The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedures
2.2.1. Blood Sample Collection
2.2.2. Plasma Separation and Lymphocytes Isolations
2.2.3. Total Protein Determination
2.2.4. Lipid Peroxidation
2.2.5. SIRT3 and mTOR Activity Assay
2.3. Physical Exercise Training
2.4. Physical Testing
2.5. Aerobic Capacity
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wan, W.; Hua, F.; Fang, P.; Li, C.; Deng, F.; Chen, S.; Ying, J.; Wang, X. Regulation of Mitophagy by Sirtuin Family Proteins: A Vital Role in Aging and Age-Related Diseases. Front. Aging Neurosci. 2022, 14, 845330. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.; Waickman, A. mTOR as a central regulator of T-cell activation, differentiation, and function. In Molecular Cancer Research; American Association for Cancer Research: Philadelphia, PA, USA, 2020; pp. 19–20. [Google Scholar]
- Cheng, A.; Yang, Y.; Zhou, Y.; Maharana, C.; Lu, D.; Peng, W.; Liu, Y.; Wan, R.; Marosi, K.; Misiak, M.; et al. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab. 2016, 23, 128–142. [Google Scholar] [CrossRef]
- Mohamed, J.S.; Wilson, J.C.; Myers, M.J.; Sisson, K.J.; Alway, S.E. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging 2014, 6, 820–834. [Google Scholar] [CrossRef]
- Vargas-Ortiz, K.; Pérez-Vázquez, V.; Macías-Cervantes, M.H. Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle. Int. J. Mol. Sci. 2019, 20, 2717. [Google Scholar] [CrossRef]
- Villanova, L.; Vernucci, E.; Pucci, B.; Pellegrini, L.; Nebbioso, M.; Mauri, C.; Marfe, G.; Spataro, A.; Fini, M.; Banfi, G.; et al. Influence of age and physical exercise on sirtuin activity in humans. J. Biol. Regul. Homeost. Agents 2013, 27, 497–507. [Google Scholar]
- Radak, Z.; Suzuki, K.; Posa, A.; Petrovszky, Z.; Koltai, E.; Boldogh, I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 2020, 35, 101467. [Google Scholar] [CrossRef]
- Kincaid, B.; Bossy-Wetzel, E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front. Aging Neurosci. 2013, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Corrêa, C.L.; Lopez-Lopez, A.; Costa-Besada, M.A.; Diaz-Ruiz, C.; Labandeira-Garcia, J.L. Physical Exercise Improves Aging-Related Changes in Angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the Substantia Nigra. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.P.; Silva, A.M.; Oliveira, M.M.; Peixoto, F.; Gaivão, I.; Mota, M.P. Effects of combined physical exercise training on DNA damage and repair capacity: Role of oxidative stress changes. Age 2015, 37, 9799. [Google Scholar] [CrossRef]
- Mota, M.P.; Peixoto, F.M.; Soares, J.F.; Figueiredo, P.A.; Leitão, J.C.; Gaivão, I.; Duarte, J.A. Influence of aerobic fitness on age-related lymphocyte DNA damage in humans: Relationship with mitochondria respiratory chain and hydrogen peroxide production. Age 2010, 32, 337–346. [Google Scholar] [CrossRef]
- Mota, M.P.; Peixoto, F.M.; Soares, J.F.; Figueiredo, P.; Duarte, J.A. Does aging influence lymphocyte mitochondria respiration in trained people? Biochim. Biophys. Acta Bioenerg. 2008, 1777, S100. [Google Scholar] [CrossRef]
- Nazari, N.; Jafari, F.; Ghalamfarsa, G.; Hadinia, A.; Atapour, A.; Ahmadi, M.; Dolati, S.; Rostamzadeh, D. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses. Immunol. Cell Biol. 2021, 99, 814–832. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 298. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Chen, D.; Riddle, D.L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004, 131, 3897–3906. [Google Scholar] [CrossRef]
- Kapahi, P.; Zid, B.M.; Harper, T.; Koslover, D.; Sapin, V.; Benzer, S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 2004, 14, 885–890. [Google Scholar] [CrossRef]
