Google Scholar] [CrossRef]
- Diban, N.; Urtiaga, A.M.; Ortiz, I.; Ereña, J.; Bilbao, J.; Aguayo, A.T. Improved Performance of a Pbm Reactor for Simultaneous CO2 Capture and DME Synthesis. Ind. Eng. Chem. Res. 2014, 53, 19479–19487. [Google Scholar] [CrossRef]
- Rodriguez-Vega, P.; Ateka, A.; Kumakiri, I.; Vicente, H.; Ereña, J.; Aguayo, A.T.; Bilbao, J. Experimental Implementation of a Catalytic Membrane Reactor for the Direct Synthesis of DME from H2+CO/CO2. Chem. Eng. Sci. 2021, 234, 116396. [Google Scholar] [CrossRef]
- Poto, S.; Gallucci, F.; Neira d’Angelo, M.F. Direct Conversion of CO2 to Dimethyl Ether in a Fixed Bed Membrane Reactor: Influence of Membrane Properties and Process Conditions. Fuel 2021, 302, 121080. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, W.L.; Fan, X.; Li, H.; Klinghoffer, N.; Pyrzynski, T.; Meyer, H.S.; Liang, X.; Yu, M.; Li, S. Prototype Catalytic Membrane Reactor for Dimethyl Ether Synthesis via CO2 Hydrogenation. Ind. Eng. Chem. Res. 2022, 61, 14656–14663. [Google Scholar] [CrossRef]
- Brunetti, A.; Migliori, M.; Cozza, D.; Catizzone, E.; Giordano, G.; Barbieri, G. Methanol Conversion to Dimethyl Ether in Catalytic Zeolite Membrane Reactors. ACS Sustain. Chem. Eng. 2020, 8, 10471–10479. [Google Scholar] [CrossRef]
- Guo, L.; Sun, J.; Ge, Q.; Tsubaki, N. Recent Advances in Direct Catalytic Hydrogenation of Carbon Dioxide to Valuable C2+ Hydrocarbons. J. Mater. Chem. A Mater. 2018, 6, 23244–23262. [Google Scholar] [CrossRef]
- Espinoza, R.L.; Santamaría, J.; Menendez, M.; Coronas, J.; Irusta, S. Production of Hydrocarbons. US Patent no. US6403660B1, 5 December 2000. [Google Scholar]
- Espinoza, R.L.; du Toit, E.; Santamaria, J.; Menendez, M.; Coronas, J.; Irusta, S. Use of Membranes in Fischer-Tropsch Reactors. In Studies in Surface Science and Catalysis 130; Corma, A., Melo, F.V., Mendioroz, S., Fierro, J.L.G., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2000; pp. 389–394. [Google Scholar]
- Rohde, M.P.; Unruh, D.; Schaub, G. Membrane Application in Fischer-Tropsch Synthesis to Enhance CO2 Hydrogenation. Ind. Eng. Chem. Res. 2005, 44, 9653–9658. [Google Scholar] [CrossRef]
- Rohde, M.P.; Schaub, G.; Khajavi, S.; Jansen, J.C.; Kapteijn, F. Fischer-Tropsch Synthesis with in Situ H2O Removal—Directions of Membrane Development. Microporous Mesoporous Mater. 2008, 115, 123–136. [Google Scholar] [CrossRef]
- Forghani, A.A.; Elekaei, H.; Rahimpour, M.R. Enhancement of Gasoline Production in a Novel Hydrogen-Permselective Membrane Reactor in Fischer-Tropsch Synthesis of GTL Technology. Int. J. Hydrog. Energy 2009, 34, 3965–3976. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Jokar, S.M.; Jamshidnejad, Z. A Novel Slurry Bubble Column Membrane Reactor Concept for Fischer-Tropsch Synthesis in GTL Technology. Chem. Eng. Res. Des. 2012, 90, 383–396. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Mirvakili, A.; Paymooni, K. A Novel Water Perm-Selective Membrane Dual-Type Reactor Concept for Fischer-Tropsch Synthesis of GTL (Gas to Liquid) Technology. Energy 2011, 36, 1223–1235. [Google Scholar] [CrossRef]
