Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = melatonin secretion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1999 KiB  
Article
Circadian Light Manipulation and Melatonin Supplementation Enhance Morphine Antinociception in a Neuropathic Pain Rat Model
by Nian-Cih Huang and Chih-Shung Wong
Int. J. Mol. Sci. 2025, 26(15), 7372; https://doi.org/10.3390/ijms26157372 - 30 Jul 2025
Viewed by 161
Abstract
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model [...] Read more.
Disruption of circadian rhythms by abnormal light exposure and reduced melatonin secretion has been linked to heightened pain sensitivity and opioid tolerance. This study evaluated how environmental light manipulation and exogenous melatonin supplementation influence pain perception and morphine tolerance in a rat model of neuropathic pain induced by partial sciatic nerve transection (PSNT). Rats were exposed to constant darkness, constant light, or a 12 h/12 h light–dark cycle for one week before PSNT surgery. Behavioral assays and continuous intrathecal (i.t.) infusion of morphine, melatonin, or their combination were conducted over a 7-day period beginning immediately after PSNT. On Day 7, after discontinued drugs infusion, an acute intrathecal morphine challenge (15 µg, i.t.) was administered to assess tolerance expression. Constant light suppressed melatonin levels, exacerbated pain behaviors, and accelerated morphine tolerance. In contrast, circadian-aligned lighting preserved melatonin rhythms and mitigated these effects. Melatonin co-infusion attenuated morphine tolerance and enhanced morphine analgesia. Reduced pro-inflammatory cytokine expression and increase anti-inflammatory cytokine IL-10 level and suppressed astrocyte activation were also observed by melatonin co-infusion during morphine tolerance induction. These findings highlight the potential of melatonin and circadian regulation in improving opioid efficacy and reduced morphine tolerance in managing neuropathic pain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 1601 KiB  
Article
Longan Flower Ethanol Extract, Dimocarpus longan Lour, Mitigates Oxidative Damage and Inflammatory Responses While Promoting Sleep-Related Enzymes in Cell Models
by Chao-Chun Ma, Ming-Chang Hsieh, Wei-Lun Chiang, Yi-Wen Chen, Pin-Chao Huang, Chin-Hsiu Yu, Shao-Yu Lee, Tin-Ching Chung, Hsi-Chi Lu and Yu-Wei Chang
Biomedicines 2025, 13(7), 1588; https://doi.org/10.3390/biomedicines13071588 - 29 Jun 2025
Viewed by 601
Abstract
Objectives: Modern lifestyles factors such as digital overload, aging, and poor sleep hygiene have led to increasing cases of sleep disturbances and inflammation-related disorders. These conditions are often associated with oxidative stress and immune dysregulation. Longan flower extract (LFE), traditionally used in East [...] Read more.
Objectives: Modern lifestyles factors such as digital overload, aging, and poor sleep hygiene have led to increasing cases of sleep disturbances and inflammation-related disorders. These conditions are often associated with oxidative stress and immune dysregulation. Longan flower extract (LFE), traditionally used in East Asian medicine, has shown potential health benefits but remains scientifically underexplored. This study aims to investigate the chemical composition and bioactive effects of LFE on inflammation, oxidative stress, and melatonin biosynthesis in relevant cellular models. Methods: LFE was prepared using ethanol extraction and characterized for its total polyphenols, flavonoids, oligomeric proanthocyanidins (OPCs), and corilagin content via HPLC. Its anti-inflammatory, antioxidant, and neuroregulatory activities were assessed in LPS-stimulated RAW 264.7 macrophages and BV-2 microglial cells. Key assays included quantification of cytokines (TNF-α, IL-6), detection of nitric oxide (NO) and reactive oxygen species (ROS), and measurement of antioxidant enzyme activities (GPx, SOD). Gene expression of melatonin biosynthesis enzymes was evaluated using quantitative PCR. Results: LFE treatment significantly reduced LPS-induced TNF-α, IL-6, NO, and ROS production in both cell models. It enhanced GPx and SOD activity and increased intracellular glutathione levels. Moreover, LFE upregulated the expression of TPH1, DDC, AANAT, and ASMT, genes involved in melatonin biosynthesis, and promoted serotonin secretion. Conclusions: These findings suggest that LFE holds significant potential as a natural therapeutic supplement, particularly for alleviating sleep disturbances, reducing oxidative stress, and modulating inflammatory responses associated with modern lifestyle-related health conditions. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

