Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = mechanistic/mammalian target of rapamycin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2720 KB  
Review
Nutritional Regulation of Cardiac Metabolism and Function: Molecular and Epigenetic Mechanisms and Their Role in Cardiovascular Disease Prevention
by Lucia Capasso, Donato Mele, Rosaria Casalino, Gregorio Favale, Giulia Rollo, Giulia Verrilli, Mariarosaria Conte, Paola Bontempo, Vincenzo Carafa, Lucia Altucci and Angela Nebbioso
Nutrients 2026, 18(1), 93; https://doi.org/10.3390/nu18010093 - 27 Dec 2025
Viewed by 600
Abstract
Background: Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and are strongly influenced by dietary habits. Beyond caloric intake, nutrients act as molecular signals that regulate cardiac metabolism, mitochondrial function, inflammation, and epigenetic remodeling. Objectives: This review aims to synthesize [...] Read more.
Background: Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and are strongly influenced by dietary habits. Beyond caloric intake, nutrients act as molecular signals that regulate cardiac metabolism, mitochondrial function, inflammation, and epigenetic remodeling. Objectives: This review aims to synthesize current evidence on how dietary patterns and specific nutritional interventions regulate cardiac metabolism and function through interconnected molecular and epigenetic mechanisms, highlighting their relevance for cardiovascular disease prevention. Methods: A narrative review of the literature was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2006 and 2025. Experimental, translational, and clinical studies addressing diet-induced modulation of cardiac metabolic pathways, oxidative and inflammatory signaling, epigenetic regulation, and gut microbiota-derived metabolites were included. Results: The analyzed literature consistently shows that unbalanced diets rich in saturated fats and refined carbohydrates impair cardiac metabolic flexibility by disrupting key nutrient-sensing pathways, including AMP-activated protein kinase (AMPK), proliferator-activated receptor alpha (PPARα), mammalian target of rapamycin (mTOR), and sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (SIRT1/PGC-1α), leading to mitochondrial dysfunction, oxidative stress, chronic inflammation, and maladaptive remodeling. In contrast, cardioprotective dietary patterns, such as caloric restriction (CR), intermittent fasting (IF), and Mediterranean and plant-based diets, enhance mitochondrial efficiency, redox balance, and metabolic adaptability. These effects are mediated by coordinated activation of AMPK-SIRT1 signaling, suppression of mTOR over-activation, modulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, and favorable epigenetic remodeling involving DNA methylation, histone modifications, and non-coding RNAs. Emerging evidence also highlights the central role of gut microbiota-derived metabolites, particularly short-chain fatty acids, in linking diet to epigenetic and metabolic regulation of cardiac function. Conclusions: Diet quality emerges as a key determinant of cardiac metabolic health, acting through integrated molecular, epigenetic, and microbiota-mediated mechanisms. Targeted nutritional strategies can induce long-lasting cardioprotective metabolic and epigenetic adaptations, supporting the concept of diet as a modifiable molecular intervention. These findings provide a mechanistic rationale for integrating personalized nutrition into cardiovascular prevention and precision cardiology, complementing standard pharmacological therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Diet-Associated Cardiac Metabolism)
Show Figures

