Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = mechanism of afterglow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6676 KB  
Review
Stimulus-Responsive Afterglow Carbon Dots from Internal Mechanism to Potential Application
by Chongye Xia, Xingyu Gu, Xingwang Zhu, Yunfei Sun, Qijun Li and Jing Tan
Nanomaterials 2025, 15(23), 1769; https://doi.org/10.3390/nano15231769 - 25 Nov 2025
Viewed by 421
Abstract
Stimulus-responsive afterglow materials refer to a class of substances whose afterglow characteristics alter under external stimuli, showing considerable potential for advanced applications in anti-counterfeiting, optoelectronic displays, chemical sensing, and bioimaging. Carbon dots (CDs), as an emerging category of afterglow materials, have garnered significant [...] Read more.
Stimulus-responsive afterglow materials refer to a class of substances whose afterglow characteristics alter under external stimuli, showing considerable potential for advanced applications in anti-counterfeiting, optoelectronic displays, chemical sensing, and bioimaging. Carbon dots (CDs), as an emerging category of afterglow materials, have garnered significant attention due to their stable photophysical and chemical properties, low toxicity, and tunable luminescent energy bands. In recent years, significant progress has been made in the development of stimulus-responsive afterglow CDs, underscoring the need for a systematic summary of this rapidly advancing field. This review summarizes recent advances in CD-based afterglow, encompassing luminescence mechanisms and synthesis strategies. A particular focus is placed on the types of stimulus-responsive afterglow behaviors in CDs, their influence on afterglow performance, and the underlying response mechanisms. The potential applications of these stimulus-responsive afterglow CDs in sensing and information encryption are also discussed in detail. Finally, current challenges and future prospects are outlined, aiming to guide the rational design and development of next-generation stimulus-responsive afterglow CDs. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

33 pages, 489 KB  
Review
Multi-TeV Gamma Rays from GRB 221009A: Challenges for Emission Mechanisms, EBL Opacity, and Fundamental Physics
by Hassan Abdalla
Galaxies 2025, 13(4), 95; https://doi.org/10.3390/galaxies13040095 - 19 Aug 2025
Viewed by 2213
Abstract
The detection of gamma-ray burst GRB 221009A has attracted significant attention due to its record brightness and first-ever detection of multi-TeV γ-rays from a GRB. Located at redshift z=0.151, this event is relatively nearby by GRB standards yet remains [...] Read more.
The detection of gamma-ray burst GRB 221009A has attracted significant attention due to its record brightness and first-ever detection of multi-TeV γ-rays from a GRB. Located at redshift z=0.151, this event is relatively nearby by GRB standards yet remains cosmologically distant, making the survival of multi-TeV photons surprising. The Large High Altitude Air Shower Observatory detected photons with energies up to ∼13 TeV during the early afterglow phase, challenging standard EBL models. We investigate whether several theoretical frameworks can explain this anomalous emission: reduced EBL opacity due to cosmic voids along the line of sight, novel emission mechanisms within the GRB environment, secondary γ-ray production through cosmic-ray cascades, and new physics scenarios involving Lorentz invariance violation or axion-like particles. Our analysis reveals areas of consensus regarding the exceptional nature of this event, while highlighting ongoing theoretical tensions about the dominant physical processes. We discuss the limitations of current models and identify specific observational signatures that future multi-wavelength and multi-messenger observations could provide to discriminate between competing explanations. The continued study of similar events with next-generation facilities will be crucial for resolving these theoretical challenges and advancing our understanding of extreme particle acceleration processes in astrophysical environments. Full article
Show Figures

Figure 1

17 pages, 7485 KB  
Review
Organic Afterglow Materials for Tumor Diagnosis and Therapy
by Xiayi Chen, Bin Li, Baoli Yin, Dong Xu and Youjuan Wang
Biosensors 2025, 15(8), 484; https://doi.org/10.3390/bios15080484 - 25 Jul 2025
Viewed by 1810
Abstract
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis [...] Read more.
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis and therapy. These nanostructures demonstrate significant potential in guiding precision surgical interventions and real-time monitoring of tumor treatment, including photodynamic therapy, photothermal therapy, and immunotherapy. This review systematically analyzes and discusses the luminescence mechanisms of OANs under various excitation sources, with particular emphasis on recent developments in tumor detection and treatment. Additionally, we also discuss the current challenges and future perspectives of using these nanoparticles in this field. Full article
(This article belongs to the Special Issue Single-Molecule Biosensing: Recent Advances and Future Challenges)
Show Figures