12 pages, 294 KiB  
Review
Improving Sleep Quality to Enhance Athletic Activity—The Role of Nutrition and Supplementation: A Mini-Short Review
by Jonathan Fusi, Giorgia Scarfò, Raul Di Silvestro and Ferdinando Franzoni
Nutrients 2025, 17(11), 1779; https://doi.org/10.3390/nu17111779 - 24 May 2025
Viewed by 2370
Abstract
Sleep is a fundamental part of life for all living beings. The propensity to fall asleep is regulated by a circadian rhythm, which controls the secretion of the hormone melatonin. Melatonin secretion is linked to the light and dark phases of the day/night [...] Read more.
Sleep is a fundamental part of life for all living beings. The propensity to fall asleep is regulated by a circadian rhythm, which controls the secretion of the hormone melatonin. Melatonin secretion is linked to the light and dark phases of the day/night cycle. Getting proper sleep is an essential part of a healthy lifestyle. Scientific evidence shows that sleeping less than 7 h per night, or as little as 2 h per night, is a cardiovascular, metabolic, and cerebral risk factor. In addition, the role of sleep is fundamental for the recovery phase for athletes. Nutrition, supplementation, and exercise can greatly support the quality and quantity of sleep. They can have positive effects on sleep through specific physiological and biochemical responses. The objective of this short review is to critically investigate the possible sleep benefits of nutrition, exercise, and supplementation and to discuss further directions for research in this area. Full article
(This article belongs to the Special Issue Effects of Nutrient Intake on Exercise Recovery and Adaptation)
15 pages, 800 KiB  
Article
Melatonin Secretion and Impacts of Training and Match Schedules on Sleep Quality, Recovery, and Circadian Rhythms in Young Professional Football Players
by Antonio Almendros-Ruiz, Javier Conde-Pipó, Paula Aranda-Martínez, Jesús Olivares-Jabalera, Darío Acuña-Castroviejo, Bernardo Requena, José Fernández-Martínez and Miguel Mariscal-Arcas
Biomolecules 2025, 15(5), 700; https://doi.org/10.3390/biom15050700 - 11 May 2025
Viewed by 1538
Abstract
Modern elite football is becoming increasingly physically demanding, often requiring training and matches to be played at night. This schedule may disrupt circadian rhythms and melatonin secretion, thereby impairing sleep and recovery. This study investigated the effects of training time on melatonin secretion, [...] Read more.
Modern elite football is becoming increasingly physically demanding, often requiring training and matches to be played at night. This schedule may disrupt circadian rhythms and melatonin secretion, thereby impairing sleep and recovery. This study investigated the effects of training time on melatonin secretion, circadian phase markers, and sleep parameters in elite youth soccer players. Forty male players (aged 16–18 years) from an elite Spanish youth football club were studied. Two groups followed the same training program but trained either in the morning (MT) or in the evening (ET). Salivary melatonin was measured at six time points to determine the mean levels, dim light melatonin onset (DLMO), amplitude, and acrophase. Chronotype, sleep quality (PSQI), and daytime sleepiness (ESS) were assessed using validated questionnaires. Dietary intake and anthropometric variables were also recorded. The MT group had higher mean melatonin levels (p = 0.026) and earlier DLMO (p = 0.023) compared to the ET group. Sleep quality was significantly better in the MT group (p < 0.001), despite shorter sleep duration (p = 0.014). No major differences in diet or anthropometry were observed. The chronotype had a secondary effect on the circadian markers. Evening training is associated with alterations in melatonin rhythms and reduced sleep quality, possibly due to light-induced chronodisruption. These findings highlight the importance of training timing as a modifiable factor in the chronobiology and recovery of athletes. Incorporating circadian principles into training schedules may optimize resting time and thus performance and long-term health in athletes. Full article
(This article belongs to the Special Issue Melatonin in Normal Physiology and Disease, 2nd Edition)
Show Figures