- Harrison, D.E.; Strong, R.; Sharp, Z.D.; Nelson, J.F.; Astle, C.M.; Flurkey, K.; Nadon, N.L.; Wilkinson, J.E.; Frenkel, K.; Carter, C.S.; et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Komarova, E.A.; Antoch, M.P.; Novototskaya, L.R.; Chernova, O.B.; Paszkiewicz, G.; Leontieva, O.V.; Blagosklonny, M.V.; Gudkov, A.V. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/− mice. Aging 2012, 4, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Badoiu, S.C.; Greabu, M.; Miricescu, D.; Stanescu-Spinu, I.I.; Ilinca, R.; Balan, D.G.; Balcangiu-Stroescu, A.E.; Mihai, D.A.; Vacaroiu, I.A.; Stefani, C.; et al. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int. J. Mol. Sci. 2023, 24, 8391. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.T.; Ismail, A.; Tolomeo, C. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: An emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat Rev. 2014, 40, 980–989. [Google Scholar] [CrossRef]
- Yoon, M.S. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front. Physiol. 2017, 8, 788. [Google Scholar] [CrossRef]
- Zeng, Z.; Liang, J.; Wu, L.; Zhang, H.; Lv, J.; Chen, N. Exercise-Induced Autophagy Suppresses Sarcopenia Through Akt/mTOR and Akt/FoxO3a Signal Pathways and AMPK-Mediated Mitochondrial Quality Control. Front. Physiol. 2020, 11, 583478. [Google Scholar] [CrossRef] [PubMed]
- Mazo, C.E.; D’Lugos, A.C.; Sweeney, K.R.; Haus, J.M.; Angadi, S.S.; Carroll, C.C.; Dickinson, J.M. The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle. Eur. J. Appl. Physiol. 2021, 121, 2913–2924. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Aoki, Y.; Takeda, K.; Takemasa, T. The order of concurrent training affects mTOR signaling but not mitochondrial biogenesis in mouse skeletal muscle. Physiol. Rep. 2020, 8, e14411. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.W.; Eddens, L.; Kupusarevic, J.; Simoes, D.C.M.; Furber, M.J.W.; Van Someren, K.A.; Howatson, G. Effects of Cycling Intensity on Acute Signaling Adaptations to 8-weeks Concurrent Training in Trained Cyclists. Front. Physiol. 2022, 13, 852595. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Mota, M.P.; Dos Santos, Z.A.; Soares, J.F.P.; de Fátima Pereira, A.; João, P.V.; O’Neil Gaivão, I.; Oliveira, M.M. Intervention with a combined physical exercise training to reduce oxidative stress of women over 40years of age. Exp. Gerontol. 2019, 123, 1–9. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of Serum Proteins by Means of the Biuret Reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Wills, E.D. Evaluatin of Lipid Peroxidation in Lipids and Biological Membranes; IRL: Oxford, UK, 1987. [Google Scholar]
- Martins-Gomes, C.; Silva, A.M. Western Blot Methodologies for Analysis of In Vitro Protein Expression Induced by Teratogenic Agents. Methods Mol. Biol. 2018, 1797, 191–203. [Google Scholar]
- Gellish, R.L.; Goslin, B.R.; Olson, R.E.; McDonald, A.; Russi, G.D.; Moudgil, V.K. Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 2007, 39, 822–829. [Google Scholar] [CrossRef]
- Pereira, A.; Izquierdo, M.; Silva, A.J.; Costa, A.M.; González-Badillo, J.J.; Marques, M.C. Muscle performance and functional capacity retention in older women after high-speed power training cessation. Exp. Gerontol. 2012, 47, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Powell, K.E.; King, A.C.; Buchner, D.M.; Campbell, W.W.; DiPietro, L.; Erickson, K.I.; Hillman, C.H.; Jakicic, J.M.; Janz, K.F.; Katzmarzyk, P.T.; et al. The Scientific Foundation for the Physical Activity Guidelines for Americans, 2nd Edition. J. Phys. Act. Health 2018, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.W.; Lake, J.P.; Rogerson, D.; Ruddock, A.; Barnes, A. Kinetics and Kinematics of the Free-Weight Back Squat and Loaded Jump Squat. J. Strength Cond. Res. 2023, 37, 1–8. [Google Scholar] [CrossRef]
- Zeng, H.; Chi, H. mTOR signaling and transcriptional regulation in T lymphocytes. Transcription 2014, 5, e28263. [Google Scholar] [CrossRef] [PubMed]