- Khassin, A.A.; Yurieva, T.M.; Sipatrov, A.G.; Kirillov, V.A.; Chermashentseva, G.K.; Parmon, V.N. Fischer-Tropsch Synthesis Using a Porous Catalyst Packing: Experimental Evidence of an Efficient Use of Permeable Composite Monoliths as a Novel Type of the Fischer-Tropsch Synthesis Catalyst. Catal. Today 2003, 79–80, 465–470. [Google Scholar] [CrossRef]
- He, J.; Xu, B.; Yoneyama, Y.; Nishiyama, N.; Tsubaki, N. Designing a New Kind of Capsule Catalyst and Its Application for Direct Synthesis of Middle Isoparaffins from Synthesis Gas. Chem. Lett. 2005, 34, 148–149. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, B.; Chen, C.; Jia, L.; Ma, Z.; Wang, Q.; Li, D. Carbon Coated Cobalt Catalysts for Direct Synthesis of Middle N-Alkanes from Syngas. Fuel 2022, 327, 124889. [Google Scholar] [CrossRef]
- Zhu, C.; Bollas, G.M. Gasoline Selective Fischer-Tropsch Synthesis in Structured Bifunctional Catalysts. Appl. Catal. B 2018, 235, 92–102. [Google Scholar] [CrossRef]
- Carvill, B.T.; Hufton, J.R.; Anand, M.; Sircar, S. Sorption-Enhanced Reaction Process. AIChE J. 1996, 42, 2756–2772. [Google Scholar] [CrossRef]
- Hufton, J.R.; Mayorga, S.; Sircar, S. Sorption-Enhanced Reaction Process for Hydrogen Production. AIChE J. 1999, 45, 248–256. [Google Scholar] [CrossRef]
- Xiu, G.-H.; Soares, J.L.; Li, P.; Rodrigues, A.E. Simulation of Five-Step One-Bed Sorption-Enhanced Reaction Process. AIChE J. 2002, 48, 2817–2832. [Google Scholar] [CrossRef]
- Živković, L.A.; Pohar, A.; Likozar, B.; Nikačević, N.M. Kinetics and Reactor Modeling for CaO Sorption-Enhanced High-Temperature Water–Gas Shift (SE–WGS) Reaction for Hydrogen Production. Appl. Energy 2016, 178, 844–855. [Google Scholar] [CrossRef]
- Arora, A.; Iyer, S.S.; Bajaj, I.; Faruque Hasan, M.M. Optimal Methanol Production via Sorption-Enhanced Reaction Process. Ind. Eng. Chem. Res. 2018, 57, 14143–14161. [Google Scholar] [CrossRef]
- Maksimov, P.; Laari, A.; Ruuskanen, V.; Koiranen, T.; Ahola, J. Methanol Synthesis through Sorption Enhanced Carbon Dioxide Hydrogenation. Chem. Eng. J. 2021, 418, 129290. [Google Scholar] [CrossRef]
- Cholewa, T.; Semmel, M.; Mantei, F.; Güttel, R.; Salem, O. Process Intensification Strategies for Power-to-X Technologies. ChemEngineering 2022, 6, 13. [Google Scholar] [CrossRef]
- Westerterpt, K.R.; Kuczynski, M. A Model for a Countercurrent Gas-Solid Trickle Flow Reactor for Equilibrium Reactions. The Methanol Synthesis. Chem. Eng. Sci. 1987, 42, 1871–1885. [Google Scholar] [CrossRef]
- Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterpt, K.R. Methanol Synthesis in a Countercurrent Gas-Solid-Solid Trickle Flow Reactor. An Experimental Study. Chem. Eng. Sci. 1987, 42, 1887–1898. [Google Scholar] [CrossRef]