Figure 1

18 pages, 1620 KB  
Opinion
The Critical Role of Transcription Factor RUNX2 in Bone Mechanobiology
by Maria A. Katsianou, Antonios N. Gargalionis, Kostas A. Papavassiliou, Angeliki Margoni, Athanasios G. Papavassiliou and Efthimia K. Basdra
Cells 2026, 15(1), 50; https://doi.org/10.3390/cells15010050 - 26 Dec 2025
Viewed by 405
Abstract
Mechanobiology plays a pivotal role in skeletal development and bone remodeling. Mechanical signals such as matrix stiffness, fluid shear stress, and hydrostatic pressure activate the Runt-related transcription factor 2 (RUNX2) bone-specific transcription factor through pathways including the mitogen-activated protein kinase (MAPK) signaling cascade [...] Read more.
Mechanobiology plays a pivotal role in skeletal development and bone remodeling. Mechanical signals such as matrix stiffness, fluid shear stress, and hydrostatic pressure activate the Runt-related transcription factor 2 (RUNX2) bone-specific transcription factor through pathways including the mitogen-activated protein kinase (MAPK) signaling cascade and yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) effectors. RUNX2 itself affects chromatin remodeling and nuclear architecture via Lamin A/C and Nesprin 1, thereby directing osteogenic differentiation. Thus, RUNX2 acts both as a mechanosensor and mechanoregulator, whereas RUNX2’s mechanosensitivity has been leveraged as a target to achieve bone regeneration. Notably, post-translational modifications and epigenetic alterations can orchestrate this regulation, integrating metabolic and circadian signals. However, due to RUNX2’s nuclear localization, its targeting remains a challenging issue. To this end, indirect targeting, through mammalian/mechanistic target of rapamycin complex 1 (mTORC1) or microRNAs (miRNAs), offers new strategies to employ biomechanics in an attempt to intervene with bone diseases driven by mechanical cues or degeneration, and ultimately repair and regenerate the damaged tissues. Herein we critically elaborate upon molecular aspects of RUNX2 regulation towards exploitation at the clinical level. Full article
Show Figures

Figure 1

20 pages, 1092 KB  
Review
Glucose Metabolism and Innate Immune Responses in Influenza Virus Infection: Mechanistic Insights and Clinical Perspectives
by Kareem Awad, Nancy N. Shahin, Tarek K. Motawi, Maha Abdelhadi, Reham F. Barghash, Ahmed M. Awad, Laura Kakkola and Ilkka Julkunen
Cells 2026, 15(1), 47; https://doi.org/10.3390/cells15010047 - 26 Dec 2025
Viewed by 588
Abstract
This review article discusses glucose metabolic alterations affecting immune cell responses to influenza virus infection. It highlights possible relationships between essential metabolic targets and influenza replication dynamics in immune cells. Thus, kinases as essential regulators of glucose metabolism as well as critical immune [...] Read more.
This review article discusses glucose metabolic alterations affecting immune cell responses to influenza virus infection. It highlights possible relationships between essential metabolic targets and influenza replication dynamics in immune cells. Thus, kinases as essential regulators of glucose metabolism as well as critical immune mediators during this infection such as interferons, tumor necrosis factor-alpha and transforming growth factor beta have been illustrated. Mechanistic highlights are provided for both the Warburg effect, where glycolysis shifts to lactate production during influenza infection, and the PFK1/PFKFB3 enzyme complex as the rate-determining regulator of glycolysis whose activity increases during the course of influenza infection. The mechanisms of mammalian target of rapamycin (mTOR) signaling as a promotor of glycolysis and a regulator of inflammatory cytokine production are discussed across various immune cell types during infection. We conclude that modulation of the metabolic changes associated with immune responses plays an important role in disease progression, and that targeting metabolic checkpoints or kinases may offer promising avenues for future immunotherapy approaches for the treatment of influenza virus infection. We also emphasize the need for further research to develop a comprehensive biological model that clarifies host outcomes and the complex nature of immune-metabolic regulation and crosstalk. Full article
(This article belongs to the Special Issue Host–Pathogen Interactions and Immune Responses)
Show Figures