Figure 1

33 pages, 1114 KiB  
Review
Melatonin Interplay in Physiology and Disease—The Fountain of Eternal Youth Revisited
by Cándido Ortiz-Placín, Ginés María Salido and Antonio González
Biomolecules 2025, 15(5), 682; https://doi.org/10.3390/biom15050682 - 8 May 2025
Viewed by 1409
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone associated with the regulation of biological rhythms. The indoleamine is secreted by the pineal gland during the night, following a circadian rhythm. The highest plasmatic levels are reached during the night, whereas the lowest levels are achieved during [...] Read more.
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone associated with the regulation of biological rhythms. The indoleamine is secreted by the pineal gland during the night, following a circadian rhythm. The highest plasmatic levels are reached during the night, whereas the lowest levels are achieved during the day. In addition to the pineal gland, other organs and tissues also produce melatonin, like, for example, the retina, Harderian glands, gut, ovaries, testes, skin, leukocytes, or bone marrow. The list of organs is extensive, including the cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, carotid body, placenta, and endometrium. At all these locations, the availability of melatonin is intended for local use. Interestingly, a decline of the circadian amplitude of the melatonin secretion occurs in old subjects in comparison to that found in younger subjects. Moreover, genetic and environmental factors are the primary causes of diseases, and oxidative stress is a key contributor to most pathologies. Numerous studies exist that show interesting effects of melatonin in different models of disease. Impairment in its secretion might have deleterious consequences for cellular physiology. In this regard, melatonin is a natural compound that is a carrier of a not yet completely known potential that deserves consideration. Thus, melatonin has emerged as a helpful ally that could be considered as a guard with powerful tools to orchestrate homeostasis in the body, majorly based on its antioxidant effects. In this review, we provide an overview of the widespread actions of melatonin against diseases preferentially affecting the elderly. Full article
(This article belongs to the Special Issue Melatonin in Normal Physiology and Disease, 2nd Edition)
Show Figures

Figure 1

49 pages, 6139 KiB  
Review
Neuro-Nutritional Approach to Neuropathic Pain Management: A Critical Review
by Giorgia Cominelli, Francesca Sulas, Daniela Pinto, Fabio Rinaldi, Gaia Favero and Rita Rezzani
Nutrients 2025, 17(9), 1502; https://doi.org/10.3390/nu17091502 - 29 Apr 2025
Viewed by 1398
Abstract
Pain is a significant global public health issue that can interfere with daily activities, sleep, and interpersonal relationships when it becomes chronic or worsens, ultimately impairing quality of life. Despite ongoing efforts, the efficacy of pain treatments in improving outcomes for patients remains [...] Read more.
Pain is a significant global public health issue that can interfere with daily activities, sleep, and interpersonal relationships when it becomes chronic or worsens, ultimately impairing quality of life. Despite ongoing efforts, the efficacy of pain treatments in improving outcomes for patients remains limited. At present, the challenge lies in developing a personalized care and management plan that helps to maintain patient activity levels and effectively manages pain. Neuropathic pain is a chronic condition resulting from damage to the somatosensory nervous system, significantly impacting quality of life. It is partly thought to be caused by inflammation and oxidative stress, and clinical research has suggested a link between this condition and diet. However, these links are not yet well understood and require further investigation to evaluate the pathways involved in neuropathic pain. Specifically, the question remains whether supplementation with dietary antioxidants, such as melatonin, could serve as a potential adjunctive treatment for neuropathic pain modulation. Melatonin, primarily secreted by the pineal gland but also produced by other systems such as the digestive system, is known for its anti-inflammatory, antioxidant, and anti-aging properties. It is found in various fruits and vegetables, and its presence alongside other polyphenols in these foods may enhance melatonin intake and contribute to improved health. The aim of this review is to provide an overview of neuropathic pain and examine the potential role of melatonin as an adjunctive treatment in a neuro-nutritional approach to pain management. Full article
(This article belongs to the Special Issue Effects of Natural Bioactives on Pain and Neuroinflammation)
Show Figures