- Ison, A.; Gorte, R.J. The Adsorption of Methanol and Water on H-ZSM-5. J. Catal. 1984, 89, 150–158. [Google Scholar] [CrossRef]
- Ullah, A.; Hashim, N.A.; Rabuni, M.F.; Mohd Junaidi, M.U. A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency. Energies 2023, 16, 1482. [Google Scholar] [CrossRef]
- Terreni, J.; Trottmann, M.; Franken, T.; Heel, A.; Borgschulte, A. Sorption-Enhanced Methanol Synthesis. Energy Technol. 2019, 7, 1801093. [Google Scholar] [CrossRef]
- Vanoye, L.; Favre-Réguillon, A.; Munno, P.; Rodríguez, J.F.; Dupuy, S.; Pallier, S.; Pitault, I.; De Bellefon, C. Methanol Dehydration over Commercially Available Zeolites: Effect of Hydrophobicity. Catal. Today 2013, 215, 239–242. [Google Scholar] [CrossRef]
- Jia Le, N.; Yin Fong, Y. Catalytic Conversion of CO2 to Dimethyl Ether: A Review of Recent Advances in Catalysts and Water Selective Layer. J. Ind. Eng. Chem. 2024, 140, 88–102. [Google Scholar] [CrossRef]
- Zapater, D.; Lasobras, J.; Soler, J.; Herguido, J.; Menéndez, M. Counteracting SAPO-34 Catalyst Deactivation in MTO Process Using a Two Zone Fluidized Bed Reactor: Reactor Testing and Process Viability. Catal. Today 2021, 362, 155–161. [Google Scholar] [CrossRef]
- Nikolic, M.; Daemen, L.; Ramirez-Cuesta, A.J.; Xicohtencatl, R.B.; Cheng, Y.; Putnam, S.T.; Stadie, N.P.; Liu, X.; Terreni, J.; Borgschulte, A. Neutron Insights into Sorption Enhanced Methanol Catalysis. Top. Catal. 2021, 64, 638–643. [Google Scholar] [CrossRef]
- Heracleous, E.; Koidi, V.; Lappas, A.A. Experimental Investigation of Sorption-Enhanced CO2 Hydrogenation to Methanol. ACS Sustain. Chem. Eng. 2023, 11, 9684–9695. [Google Scholar] [CrossRef]
- Heracleous, E.; Koidi, V.; Lappas, A.A. Effect of Zeolite Type in Sorption-Enhanced CO2 Hydrogenation to Methanol. Chem. Eng. J. 2024, 502, 157846. [Google Scholar] [CrossRef]
- Gavrilovic, L.; Kazi, S.S.; Cordero-Lanzac, T.; Olsbye, U. Sorption-Enhanced Methanol Synthesis. In Proceedings of the 17th Greenhouse Gas Control Technologies Conference (GHGT-17), Calgary, AB, Canada, 20–24 October 2024. [Google Scholar]
- Menéndez, M.; Herguido, J.; Soler, J.; Lasobras, J. Patent application: Reactor System for Sorption-Enhanced Catalytic Reactions with Continuous Regeneration of Sorbent and Related Methods. WO 2025/008320A1, 9 January 2025. [Google Scholar]
- Menéndez, M.; Ciércoles, R.; Lasobras, J.; Soler, J.; Herguido, J. A Preliminary Assessment of Sorption-Enhanced Methanol Synthesis in a Fluidized Bed Reactor with Selective Addition/Removal of the Sorbent. Catalysts 2024, 14, 409. [Google Scholar] [CrossRef]
- Arora, A.; Iyer, S.S.; Hasan, M.M.F. GRAMS: A General Framework Describing Adsorption, Reaction and Sorption-Enhanced Reaction Processes. Chem. Eng. Sci. 2018, 192, 335–358. [Google Scholar] [CrossRef]
- Nieminen, H.; Maksimov, P.; Laari, A.; Väisänen, V.; Vuokila, A.; Huuhtanen, M.; Koiranen, T. Process Modelling and Feasibility Study of Sorption-Enhanced Methanol Synthesis. Chem. Eng. Proc. 2022, 179, 109052. [Google Scholar] [CrossRef]