Figure 1

11 pages, 2045 KB  
Article
Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption
by Yu-Lin Hu, Yi-Lin Zhu, Shi-Ying Gu, Jia-Qing Xu, Zhi-Xing Gan and Chuan-Guo Shi
Nanomaterials 2025, 15(13), 1002; https://doi.org/10.3390/nano15131002 - 28 Jun 2025
Viewed by 630
Abstract
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, [...] Read more.
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, we reveal that the afterglow of Cs2Na0.2Ag0.8InCl6:y%Mn can be significantly modulated by Mn2+ concentration. We propose that replacing Ag+ with Mn2+ leads to the appearance of interstitial Ag+, which temporally store the photogenerated electrons (Ag++eAg). After the removal of excitation, the gradual recombination between residual holes and stored electrons [h++Ag++ehν+Ag+] explains the afterglow. However, excessive Mn2+ doping at interstitial sites does not bring about more interstitial Ag+ but instead introduces nonradiative traps. Therefore, as the Mn2+ concentration increases, the afterglow time increases from 350 s to 530 s and then decreases to 230 s, reaching a maximum at y = 40. Thus, a dynamic optical information storage and encryption application is demonstrated based on the modulated afterglow time. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructure, Second Edition)
Show Figures

Figure 1

13 pages, 8546 KB  
Article
Flame Retardancy Evolution Behavior and Molecular Mechanism of Polyvinyl Chloride Under the Action of Damp Heat Aging
by Ke Xu, Chenyu Gao, Xin Liu, Xiuzhen Liu, Ganxin Jie, Jun Deng, Xinhan Qiao and Wentian Zeng
Polymers 2025, 17(6), 794; https://doi.org/10.3390/polym17060794 - 17 Mar 2025
Cited by 2 | Viewed by 1325
Abstract
A 56-day aging test of polyvinyl chloride (PVC) cable material under hot and humid conditions was conducted, followed by tests on flame retardancy after varying degrees of wet heat aging, including vertical burning behavior, oxygen index, and afterflame time. Using molecular dynamics simulation [...] Read more.
A 56-day aging test of polyvinyl chloride (PVC) cable material under hot and humid conditions was conducted, followed by tests on flame retardancy after varying degrees of wet heat aging, including vertical burning behavior, oxygen index, and afterflame time. Using molecular dynamics simulation theory, the molecular mechanism behind the changes in flame-retardant properties after wet heat aging was investigated based on experimental observations. The results indicate that, as wet heat aging progresses, the flame brightness decreases, the oxygen index increases, and afterflame and afterglow times significantly decrease in vertical combustion tests. These findings suggest that the flame-retardant properties of PVC improve as moist heat aging deepens. After aging, the combustibles within PVC samples diffuse more easily, and the precipitation of CaCO3 on the PVC surface enhances surface density, intermolecular forces, and thermal stability, which are key factors in the improved flame retardant performance. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

30 pages, 1842 KB  
Review
The Observed Luminosity Correlations of Gamma-Ray Bursts and Their Applications
by Chen Deng, Yong-Feng Huang, Fan Xu and Abdusattar Kurban
Galaxies 2025, 13(2), 15; https://doi.org/10.3390/galaxies13020015 - 21 Feb 2025
Cited by 6 | Viewed by 2449
Abstract
Gamma-ray bursts (GRBs) are among the most luminous electromagnetic transients in the universe, providing unique insights into extreme astrophysical processes and serving as promising probes for cosmology. Unlike Type Ia supernovae, which have a unified explosion mechanism, GRBs cannot directly act as standard [...] Read more.
Gamma-ray bursts (GRBs) are among the most luminous electromagnetic transients in the universe, providing unique insights into extreme astrophysical processes and serving as promising probes for cosmology. Unlike Type Ia supernovae, which have a unified explosion mechanism, GRBs cannot directly act as standard candles for tracing cosmic evolution at high redshifts due to significant uncertainties in their underlying physical origins. Empirical correlations derived from statistical analyses involving various GRB parameters provide valuable information regarding their intrinsic properties. In this brief review, we describe various correlations among GRB parameters involving the prompt and afterglow phases, discussing possible theoretical interpretations behind them. The scarcity of low-redshift GRBs poses a major obstacle to the application of GRB empirical correlations in cosmology, referred to as the circularity problem. We present various efforts aiming at calibrating GRBs to address this challenge and leveraging established empirical correlations to constrain cosmological parameters. The pivotal role of GRB sample quality in advancing cosmological research is underscored. Some correlations that could potentially be utilized as redshift indicators are also introduced. Full article
Show Figures