Graphical abstract

15 pages, 2178 KiB  
Article
Comparative Effects of Red and Blue LED Light on Melatonin Levels During Three-Hour Exposure in Healthy Adults
by Ana Sanchez-Cano, María José Luesma-Bartolomé, Estela Solanas and Elvira Orduna-Hospital
Life 2025, 15(5), 715; https://doi.org/10.3390/life15050715 - 28 Apr 2025
Viewed by 3196
Abstract
Circadian rhythms, essential for regulating human physiology and behavior, are influenced by light exposure, particularly at night. This study examined the impact of red (631 nm) and blue (464 nm) LED light on melatonin secretion, a key circadian marker. Twelve participants aged 19–55 [...] Read more.
Circadian rhythms, essential for regulating human physiology and behavior, are influenced by light exposure, particularly at night. This study examined the impact of red (631 nm) and blue (464 nm) LED light on melatonin secretion, a key circadian marker. Twelve participants aged 19–55 years were exposed to red and blue light for three hours (9:00 p.m.–midnight), with hourly saliva samples analyzed via ELISA to track melatonin levels. Initially, melatonin levels were comparable under both light conditions. After one hour, both lights suppressed melatonin, but differences emerged after two hours: blue light-maintained suppression, with levels at 7.5 pg/mL, while red light allowed recovery to 26.0 pg/mL (p = 0.019). This pattern persisted at the third hour. Blue light had stronger suppression effects, particularly in younger participants and men. These results underscore blue light’s disruptive effects on circadian health and highlight red light as a less disruptive alternative for nighttime environments. Full article
(This article belongs to the Special Issue Vision Science and Optometry)
Show Figures

Figure 1

12 pages, 947 KiB  
Article
Interaction Between Dietary Fiber Intake and MTNR1B rs10830963 Polymorphism on Glycemic Profiles in Young Brazilian Adults
by Ana Carolina da Silva Lima, Nathália Teixeira Cruvinel, Nara Rubia da Silva, Marcela Moraes Mendes, Amélia Cristina Stival Duarte, Alexandre Siqueira Guedes Coelho, Karani S. Vimaleswaran and Maria Aderuza Horst
Genes 2025, 16(5), 497; https://doi.org/10.3390/genes16050497 - 27 Apr 2025
Viewed by 612
Abstract
Background/Objective: The single-nucleotide polymorphism (SNP) rs10830963 in the melatonin receptor 1B (MTNR1B) gene influences insulin secretion and glucose metabolism and has been associated with an increased risk of type-2 diabetes. This study aimed to explore the interaction between dietary intake and [...] Read more.
Background/Objective: The single-nucleotide polymorphism (SNP) rs10830963 in the melatonin receptor 1B (MTNR1B) gene influences insulin secretion and glucose metabolism and has been associated with an increased risk of type-2 diabetes. This study aimed to explore the interaction between dietary intake and the MTNR1B rs10830963 polymorphism on glycemic profiles in young Brazilian adults. Methods: This cross-sectional study assessed 200 healthy young adults (19–24 years), evaluating the MTNR1B rs10830963 genotype, anthropometric parameters, glycemic markers (fasting insulin, glucose, HOMA-IR, and HOMA-β), and dietary intake via three 24 h dietary recalls. Genotype–diet interactions were tested using multivariate linear regression models adjusted for confounders. Results: The carriers of the G allele exhibited a positive association with fasting insulin levels (p = 0.003), insulin/glucose ratio (p = 0.004), HOMA-IR (p = 0.003), and HOMA-β (p = 0.018). Energy-adjusted fiber intake showed a significant genotype-specific interaction only in carriers of the G allele, where higher dietary fiber intake was significantly associated with lower fasting insulin (pinteraction = 0.034) and HOMA-IR (pinteraction = 0.028). Conclusion: Our findings indicate that the MTNR1B rs10830963 polymorphism is associated with glycemic markers, and dietary fiber intake may attenuate the adverse effects of the MTNR1B rs10830963 G allele on glycemic profiles in young Brazilian adults. This highlights the potential role of fiber in improving health outcomes for individuals carrying this risk allele. To validate these results and assess the broader implications for the Brazilian population, further intervention studies and larger-scale research are essential. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