Graphical abstract

14 pages, 2035 KB  
Article
Extracellular ATP Suppresses Perlecan Core Protein Synthesis via P2Y2 Receptor-Mediated Inhibition of Akt Signaling in Cultured Vascular Endothelial Cells
by Lihito Ikeuchi, Takato Hara, Kazuki Kitabatake, Fumiaki Uchiumi, Chika Yamamoto, Mitsutoshi Tsukimoto, Tomoya Fujie and Toshiyuki Kaji
Int. J. Mol. Sci. 2025, 26(22), 10973; https://doi.org/10.3390/ijms262210973 - 12 Nov 2025
Viewed by 505
Abstract
Perlecan, a major heparan sulfate proteoglycan in the vascular basement membrane, plays an essential role in maintaining endothelial barrier integrity, regulating fibroblast growth factor-2 signaling, and exerting anticoagulant activity. Although alterations in perlecan expression are implicated in the initiation and progression of atherosclerosis, [...] Read more.
Perlecan, a major heparan sulfate proteoglycan in the vascular basement membrane, plays an essential role in maintaining endothelial barrier integrity, regulating fibroblast growth factor-2 signaling, and exerting anticoagulant activity. Although alterations in perlecan expression are implicated in the initiation and progression of atherosclerosis, the upstream regulatory mechanisms remain unclear. In this study, we investigated the effects of extracellular ATP on perlecan expression in vascular endothelial cells. ATP, but not ADP or adenosine, suppressed perlecan expression at both mRNA and protein levels in a time- and concentration-dependent manner. This suppression was recovered by knockdown of P2Y2 receptor (P2Y2R), but not by P2X4 receptor, P2X7 receptor, or P2Y1 receptor knockdown, indicating the selective involvement of P2Y2R. Mechanistically, ATP reduced Akt phosphorylation mediated by P2Y2R, and inhibition of Akt by inhibitors decreased perlecan expression, whereas inhibitors of phosphoinositide 3-kinase, mammalian target of rapamycin complex 1, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, c-Jun N-terminal kinases did not exhibit this recovery effect. These results suggest that ATP downregulates perlecan synthesis via the P2Y2R-mediated inhibition of Akt signaling. Given that ATP is markedly elevated under pathological conditions, such as inflammation and platelet activation, suppression of perlecan synthesis is an important mechanism by which ATP promotes vascular disease progression. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Graphical abstract

21 pages, 1367 KB  
Review
Glycolytic Reprogramming in Uterine Fibroids: Genetic, Transcriptomic, Proteomic, and Metabolomic Insights
by Samya El Sayed, Alvina Pan, Valentina Vanos, Rachel Michel and Mostafa Borahay
Genes 2025, 16(11), 1268; https://doi.org/10.3390/genes16111268 - 28 Oct 2025
Viewed by 942
Abstract
Uterine leiomyomas or fibroids are a common but pernicious benign tumor impacting between 70–80% of women of reproductive age. Despite their high prevalence, the etiology of uterine fibroids is not fully understood. This review aims to highlight the distinct metabolic features that uterine [...] Read more.
Uterine leiomyomas or fibroids are a common but pernicious benign tumor impacting between 70–80% of women of reproductive age. Despite their high prevalence, the etiology of uterine fibroids is not fully understood. This review aims to highlight the distinct metabolic features that uterine fibroids adopt to meet biosynthetic demands, support proliferation, extracellular matrix production, survival, and fibrosis. Specifically, we posit the role of glycolytic reprogramming—an adaptation in fibrosis across organs (lung, kidney, heart, and liver) as a major contributor to uterine fibroid development. Previous genetic, transcriptomic, proteomic, and metabolic studies have drawn strong links between metabolism and uterine fibroid biology and identified genotype-specific metabolic alterations such as fumarate hydratase (FH) deficiency and mediator of RNA polymerase II transcription (MED12) gene mutations. Studies in non-uterine models have linked glycolysis to ECM production and fibrosis through activation of transforming growth factor-beta (TGF-β) and the canonical Wnt pathway (Wnt/β-catenin) signaling, supporting them as potential key pathways in uterine fibroid pathogenesis via glycolytic reprogramming. Other metabolic regulators, such as hypoxia-inducible factor 1-alpha (HIF-1α), mammalian target of rapamycin (mTOR), and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), may also sustain the fibrotic phenotype through coupling signaling that drives ECM production to metabolic programming. Overall, the proposed metabolic perspective of uterine fibroid pathogenesis invites further exploration of mechanistic investigation in uterine-specific models and therapeutic targeting through larger cohort studies. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 5214 KB  
Article
microRNA-22 Inhibition Stimulates Mitochondrial Homeostasis and Intracellular Degradation Pathways to Prevent Muscle Wasting
by Simone Tomasini, Emanuele Monteleone, Anna Altieri, Francesco Margiotta, Fereshteh Dardmeh, Hiva Alipour, Anja Holm, Sakari Kauppinen and Riccardo Panella
Int. J. Mol. Sci. 2025, 26(20), 9900; https://doi.org/10.3390/ijms26209900 - 11 Oct 2025
Cited by 1 | Viewed by 1086
Abstract
MicroRNA-22 (miR-22) is a negative regulator of mitochondrial biogenesis, as well as lipid and glucose metabolism, in metabolically active tissues. Silencing miR-22 holds promise as a potential treatment of obesity and metabolic syndrome, as it restores metabolic capacity—enhancing oxidative metabolism—and reduces ectopic fat [...] Read more.
MicroRNA-22 (miR-22) is a negative regulator of mitochondrial biogenesis, as well as lipid and glucose metabolism, in metabolically active tissues. Silencing miR-22 holds promise as a potential treatment of obesity and metabolic syndrome, as it restores metabolic capacity—enhancing oxidative metabolism—and reduces ectopic fat accumulation in chronic obesity, a driver of impaired metabolic flexibility and muscle mass loss. Intramuscular adipose accumulation and defective mitochondrial function are features associated with obese-mediated muscle atrophy and hallmarks of neuromuscular disorders such as Duchenne muscular dystrophy. Therefore, miR-22 could represent a compelling molecular target to improve muscle health across various muscle-wasting conditions. This study describes a pharmacological strategy for the inhibition of miR-22 in skeletal muscle by employing a mixmer antisense oligonucleotide (ASO, anti-miR-22). Administration of the ASO in a mouse model of obesity positively modulated myogenesis while protecting dystrophic mice from muscle function decline, enhancing fatigue resistance, and limiting pathological fibrotic remodeling. Mechanistically, we show that anti-miR-22 treatment promotes derepression of genes involved in mitochondrial homeostasis, favoring oxidative fiber content regardless of the disease model, thus promoting a more resilient phenotype. Furthermore, we suggest that miR-22 inhibition increases autophagy by transcriptional activation of multiple negative regulators of mammalian target of rapamycin (mTOR) signaling to decrease immune infiltration and fibrosis. These findings position miR-22 as a promising therapeutic target for muscle atrophy and support its potential to restore muscle health. Full article
(This article belongs to the Special Issue MicroRNAs as Biomarkers and Therapeutic Targets in Human Diseases)
Show Figures