- Bayat, M.; Heravi, M.; Rahimpour, M.R. Sorption Enhanced Process by Integrated Heat-Exchanger Reactor Assisted by Fluidization Concept for Methanol Synthesis. Chem. Eng. Proc. 2016, 110, 30–43. [Google Scholar] [CrossRef]
- Abashar, M.E.E.; Al-Rabiah, A.A. Investigation of the Efficiency of Sorption-Enhanced Methanol Synthesis Process in Circulating Fast Fluidized Bed Reactors. Fuel Proc. Technol. 2018, 179, 387–398. [Google Scholar] [CrossRef]
- Abashar, M.E.E.; Al-Rabiah, A.A. Highly Efficient CO2 Hydrogenation to Methanol via In-Situ Condensation and Sorption in a Novel Multi-Stage Circulating Fast Fluidized Bed Reactor. Chem. Eng. J. 2022, 439, 135628. [Google Scholar] [CrossRef]
- Moioli, E.; Schildhauer, T. Tailoring the Reactor Properties in the Small-Scale Sorption-Enhanced Methanol Synthesis. Chem. Ing. Tech. 2023, 95, 631–641. [Google Scholar] [CrossRef]
- Krim, K.; Sachse, A.; Le Valant, A.; Pouilloux, Y.; Hocine, S. One Step Dimethyl Ether (DME) Synthesis from CO2 Hydrogenation over Hybrid Catalysts Containing Cu/ZnO/Al2O3 and Nano-Sized Hollow ZSM-5 Zeolites. Catal. Lett. 2023, 153, 83–94. [Google Scholar] [CrossRef]
- Frusteri, F.; Cordaro, M.; Cannilla, C.; Bonura, G. Multifunctionality of Cu-ZnO-ZrO2/H-ZSM5 Catalysts for the One-Step CO2-to-DME Hydrogenation Reaction. Appl. Catal. B 2015, 162, 57–65. [Google Scholar] [CrossRef]
- Bonura, G.; Cordaro, M.; Cannilla, C.; Mezzapica, A.; Spadaro, L.; Arena, F.; Frusteri, F. Catalytic Behaviour of a Bifunctional System for the One Step Synthesis of DME by CO2 Hydrogenation. Catal. Today 2014, 228, 51–57. [Google Scholar] [CrossRef]
- Guffanti, S.; Visconti, C.G.; Groppi, G. Model Analysis of the Role of Kinetics, Adsorption Capacity, and Heat and Mass Transfer Effects in Sorption Enhanced Dimethyl Ether Synthesis. Ind. Eng. Chem. Res. 2021, 60, 6767–6783. [Google Scholar] [CrossRef]
- Liuzzi, D.; Peinado, C.; Peña, M.A.; Van Kampen, J.; Boon, J.; Rojas, S. Increasing Dimethyl Ether Production from Biomass-Derived Syngas: Via Sorption Enhanced Dimethyl Ether Synthesis. Sustain. Energy Fuels 2020, 4, 5674–5681. [Google Scholar] [CrossRef]
- Altinsoy, N.S.; Avci, A.K. Sorption Enhanced DME Synthesis by One-Step CO2 Hydrogenation. Chem. Eng. Proc. 2024, 203, 109874. [Google Scholar] [CrossRef]
- van Kampen, J.; Boon, J.; Vente, J.; van Sint Annaland, M. Sorption Enhanced Dimethyl Ether Synthesis under Industrially Relevant Conditions: Experimental Validation of Pressure Swing Regeneration. React. Chem. Eng. 2021, 6, 244–257. [Google Scholar] [CrossRef]
- Van Kampen, J.; Booneveld, S.; Boon, J.; Vente, J.; Van Sint Annaland, M. Experimental Validation of Pressure Swing Regeneration for Faster Cycling in Sorption Enhanced Dimethyl Ether Synthesis. Chem. Comm. 2020, 56, 13540–13542. [Google Scholar] [CrossRef]