29 pages, 1843 KiB  
Review
Molecular Links Between Circadian Rhythm Disruption, Melatonin, and Neurodegenerative Diseases: An Updated Review
by Kemal Hüsnü Can Baser, Ismail Celil Haskologlu and Emine Erdag
Molecules 2025, 30(9), 1888; https://doi.org/10.3390/molecules30091888 - 23 Apr 2025
Cited by 3 | Viewed by 3364
Abstract
Circadian rhythms are molecular oscillations governed by transcriptional–translational feedback loops (TTFLs) operating in nearly all cell types and are fundamental to physiological homeostasis. Key circadian regulators, such as circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT-like 1 (BMAL1), period [...] Read more.
Circadian rhythms are molecular oscillations governed by transcriptional–translational feedback loops (TTFLs) operating in nearly all cell types and are fundamental to physiological homeostasis. Key circadian regulators, such as circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT-like 1 (BMAL1), period (PER), and cryptochrome (CRY) gene families, regulate intracellular metabolism, oxidative balance, mitochondrial function, and synaptic plasticity. Circadian disruption is known as a central contributor to the molecular pathophysiology of neurodegenerative disorders. Disease-specific disruptions in clock gene expression and melatoninergic signaling are known as potential early-stage molecular biomarkers. Melatonin, a neurohormone secreted by the pineal gland, modulates clock gene expression, mitochondrial stability, and inflammatory responses. It also regulates epigenetic and metabolic processes through nuclear receptors and metabolic regulators involved in circadian and cellular stress pathways, thereby exerting neuroprotective effects and maintaining neuronal integrity. This review provides recent findings from the past five years, highlighting how circadian dysregulation mediates key molecular and cellular disturbances and the translational potential of circadian-based therapies in neurodegenerative diseases. Full article
Show Figures

Figure 1

29 pages, 6679 KiB  
Article
A Study on the Effect of Nighttime Light Intrusion on the Phase Shift of Human Rhythms
by Baogang Zhang, Jiayu Li, Ming Liu, Ruicong Li, Kehui Zhao, Lingling Guo and Mingxuan Liu
Buildings 2025, 15(6), 946; https://doi.org/10.3390/buildings15060946 - 17 Mar 2025
Viewed by 537
Abstract
In China’s mixed-use commercial and residential areas, artificial lighting in commercial and service sectors is prevalent, leading to heightened nocturnal light exposure and exacerbating light intrusion issues that disrupt nighttime activities and rest. To evaluate its impact on residents’ health, this study conducted [...] Read more.
In China’s mixed-use commercial and residential areas, artificial lighting in commercial and service sectors is prevalent, leading to heightened nocturnal light exposure and exacerbating light intrusion issues that disrupt nighttime activities and rest. To evaluate its impact on residents’ health, this study conducted two experiments. The results showed prolonged nighttime light exposure inhibits melatonin secretion, causing circadian rhythm phase shifts and delays. Among factors affecting color brightness strobe, color had a more significant impact on human rhythm phase shifts. Thus, managing dynamic light intrusion should prioritize regulating colored light. Additionally, as even minimal illuminance from intrusive light disrupts human rhythms, lowering existing illuminance limits for light intrusion is advisable. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 4204 KiB  
Article
Research on Indoor Health Lighting Design Based on Silicon Substrate Golden Light LED Technology
by Zhuoyi Jiang, Yeqing Zhu, Yihan Wang and Yangyang Wei
Buildings 2025, 15(6), 932; https://doi.org/10.3390/buildings15060932 - 15 Mar 2025
Cited by 1 | Viewed by 837
Abstract
Silicon substrate golden light LED, as an emerging blue-light-free health lighting technology, has become one of the key technologies for home health lighting environments. This study uses silicon substrate golden light LED as the lighting source for home lighting, and based on the [...] Read more.
Silicon substrate golden light LED, as an emerging blue-light-free health lighting technology, has become one of the key technologies for home health lighting environments. This study uses silicon substrate golden light LED as the lighting source for home lighting, and based on the lighting demands of two indoor types, employs DIALux Evo lighting simulation software to simulate the indoor lighting environment. First, the simulated lighting data for various indoor areas are compared with the national lighting standards (GB/T50034-2024) to verify whether the lighting type meets the home lighting requirements. Next, a comparison is made between the lighting efficiency of silicon substrate golden light LED and a reference sample LED to validate whether the silicon substrate golden light LED possesses high lighting efficiency and low power consumption. Finally, long-term exposure to both the silicon substrate golden light LED and reference sample LED is used to record the secretion levels of melatonin in the human body. The experimental results show that the silicon substrate golden light LED not only provides sufficient home lighting but also demonstrates high efficiency and low power consumption. Additionally, under the illumination of silicon substrate golden light LED, the melatonin secretion concentration significantly increases to (960 ± 15) pg/mL after 2.5 h of exposure, which is 8.2 times higher than that of the conventional LED group (t = 12.34, df = 14, p < 0.001). The silicon substrate golden light LED technology provides a feasible solution for home health lighting design by creating a zero-blue-light health lighting environment. Full article
Show Figures