Figure 1

17 pages, 3218 KB  
Article
Antiviral Activity of Eugenol Against Largemouth Bass Ranavirus Through Regulation of Autophagy and Apoptosis In Vitro and In Vivo
by Yewen Wang, Lifang Cao, Leshan Ruan, Xingyu Chen, Chunhui Song, Shina Wei and Yunchang Xie
Microorganisms 2025, 13(10), 2281; https://doi.org/10.3390/microorganisms13102281 - 30 Sep 2025
Viewed by 745
Abstract
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and [...] Read more.
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and in vitro. Firstly, EUG demonstrated to be able to down-regulate both the mRNA and protein levels of the major capsid protein (MCP) in LMBV-infected cells. In addition, EUG could inhibit the expression of cleaved-caspase-3 in LMBV-infected fathead minnow (FHM) cell. On the other hand, EUG would not only directly regulate the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway but also affect the AMP-activated protein kinase (AMPK) pathway in FHM cells during LMBV infection. These results indicated that EUG exerts its antiviral effects by modulating both LMBV-induced apoptosis and autophagy. Notably, EUG reduced the viral load present within the tissues of LMBV-infected largemouth bass, thereby ultimately enhancing their survival rate in the culture environment by about 20%. These mechanistic assays revealed the anti-LMBV properties of EUG, which could significantly enrich the research content of plant extracts in the field of aquatic antiviral, and provide important theoretical basis for the development and application of related products. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