- Kaldirim, M.; Lang, A.; Pfeiler, S.; Fiegenbaum, P.; Kelm, M.; Bönner, F.; Gerdes, N. Modulation of mTOR Signaling in Cardiovascular Disease to Target Acute and Chronic Inflammation. Front. Cardiovasc. Med. 2022, 9, 907348. [Google Scholar] [CrossRef]
- Bianchi, A.; Marchetti, L.; Hall, Z.; Lemos, H.; Vacca, M.; Paish, H.; Green, K.; Elliott, B.; Tiniakos, D.; Passos, J.F.; et al. Moderate Exercise Inhibits Age-Related Inflammation, Liver Steatosis, Senescence, and Tumorigenesis. J. Immunol. 2021, 206, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.; Pedersen, B.K. The role of IL-6 in mediating the anti-inflammatory effects of exercise. J. Physiol. Pharmacol. 2006, 57, 43–51. [Google Scholar]
- Agostini, D.; Natalucci, V.; Baldelli, G.; De Santi, M.; Donati Zeppa, S.; Vallorani, L.; Annibalini, G.; Lucertini, F.; Federici, A.; Izzo, R.; et al. New Insights into the Role of Exercise in Inhibiting mTOR Signaling in Triple-Negative Breast Cancer. Oxid. Med. Cell Longev. 2018, 2018, 5896786. [Google Scholar] [CrossRef]
- Mendham, A.E.; Goedecke, J.H.; Zeng, Y.; Larsen, S.; George, C.; Hauksson, J.; Fortuin-de Smidt, M.C.; Chibalin, A.V.; Olsson, T.; Chorell, E. Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia 2021, 64, 1642–1659. [Google Scholar] [CrossRef]
- Fritzen, A.M.; Thøgersen, F.B.; Thybo, K.; Vissing, C.R.; Krag, T.O.; Ruiz-Ruiz, C.; Risom, L.; Wibrand, F.; Høeg, L.D.; Kiens, B.; et al. Adaptations in Mitochondrial Enzymatic Activity Occurs Independent of Genomic Dosage in Response to Aerobic Exercise Training and Deconditioning in Human Skeletal Muscle. Cells 2019, 8, 237. [Google Scholar] [CrossRef]
- Oliveira, M.J.; Marçôa, R.; Moutinho, J.; Oliveira, P.; Ladeira, I.; Lima, R.; Guimarães, M. Reference equations for the 6-minute walk distance in healthy Portuguese subjects 18–70 years old. Pulmonology 2019, 25, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Argaud, S.; Pairot de Fontenay, B.; Blache, Y.; Monteil, K. Age-related differences of inter-joint coordination in elderly during squat jumping. PLoS ONE 2019, 14, e0221716. [Google Scholar] [CrossRef] [PubMed]
Variable | Pre-Test ± SD) | Post-Test ± SD) | p Value |
---|---|---|---|
Weight (kg) | 79.7 ± 2.58 | 83.48 ± 5.93 | p = 0.273 |
Waist Circumference (cm) | 102.4 ± 3.97 | 100.4 ± 2.36 | p = 0.075 |
Aerobic Capacity (6MWT) (m) | 615.4 ± 45.3 | 694.2 ± 37.4 | p = 0.002 |
Medicine Ball | 6.71 ± 0.67 | 6.62 ± 0.35 | p = 0.662 |
Squat Jump (CMJ) (m) | 0.17 ± 0.04 | 0.20 ± 0.05 | p = 0.068 |
Velocity (sec) | 4.7 ± 0.5 | 4.4 ± 0.3 | p = 0.043 * |
Variable | Pre-Test ± SD) | Post-Test ± SD) | p Value |
---|---|---|---|
MDA (nmol MDA/mg proteín) | 8419.9 ± 4615.8 | 8799.9 ± 3163.43 | p = 0.594 |
SIRT3 (SIRT3/β-actin) | 0.609 ± 0.404 | 0.516 ± 0.390 | p = 0.658 |
mTOR (mTOR/β-actin) | 0.857 ± 0.593 | 0.214 ± 0.097 | p = 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, J.P.; Cardoso, R.; Almeida, V.; Pereira, A.F.; Silva, A.M.; Mota, M.P. The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation. Healthcare 2024, 12, 350. https://doi.org/10.3390/healthcare12030350
Soares JP, Cardoso R, Almeida V, Pereira AF, Silva AM, Mota MP. The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation. Healthcare. 2024; 12(3):350. https://doi.org/10.3390/healthcare12030350
Chicago/Turabian StyleSoares, Jorge Pinto, Ricardo Cardoso, Vanessa Almeida, Ana Fátima Pereira, Amélia M. Silva, and Maria Paula Mota. 2024. "The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation" Healthcare 12, no. 3: 350. https://doi.org/10.3390/healthcare12030350
APA StyleSoares, J. P., Cardoso, R., Almeida, V., Pereira, A. F., Silva, A. M., & Mota, M. P. (2024). The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation. Healthcare, 12(3), 350. https://doi.org/10.3390/healthcare12030350