Figure 1

21 pages, 1003 KiB  
Review
Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities
by Zhe Jiang, Michelle S. Allkanjari, Philip E. D. Chung, Hanna Tran, Ronak Ghanbari-Azarnier, Dong-Yu Wang, Daniel J. Lin, Jung Yeon Min, Yaacov Ben-David and Eldad Zacksenhaus
Cancers 2025, 17(5), 720; https://doi.org/10.3390/cancers17050720 - 20 Feb 2025
Cited by 1 | Viewed by 2755
Abstract
Pineoblastoma (PB) is a rare yet lethal pediatric brain cancer of the pineal gland, a small endocrine organ that secretes melatonin to regulate the circadian rhythm. For PB patients ≤5 years of age, the overall survival rate is approximately 15%; metastatic PB is [...] Read more.
Pineoblastoma (PB) is a rare yet lethal pediatric brain cancer of the pineal gland, a small endocrine organ that secretes melatonin to regulate the circadian rhythm. For PB patients ≤5 years of age, the overall survival rate is approximately 15%; metastatic PB is incurable. Standard treatment, including surgical resection, radiation, and systemic chemotherapy, improves survival but compromises neurocognitive function. A better understanding of the disease and the generation of preclinical models may enable re-evaluation of previous clinical trials, development of precision therapeutic strategies and improve patient outcome. Over the past 5 years, PB has been recognized to include several major subtypes driven by (i) loss of microRNA processing factors DICER and DROSHA characterized by a relatively good prognosis; (ii) loss of the retinoblastoma tumor suppressor RB1; and (iii) amplification or induction of the cMYC protooncogene, with the latter two subtypes exhibiting exceedingly poor prognosis. Recently, mouse models for the major PB subtypes (RB1-, DICER1- and DROSHA-) except MYC- have been established. This progress, including better understanding of the disease, cell of origin, tumor progression, role of autophagy, and targetable vulnerabilities, holds promise for novel therapeutic strategies to combat each subtype of this lethal childhood malignancy. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

21 pages, 827 KiB  
Review
Photoperiod Management in Farm Animal Husbandry: A Review
by Chenyang Li, Hang Shu and Xianhong Gu
Animals 2025, 15(4), 591; https://doi.org/10.3390/ani15040591 - 18 Feb 2025
Cited by 1 | Viewed by 1470
Abstract
This review aims to examine the effects of the photoperiod on farm animals and to provide insights into how lighting management can optimize production performance, reproduction, and welfare. The production performance of farm animals is influenced by a variety of factors, such as [...] Read more.
This review aims to examine the effects of the photoperiod on farm animals and to provide insights into how lighting management can optimize production performance, reproduction, and welfare. The production performance of farm animals is influenced by a variety of factors, such as diet, breed, and environment. Among these, lighting is a crucial component of the feeding environment. With the advancement of intensive farming, lighting measures are increasingly receiving attention. The photoperiod regulates the biological rhythms of animals and affects the secretion of hormones within the animal’s body, particularly melatonin. Melatonin regulates the secretion and release of several other hormones through various pathways, such as growth hormone, prolactin, and gonadotropins. Therefore, the environmental light cycle participates in a variety of physiological activities within animals. An appropriate photoperiod can enhance the production performance, reproduction performance, and welfare conditions of farm animals. Choosing the appropriate lighting duration based on different animals, physiological stages, and production purposes can enhance the economic benefits of farms. In this review, we summarized the recent findings on the impact of photoperiods in different farm animal feeding environments on animal husbandry, although research on the suitable photoperiod for some animals might be outdated and is also discussed in this article. For lactating dairy cows, calves, poultry, pigs (excluding boars), and rabbits, continuous light exposure exceeding 12 h per day can be implemented to enhance growth and production performance. In contrast, for boars and goats, daily light exposure should be limited to less than 10 h to optimize reproductive and productive efficiency. Overall, this review aimed to provide theoretical support for research on the optimal photoperiod for farm animals. Full article
Show Figures