47 pages, 1032 KB  
Review
mTOR Signaling in Macrophages: All Depends on the Context
by Angelika Fedor, Krzysztof Bryniarski and Katarzyna Nazimek
Int. J. Mol. Sci. 2025, 26(15), 7598; https://doi.org/10.3390/ijms26157598 - 6 Aug 2025
Cited by 4 | Viewed by 4574
Abstract
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. [...] Read more.
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. At the same time, mammalian target of rapamycin (mTOR) is attracting increasing research attention because the pathways dependent on this kinase are activated by a variety of signals, including cytokines and proinflammatory mediators, mediate essential processes for cell survival and metabolism, and can be regulated epigenetically via microRNAs. Therefore, our narrative review aimed to summarize and discuss recent advances in the knowledge of the activation of mTOR signaling in macrophages, with a special focus on autoimmune disorders and the possibility of mTOR control by microRNAs. The summarized research observations allowed us to conclude that the effects of activity and/or inhibition of individual mTOR complexes in macrophages are largely context dependent, and therefore, these broad immunological contexts and other specific conditions should always be taken into account when attempting to modulate these pathways for therapeutic purposes. Full article
(This article belongs to the Special Issue From Macrophage Biology to Cell and EV-Based Immunotherapies)
Show Figures

Figure 1

30 pages, 1700 KB  
Review
The Inflammatory Nexus: Unraveling Shared Pathways and Promising Treatments in Alzheimer’s Disease and Schizophrenia
by Aurelio Pio Russo, Ylenia Pastorello, Lóránd Dénes, Klara Brînzaniuc, Jerzy Krupinski and Mark Slevin
Int. J. Mol. Sci. 2025, 26(13), 6237; https://doi.org/10.3390/ijms26136237 - 27 Jun 2025
Viewed by 2064
Abstract
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, [...] Read more.
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, blood–brain barrier (BBB) disruption, and cognitive impairment. We examine key signaling pathways, particularly spleen tyrosine kinase (SYK), the mechanistic (or mammalian) target of rapamycin (mTOR), and the S100 calcium-binding protein B (S100B)/receptor for advanced glycation end-products (RAGE) axis, that link glial activation, excitatory/inhibitory neurotransmitter imbalances, and impaired proteostasis across both disorders. Specific biomarkers such as S100B, matrix metalloproteinase 9 (MMP9), and soluble RAGE show promise for stratifying disease subtypes and predicting treatment response. Moreover, psychiatric symptoms frequently precede cognitive decline in both AD and schizophrenia, suggesting that mood and behavioral disturbances may serve as early diagnostic indicators. The roles of autophagic failure, cellular senescence, and impaired glymphatic clearance are also explored as contributors to chronic inflammation and neurodegeneration. Current treatments, including cholinesterase inhibitors and antipsychotics, primarily offer symptomatic relief, while emerging therapeutic approaches target upstream molecular drivers, such as mTOR inhibition and RAGE antagonism. Finally, we discuss the future potential of personalized medicine guided by genetic, neuroimaging, and biomarker profiles to optimize diagnosis and treatment strategies in both AD and schizophrenia. A greater understanding of the pathophysiological convergence between these disorders may pave the way for cross-diagnostic interventions and improved clinical outcomes. Full article
Show Figures

Figure 1

17 pages, 2576 KB  
Review
Ciliary G-Protein Coupled Receptor Signaling in Polycystic Kidney Disease
by Raghad Buqaileh, Lubna A. Alshriem and Wissam AbouAlaiwi
Int. J. Mol. Sci. 2025, 26(11), 4971; https://doi.org/10.3390/ijms26114971 - 22 May 2025
Cited by 1 | Viewed by 2162
Abstract
Polycystic kidney disease (PKD), a ciliopathy caused primarily by mutations in the Pkd1 and Pkd2 genes, disrupts renal structure and function, leading to progressive renal failure. The primary cilium, a sensory organelle essential for cellular signaling, plays a pivotal role in maintaining renal [...] Read more.
Polycystic kidney disease (PKD), a ciliopathy caused primarily by mutations in the Pkd1 and Pkd2 genes, disrupts renal structure and function, leading to progressive renal failure. The primary cilium, a sensory organelle essential for cellular signaling, plays a pivotal role in maintaining renal function. Among its signaling components, G-protein-coupled receptors (GPCRs) within the cilium have gained significant attention for their localized functions and their contribution to PKD pathogenesis. Dysfunction of ciliary GPCR signaling alters key downstream pathways, including mammalian target of rapamycin (mTOR), cyclic adenosine monophosphate (cAMP), and calcium homeostasis, exacerbating cyst formation and disease progression. Additionally, interactions between ciliary GPCRs and PKD-associated proteins, such as Polycystin-1 (PC1) and Polycystin-2 (PC2), underline the complexity of PKD mechanisms. Recent advances highlight GPCRs as promising therapeutic targets for ciliopathies, including PKD. Emerging GPCR modulators and drugs in clinical trials show the potential to restore ciliary signaling and attenuate disease progression. This paper explores the physiological functions of ciliary GPCRs, their mechanistic links to PKD, and the therapeutic implications of targeting these receptors, offering insights into future research directions and therapeutic strategies for PKD. Full article
Show Figures