- Graaf, G.H.; Stamhuis, E.J.; Beenackers, A.A.C.M. Kinetics of Low-Pressure Methanol Synthesis. Chem. Eng. Sci. 1988, 43, 3185–3195. [Google Scholar] [CrossRef]
- Berčič, G.; Levec, J. Intrinsic and Global Reaction Rate of Methanol Dehydration over γ-Al2O3 Pellets. Ind. Eng. Chem. Res. 1992, 31, 1035–1040. [Google Scholar] [CrossRef]
- Kim, K.M.; Oh, H.T.; Lim, S.J.; Ho, K.; Park, Y.; Lee, C.H. Adsorption Equilibria of Water Vapor on Zeolite 3A, Zeolite 13X, and Dealuminated y Zeolite. J. Chem. Eng. Data 2016, 61, 1547–1554. [Google Scholar] [CrossRef]
- Ozcan, M.C.; Karaman, B.P.; Oktar, N.; Dogu, T. Dimethyl Ether from Syngas and Effect of CO2 Sorption on Product Distribution over a New Bifunctional Catalyst Pair Containing STA@SBA-15. Fuel 2022, 330, 125607. [Google Scholar] [CrossRef]
- Renda, S.; Soler, J.; Herguido, J.; Menéndez, M. Effect of Particles Size and Density on the Segregation of Catalyst-Sorbent Mixtures for Direct Sorption-Enhanced DME Synthesis: Experimental and Mathematical Study. Biomass Bioenergy 2025, 197, 107764. [Google Scholar] [CrossRef]
- Guffanti, S.; Visconti, C.G.; van Kampen, J.; Boon, J.; Groppi, G. Reactor Modelling and Design for Sorption Enhanced Dimethyl Ether Synthesis. Chem. Eng. J. 2021, 404, 126573. [Google Scholar] [CrossRef]
- Iliuta, I.; Iliuta, M.C.; Larachi, F. Sorption-Enhanced Dimethyl Ether Synthesis—Multiscale Reactor Modeling. Chem. Eng. Sci. 2011, 66, 2241–2251. [Google Scholar] [CrossRef]
- Tyraskis, I.; Capa, A.; Skorikova, G.; Sluijter, S.N.; Boon, J. Performance Optimization of Sorption-Enhanced DME Synthesis (SEDMES) from Captured CO2 and Renewable Hydrogen. Front. Chem. Eng. 2025, 7, 1521374. [Google Scholar] [CrossRef]
- Bertole, C.J.; Mims, C.A.; Kiss, G. The Effect of Water on the Cobalt-Catalyzed Fischer-Tropsch Synthesis. J. Catal. 2002, 210, 84–96. [Google Scholar] [CrossRef]
- Pendyala, V.R.R.; Jacobs, G.; Mohandas, J.C.; Luo, M.; Hamdeh, H.H.; Ji, Y.; Ribeiro, M.C.; Davis, B.H. Fischer-Tropsch Synthesis: Effect of Water over Iron-Based Catalysts. Catal. Lett. 2010, 140, 98–105. [Google Scholar] [CrossRef]
- Asbahr, W.; Lamparter, R.; Rauch, R. A Cold Flow Model of Interconnected Slurry Bubble Columns for Sorption-Enhanced Fischer–Tropsch Synthesis. ChemEngineering 2024, 8, 52. [Google Scholar] [CrossRef]
- Gavrilović, L.; Kazi, S.S.; Oliveira, A.; Encinas, O.L.I.; Blekkan, E.A. Sorption-Enhanced Fischer-Tropsch Synthesis—Effect of Water Removal. Catal. Today 2024, 432, 114614. [Google Scholar] [CrossRef]
- Bayat, M.; Hamidi, M.; Dehghani, Z.; Rahimpour, M.R.; Shariati, A. Sorption-Enhanced Reaction Process in Fischer-Tropsch Synthesis for Production of Gasoline and Hydrogen: Mathematical Modeling. J. Nat. Gas Sci. Eng. 2013, 14, 225–237. [Google Scholar] [CrossRef]
- Bayat, M.; Dehghani, Z.; Rahimpour, M.R. Sorption-Enhanced Methanol Synthesis in a Dual-Bed Reactor: Dynamic Modeling and Simulation. J. Taiwan Inst. Chem. Eng. 2014, 45, 2307–2318. [Google Scholar] [CrossRef]