Graphical abstract

30 pages, 1316 KiB  
Review
Melatonin: An Overview on the Synthesis Processes and on Its Multiple Bioactive Roles Played in Animals and Humans
by Vasile-Cosmin Andronachi, Cristina Simeanu, Mădălina Matei, Răzvan-Mihail Radu-Rusu and Daniel Simeanu
Agriculture 2025, 15(3), 273; https://doi.org/10.3390/agriculture15030273 - 27 Jan 2025
Cited by 3 | Viewed by 4270
Abstract
Melatonin is a natural hormone synthesized mainly by the pineal gland of vertebrates, and, secondarily, by other tissues and organs as well. It is deemed a bioactive molecule due to the multiple roles and functions it performs in animals and humans. Research conducted [...] Read more.
Melatonin is a natural hormone synthesized mainly by the pineal gland of vertebrates, and, secondarily, by other tissues and organs as well. It is deemed a bioactive molecule due to the multiple roles and functions it performs in animals and humans. Research conducted up to 2024 has reported the presence of melatonin in a wide variety of plants and bacteria, as well. This review aims to collect some of the scientific data to identify and describe the main sources of melatonin, and to document the functions and roles it plays in animal organisms. It also includes a description of the main technological and nutritional factors that can positively or negatively influence the synthesis and secretion process of melatonin, which is subsequently transported from the animal body into some food products, such as milk. This paper also includes information on the interaction between melatonin and other bioactive compounds present in animal and human bodies, with the aim of identifying what other functions and roles this hormone performs, and whether it interacts with other substances present in the vertebrate organism. Full article
(This article belongs to the Special Issue Farming Factors’ Influence on Animal Productions)
Show Figures

Figure 1

14 pages, 3958 KiB  
Article
Sleep Deprivation and Subchronic Arsenite Exposure Synergistically Induced Skeletal Muscle Aging by Disrupting Melatonin and Cortisol Secretion in Mice
by Hongyi Yang, Xingyu Chen, Xuanfeng Yu, Baofei Sun, Junyan Tao and Xiong Chen
Toxics 2025, 13(2), 97; https://doi.org/10.3390/toxics13020097 - 27 Jan 2025
Cited by 1 | Viewed by 1218
Abstract
In recent years, the influence of environmental factors on organismal aging has garnered increasing attention. Studies have shown that sleep deprivation and environmental pollutants could accelerate the emergence of multiple organismal aging phenotypes. In addition, studies have shown that chronic exposure to sodium [...] Read more.
In recent years, the influence of environmental factors on organismal aging has garnered increasing attention. Studies have shown that sleep deprivation and environmental pollutants could accelerate the emergence of multiple organismal aging phenotypes. In addition, studies have shown that chronic exposure to sodium arsenite (iAs) induces skeletal muscle atrophy and the inhibition of melatonin secretion in rats. This study aimed to reveal the synergistic effect of sleep deprivation and arsenite exposure on skeletal muscle aging, including reduced limb grip strength and skeletal muscle mass, along with the serum levels of melatonin (MT) and cortisol (COR) in C57BL/6J mice. The results demonstrated that while exposure to arsenite for 12 weeks or sleep deprivation (SD) for 4 weeks did not exert significant effects on limb grip strength or skeletal muscle mass, their combination exhibited a synergistic effect on skeletal muscle aging. Notably, the iAs+SD group exhibited a significant decline in limb grip strength by Week 12, accompanied by a reduced gastrocnemius muscle mass and muscle index. The pathological analysis showed muscle fiber atrophy, a shift towards slow-twitch muscle fibers (type I), and shortened telomere length. Additionally, oxidative damage was increased in the SD and iAs+SD groups, with decreased levels of SOD and GPx and elevated levels of MDA in the iAs+SD group. The serum MT level and MT/COR ratio were significantly reduced, while the serum COR level was elevated in the iAs+SD group compared to the other groups. A correlation analysis further revealed that the serum MT level and the MT/COR ratio were positively correlated with limb grip strength, muscle index, and telomere length, whereas the serum COR level exhibited negative correlations with these parameters. These findings suggest that sleep deprivation and subchronic exposure to arsenite synergistically induce skeletal muscle aging, and that the disruption of the balance between MT and COR potentially serves as a significant risk factor. Full article
Show Figures

Figure 1

Back to TopTop