Figure 1

13 pages, 3958 KB  
Article
Chloroquine Enhances Chemosensitivity of Breast Cancer via mTOR Inhibition
by Zhihao Lin, Yuting Xu, Mifang Li, Yibiao Liu, Jianbo Yu and Lingyan Zhang
Biomedicines 2025, 13(4), 948; https://doi.org/10.3390/biomedicines13040948 - 12 Apr 2025
Cited by 1 | Viewed by 1344
Abstract
Background: Chloroquine (CQ) has been extensively validated for its safety as an antimalarial drug. The treatment regimen combining CQ with 5-fluorouracil (5-FU) has demonstrated promising antitumor effects in both in vitro and animal models. However, the clinical application of this combination therapy [...] Read more.
Background: Chloroquine (CQ) has been extensively validated for its safety as an antimalarial drug. The treatment regimen combining CQ with 5-fluorouracil (5-FU) has demonstrated promising antitumor effects in both in vitro and animal models. However, the clinical application of this combination therapy still faces numerous challenges, primarily due to the unelucidated mechanistic underpinnings. Methods: We validated the synergistic effect of CQ in antitumor therapy using 5-fluorouracil and N-acetylcysteine. Subsequently, we employed lysosomal pH probes and inhibitors (5-BDBD and bafilomycin A1) to verify the mechanism of CQ in synergistic antitumor therapy. Finally, the therapeutic efficacy and underlying mechanisms of CQ were further confirmed through in vivo experiments. Results: Here, we found that CQ can inhibit the ATP-induced activation of mammalian target of rapamycin (mTOR), enhancing the inhibition of 5-FU on the proliferation and survival of tumors. Mechanistically, CQ affects the lysosomal pH value, leading to the inhibition of P2X4 receptor activity. The ATP-P2X4-mTOR axis is consequently disrupted, resulting in the weakened activation of mTOR. Conclusions: Our findings suggest that CQ may inhibit ATP-induced mTOR activation by suppressing P2X4 receptor signaling, thereby altering the apoptosis resistance of tumors. The combination of CQ and 5-FU represents a promising therapeutic strategy, particularly for mTOR-hyperactivated malignancies refractory to conventional chemotherapy. These findings not only advance our understanding of the mechanisms underlying CQ-based combination therapy but also highlight the therapeutic potential of pharmacologically targeting mTOR and its alternative pathways in combination chemotherapy regimens. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