- Coppola, A.; Massa, F.; Salatino, P.; Scala, F. Evaluation of Two Sorbents for the Sorption-Enhanced Methanation in a Dual Fluidized Bed System. Biomass Convers. Biorefin. 2021, 11, 111–119. [Google Scholar] [CrossRef]
- Agirre, I.; Acha, E.; Cambra, J.F.; Barrio, V.L. Water Sorption Enhanced CO2 Methanation Process: Optimization of Reaction Conditions and Study of Various Sorbents. Chem. Eng. Sci. 2021, 237, 116546. [Google Scholar] [CrossRef]
- Renda, S.; Ricca, A.; Palma, V. Insights in the Application of Highly Conductive Structured Catalysts to CO2 Methanation: Computational Study. Int. J. Hydrog. Energy 2023, 48, 37473–37488. [Google Scholar] [CrossRef]
- Leviness, S.; Deshmukh, S.R.; Richard, L.A.; Robota, H.J. Velocys Fischer-Tropsch Synthesis Technology—New Advances on State-of-the-Art. Top. Catal. 2014, 57, 518–525. [Google Scholar] [CrossRef]
- Almeida, L.C.; Echave, F.J.; Sanz, O.; Centeno, M.A.; Arzamendi, G.; Gandía, L.M.; Sousa-Aguiar, E.F.; Odriozola, J.A.; Montes, M. Fischer-Tropsch Synthesis in Microchannels. Chem. Eng. J. 2011, 167, 536–544. [Google Scholar] [CrossRef]
- Ying, X.; Zhang, L.; Xu, H.; Ren, Y.L.; Luo, Q.; Zhu, H.W.; Qu, H.; Xuan, J. Efficient Fischer-Tropsch Microreactor with Innovative Aluminizing Pretreatment on Stainless Steel Substrate for Co/Al2O3 Catalyst Coating. Fuel Process. Technol. 2016, 143, 51–59. [Google Scholar] [CrossRef]
- Almeida, L.C.; Sanz, O.; Merino, D.; Arzamendi, G.; Gandía, L.M.; Montes, M. Kinetic Analysis and Microstructured Reactors Modeling for the Fischer-Tropsch Synthesis over a Co-Re/Al2O3 Catalyst. Proc. Catal. Today 2013, 215, 103–111. [Google Scholar] [CrossRef]
- Hilmen, A.-M.M.; Bergene, E.; Lindvåg, O.A.; Schanke, D.; Eri, S.; Holmen, A. Fischer-Tropsch Synthesis on Monolithic Catalysts of Different Materials. Catal. Today 2001, 69, 227–232. [Google Scholar] [CrossRef]
- Guettel, R.; Turek, T. Comparison of Different Reactor Types for Low Temperature Fischer–Tropsch Synthesis: A Simulation Study. Chem. Eng. Sci. 2009, 64, 955–964. [Google Scholar] [CrossRef]
- De Deugd, R.M.; Kapteijn, F.; Moulijn, J.A. Using Monolithic Catalysts for Highly Selective Fischer-Tropsch Synthesis. Catal. Today 2003, 79–80, 495–501. [Google Scholar] [CrossRef]
- Ibáñez, M.; Sanz, O.; Egaña, A.; Reyero, I.; Bimbela, F.; Gandía, L.M.; Montes, M. Performance Comparison between Washcoated and Packed-Bed Monolithic Reactors for the Low-Temperature Fischer-Tropsch Synthesis. Chem. Eng. J. 2021, 425, 130424. [Google Scholar] [CrossRef]
- Visconti, C.G.; Tronconi, E.; Groppi, G.; Lietti, L.; Iovane, M.; Rossini, S.; Zennaro, R. Monolithic Catalysts with High Thermal Conductivity for the Fischer-Tropsch Synthesis in Tubular Reactors. Chem. Eng. J. 2011, 171, 1294–1307. [Google Scholar] [CrossRef]
- Visconti, C.G.; Panzeri, M.; Groppi, G.; Tronconi, E. Heat Transfer Intensification in Compact Tubular Reactors with Cellular Internals: A Pilot-Scale Assessment of Highly Conductive Packed-POCS with Skin Applied to the Fischer-Tropsch Synthesis. Chem. Eng. J. 2024, 481, 148469. [Google Scholar] [CrossRef]