24 pages, 995 KB  
Review
The Role of Ferroptosis in Osteoporosis and Advances in Chinese Herbal Interventions
by Pan Li, Tian-Yang Xu, Ao-Xue Yu, Jing-Ling Liang, Ya-Shuang Zhou, Huai-Zhu Sun, Yu-Lin Dai, Jia Liu and Peng Yu
Biology 2025, 14(4), 367; https://doi.org/10.3390/biology14040367 - 2 Apr 2025
Cited by 4 | Viewed by 4804
Abstract
OP, a systemic bone disorder marked by reduced bone mass and heightened fracture risk, poses a significant global health burden, particularly among aging populations. Current treatments, including bisphosphonates and calcium supplementation, are limited by adverse effects and incomplete efficacy. Emerging research highlights ferroptosis—an [...] Read more.
OP, a systemic bone disorder marked by reduced bone mass and heightened fracture risk, poses a significant global health burden, particularly among aging populations. Current treatments, including bisphosphonates and calcium supplementation, are limited by adverse effects and incomplete efficacy. Emerging research highlights ferroptosis—an iron-dependent cell death driven by lipid peroxidation—as a critical contributor to OP pathogenesis, characterized by dysregulated iron metabolism, oxidative stress, and lipid peroxide accumulation, which disrupt bone remodeling by impairing osteoblast function and enhancing osteoclast activity. This review elucidates the mechanistic interplay between ferroptosis and OP subtypes (diabetic osteoporosis (DOP), glucocorticoid-induced (GIOP), and postmenopausal osteoporosis (PMOP)) and evaluates the efficacy of Chinese herbal interventions in mitigating ferroptosis-driven bone loss. Key findings reveal that excess iron exacerbates lipid peroxidation via the Fenton reaction, while glutathione peroxidase 4 (GPX4) inactivation and system Xc- inhibition amplify oxidative damage. In DIOP, hyperglycemia-induced ROS and advanced glycation end products suppress osteogenesis, countered by melatonin and naringenin via nuclear factor -related factor 2 (Nrf2)/GPX4 activation. GIOP involves dexamethasone-mediated GPX4 downregulation, mitigated by exosomes and melatonin through phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. PMOP driven by estrogen deficiency-induced iron overload is alleviated by aconitine and icariin (ICA) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Chinese herbs, including active compounds (quercetin, gastrodin, ICA, etc.) and formulations (Bugu Shengsui Capsule, Erxian Decoction (EXD), etc.), regulate iron metabolism, enhance antioxidant defenses (Nrf2/heme oxygenase 1(HO-1)), and inhibit lipid peroxidation, effectively restoring bone homeostasis. These findings underscore ferroptosis as a pivotal mechanism in OP progression and highlight the therapeutic promise of Chinese herbs in bridging traditional medicine with modern mechanistic insights. Future research should prioritize elucidating precise molecular targets, optimizing formulations, and validating clinical efficacy to address current therapeutic gaps. Full article
(This article belongs to the Special Issue Bone Cell Biology)
Show Figures

Figure 1

25 pages, 3357 KB  
Review
Clinical Significance of LINC00261 in the Pathogenesis of Pancreatic, Colorectal, Hepatocellular, and Gallbladder Cancer
by Sanjana Bana, Sia Daffara, Aastha Dagar, Ashutosh Kumar Tiwari, Kanupriya Medhi, Sagarika Mukherjee, Vivek Uttam, Md Rizwan Ansari, Hardeep Singh Tuli, Vikas Yadav and Aklank Jain
Diseases 2025, 13(3), 89; https://doi.org/10.3390/diseases13030089 - 20 Mar 2025
Cited by 1 | Viewed by 1395
Abstract
Pancreatic (PC), colorectal (CRC), hepatocellular (HCC), and gallbladder (GC) cancers together account for nearly 20% of all cancer cases. However, specific biomarkers and therapeutic targets for these cancers are lacking. Diagnosing these cancers early and providing timely, appropriate treatment to improve patient outcomes [...] Read more.
Pancreatic (PC), colorectal (CRC), hepatocellular (HCC), and gallbladder (GC) cancers together account for nearly 20% of all cancer cases. However, specific biomarkers and therapeutic targets for these cancers are lacking. Diagnosing these cancers early and providing timely, appropriate treatment to improve patient outcomes is crucial. In this context, previous studies, including ours, have highlighted the potential of non-coding RNAs, particularly long non-coding RNAs (lncRNAs), in diagnosing and prognosis of various cancers. This review focuses on the mechanistic role of the recently identified lncRNA LINC00261 in PC, CRC, HCC, and GC. Our comprehensive literature analysis revealed that LINC00261 functions as a tumor suppressor, and its reduced expression is associated with larger tumor size, advanced tumor-node-metastasis (TNM) stages, lymphatic metastasis, and poorer overall survival rates. Additionally, we discovered that LINC00261 acts as a molecular sponge for miRNAs, such as miR-550a-3p, miR-23a-3p, miR-148a, miR-324-3p, and miR-105-5p, regulating critical cancer-related signaling pathways, including PI3K/Akt/mTOR, Protein kinase B, and Mammalian target of rapamycin (mTOR). Further bioinformatic analysis revealed that LINC00261 regulates key cellular processes, such as protein-DNA complex formation, ribonuclease complex activity, histone deacetylase complexes, and nuclear matrix interactions. Overall, we believe that LINC00261 holds significant promise as a future biomarker and, when combined with existing treatment strategies, may enhance cancer patient care and survival. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