- Ghosh, S.; Seethamraju, S. Feasibility of Reactive Distillation for Methanol Synthesis. Chem. Eng. Proc. 2019, 145, 889–899. [Google Scholar] [CrossRef]
- Srinivas, S.; Malik, R.K.; Mahajani, S.M. Feasibility of Reactive Distillation for Fischer—Tropsch Synthesis. Ind. Eng. Chem. Res. 2008, 47, 889–899. [Google Scholar] [CrossRef]
- Van Bennekom, J.G.; Venderbosch, R.H.; Assink, D.; Lemmens, K.P.J.; Heeres, H.J. Bench Scale Demonstration of the Supermethanol Concept: The Synthesis of Methanol from Glycerol Derived Syngas. Chem. Eng. J. 2012, 207–208, 245–253. [Google Scholar] [CrossRef]
- Kirsch, H.; Lochmahr, N.; Staudt, C.; Pfeifer, P.; Dittmeyer, R. Production of CO2-Neutral Liquid Fuels by Integrating Fischer-Tropsch Synthesis and Hydrocracking in a Single Micro-Structured Reactor: Performance Evaluation of Different Configurations by Factorial Design Experiments. Chem. Eng. J. 2020, 393, 124553. [Google Scholar] [CrossRef]
- Wentrup, J.; Pesch, G.R.; Thöming, J. Dynamic Operation of Fischer-Tropsch Reactors for Power-to-Liquid Concepts: A Review. Renew. Sustain. Energy Rev. 2022, 162, 112454. [Google Scholar] [CrossRef]
Mixture | Temp. | Selectivity | Comments | Ref. |
---|---|---|---|---|
H2O/alcohol/O2 (alcohol = MeOH, EtOH, PrOH) | 25 °C 25 °C 250 °C | H2O/PrOH = 149 H2O/O2 = 47 H2O/O2 = 2.5 | mordenite/ZSM-5/ chabazite | [73] |
H2O/H2 | 200 °C | H2O/CO2 = 22 H2O/H2 = 160 | NaA | [105] |
H2O/He | 300 K 500 K | H2O/He = 4.5 H2O/He = 0.5 | ZSM-5 ZSM-5 | [106] |
H2O/H2 = 72 | NaA | [107] | ||
H2O/MeOH/H2 | 250 °C | HO/H2 = 49 H2O/MeOH = 73 | Mordenite | [100] |
H2O/H2/C6H12 | 100 °C | H2O/H2 = 3.2 H2O/H2 = 6 | Silicalite ZSM-5 | [108] |
H2O/H2 | 200 °C | H2O/H2 = 4.6 H2O/MetOH = 233 | Sodalite | [102] |
H2O/CO2/N2/H2 | 180 °C 260 °C | H2O/H2 = 200 H2O/H2 = 10 | NaA | [95] |
30 °C 240 °C | H2O/H2 = ∞ H2O/H2 = 0.18 | NaA | [96] | |
H2O/CO2/CO/H2/MeOH | 250 °C | H2O/CO2 = 550 H2O/H2 = 190 | NaA | [69] |
CO2/CO/N2/CH4/H2O | 150 °C 200 °C | H2O/H2 = 12 H2O/H2 = 7 | Carbon mol. sieve | [109] |
CO2/CO/H2/H2O/MeOH | 200 °C | H2O/H2 = 2 | Carbon mol. sieve | [110,111,112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renda, S.; Menéndez, M. Process Intensification for CO2 Hydrogenation to Liquid Fuels. Catalysts 2025, 15, 509. https://doi.org/10.3390/catal15060509
Renda S, Menéndez M. Process Intensification for CO2 Hydrogenation to Liquid Fuels. Catalysts. 2025; 15(6):509. https://doi.org/10.3390/catal15060509
Chicago/Turabian StyleRenda, Simona, and Miguel Menéndez. 2025. "Process Intensification for CO2 Hydrogenation to Liquid Fuels" Catalysts 15, no. 6: 509. https://doi.org/10.3390/catal15060509
APA StyleRenda, S., & Menéndez, M. (2025). Process Intensification for CO2 Hydrogenation to Liquid Fuels. Catalysts, 15(6), 509. https://doi.org/10.3390/catal15060509