24 pages, 1912 KB  
Review
A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes
by Diana Melo Ferreira, Maria Beatriz P. P. Oliveira and Rita Carneiro Alves
Antioxidants 2025, 14(2), 237; https://doi.org/10.3390/antiox14020237 - 18 Feb 2025
Cited by 9 | Viewed by 3486
Abstract
Olive oil is widely recognized for its cancer-prevention properties, and its by-products, such as pomace and leaves, offer an opportunity for compound extraction. This study comprehensively reviews the antitumor activities of olive extracts and compounds in both in vitro and in vivo studies. [...] Read more.
Olive oil is widely recognized for its cancer-prevention properties, and its by-products, such as pomace and leaves, offer an opportunity for compound extraction. This study comprehensively reviews the antitumor activities of olive extracts and compounds in both in vitro and in vivo studies. Key compounds, including hydroxytyrosol (HT), oleuropein (OL), oleocanthal (OC), and maslinic acid (MA), demonstrated significant antiproliferative, apoptotic, antimigratory, and anti-invasive effects, along with selective cytotoxicity, particularly against breast and colorectal cancer. HT, OC, and MA showed anti-angiogenic effects, while HT and OC showed antimetastatic effects. Moreover, HT, OL, and OC also presented synergistic effects when combined with anticancer drugs, improving their efficacy. Additionally, HT, OL, and MA exhibited protective effects against several side effects of chemotherapy. These compounds are able to modulate important signaling pathways such as the mammalian target of rapamycin, regulate oxidative stress through reactive oxygen species production, modulate angiogenic factors, and induce autophagy. Interestingly, the synergistic effects of the compounds within olive extracts appear to be stronger than their individual action. There is a need for dose optimization, further mechanistic studies to clarify the precise mechanisms of action, and future studies using olive pomace extracts with animal models. Full article
Show Figures

Figure 1

11 pages, 2492 KB  
Article
Nuclear mTORC1 Live-Cell Sensor nTORSEL Reports Differential Nuclear mTORC1 Activity in Cell Lines
by Yifan Wang, Canrong Li, Yingyi Ouyang and Xiaoduo Xie
Int. J. Mol. Sci. 2024, 25(22), 12117; https://doi.org/10.3390/ijms252212117 - 12 Nov 2024
Cited by 1 | Viewed by 1998
Abstract
The mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is activated on the surface of lysosomes and phosphorylates substrates at various subcellular locations, including the lysosome, cytosol, and nucleus. However, the signaling and biological functions of nuclear mTORC1 (nmTORC1) are not well [...] Read more.
The mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is activated on the surface of lysosomes and phosphorylates substrates at various subcellular locations, including the lysosome, cytosol, and nucleus. However, the signaling and biological functions of nuclear mTORC1 (nmTORC1) are not well understood, primarily due to limited tools for monitoring mTORC1 activity in the nucleus. In this study, we developed a genetically encoded nmTORC1 sensor, termed nTORSEL, based on the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4EBP1) by mTORC1 within the nucleus. nTORSEL, like its predecessor TORSEL, exhibits a fluorescent punctate pattern in the nucleus through multivalent protein–protein interactions between oligomerized 4EBP1 and eIF4E when nmTORC1 activity is low. We validated nTORSEL using biochemical analyses and imaging techniques across representative cell lines with varying levels of nmTORC1 activity. Notably, nTORSEL specifically detects physiological, pharmacological, and genetic inhibition of nmTORC1 in mouse embryonic fibroblast (MEF) cells but not in HEK293T cells. Therefore, nTORSEL is an effective tool for investigating nuclear mTORC1 signaling in cell lines. Full article
(This article belongs to the Special Issue Protein Biosensors)
Show Figures

Figure 1

Back to TopTop