Figure 1

33 pages, 1413 KB  
Review
Gamma-Ray Bursts: What Do We Know Today That We Did Not Know 10 Years Ago?
by Asaf Pe’er
Galaxies 2025, 13(1), 2; https://doi.org/10.3390/galaxies13010002 - 31 Dec 2024
Cited by 3 | Viewed by 3868
Abstract
I discuss here the progress made in the last decade on a few of the key open problems in GRB physics. These include (1) the nature of GRB progenitors, and the outliers found to the collapsar/merger scenarios; (2) jet structures, whose existence became [...] Read more.
I discuss here the progress made in the last decade on a few of the key open problems in GRB physics. These include (1) the nature of GRB progenitors, and the outliers found to the collapsar/merger scenarios; (2) jet structures, whose existence became evident following GRB/GW170817; (3) the great progress made in understanding the GRB jet launching mechanisms, enabled by general-relativistic magnetohydrodynamic (GR-MHD) codes; (4) recent studies of magnetic reconnection as a valid energy dissipation mechanism; (5) the early afterglow, which may be highly affected by a wind bubble, as well as recent indication that in many GRBs, the Lorentz factor is only a few tens, rather than a few hundreds. I highlight some recent observational progress, including the major breakthrough in detecting TeV photons and the on-going debate about their origin, polarization measurements, as well as the pair annihilation line recently detected in GRB 221009A, and its implications for prompt emission physics. I probe into some open questions that I anticipate will be at the forefront of GRB research in the next decade. Full article
Show Figures

Figure 1

18 pages, 1182 KB  
Article
Dynamics of Photoinduced Charge Carriers in Metal-Halide Perovskites
by András Bojtor, Dávid Krisztián, Ferenc Korsós, Sándor Kollarics, Gábor Paráda, Márton Kollár, Endre Horváth, Xavier Mettan, Bence G. Márkus, László Forró and Ferenc Simon
Nanomaterials 2024, 14(21), 1742; https://doi.org/10.3390/nano14211742 - 30 Oct 2024
Cited by 1 | Viewed by 2154
Abstract
The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger [...] Read more.
The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism. We present temperature and injection level dependent measurements in CsPbBr3, which is the most common inorganic lead-halide perovskite. In this material, we observe the dominance of charge-carrier trapping, which results in ultra-long charge-carrier lifetimes. Although charge trapping can limit the effectiveness of materials in photovoltaic applications, it also offers significant advantages for various alternative uses, including delayed and persistent photodetection, charge-trap memory, afterglow light-emitting diodes, quantum information storage, and photocatalytic activity. Full article
Show Figures

Figure 1

16 pages, 506 KB  
Article
Polarization from a Radially Stratified GRB Outflow
by Augusto César Caligula do Espírito Santo Pedreira, Nissim Fraija, Antonio Galván-Gámez, Boris Betancourt Kamenetskaia, Simone Dichiara, Maria G. Dainotti, Rosa L. Becerra and Peter Veres
Galaxies 2024, 12(5), 60; https://doi.org/10.3390/galaxies12050060 - 4 Oct 2024
Viewed by 1371
Abstract
While the dominant radiation mechanism of gamma-ray bursts (GRBs) remains a question of debate, synchrotron emission is one of the foremost candidates to describe the multi-wavelength afterglow observations. As such, it is expected that GRBs should present some degree of polarization across their [...] Read more.
While the dominant radiation mechanism of gamma-ray bursts (GRBs) remains a question of debate, synchrotron emission is one of the foremost candidates to describe the multi-wavelength afterglow observations. As such, it is expected that GRBs should present some degree of polarization across their evolution—presenting a feasible means of probing these bursts’ energetic and angular properties. Although obtaining polarization data is difficult due to the inherent complexities regarding GRB observations, advances are being made, and theoretical modeling of synchrotron polarization is now more relevant than ever. In this manuscript, we present the polarization for a fiduciary model, where the synchrotron FS emission evolving in the radiative–adiabatic regime is described by a radially stratified off-axis outflow. This is parameterized with a power-law velocity distribution and decelerated in a constant-density and wind-like external environment. We apply this theoretical polarization model for two select GRBs, presenting upper limits in their polarization—GRB 170817A, a known off-axis GRB with radio polarization upper limits, and GRB 190014C, an on-axis case, where the burst was seen from within the half-opening angle of the jet, with observed optical polarization—in an attempt to constrain their magnetic field geometry in the emitting region. Full article
Show Figures

Figure 1

45 pages, 12405 KB  
Review
Aluminate Long Afterglow Luminescent Materials in Road Marking Field Research Progress and Development: A Review
by Fangzhi Zhang, Yue Xie, Xiaokang Zhao, Yinzhang He, Jianzhong Pei, Yuanhe Xing, Shaobo Wang and Jiupeng Zhang
Buildings 2024, 14(7), 2152; https://doi.org/10.3390/buildings14072152 - 12 Jul 2024
Cited by 12 | Viewed by 8448
Abstract
This paper reviews the research progress and development of aluminate long afterglow luminescent materials in the field of road marking, especially the study of rare earth ion-activated strontium aluminate (SrAl2O4: Eu2+, Dy3+)-based long afterglow powders. [...] Read more.
This paper reviews the research progress and development of aluminate long afterglow luminescent materials in the field of road marking, especially the study of rare earth ion-activated strontium aluminate (SrAl2O4: Eu2+, Dy3+)-based long afterglow powders. This article begins by describing the importance of road markings and the need to improve their visibility and durability at night and in adverse weather conditions. Subsequently, the current passive and active methods for improving the visibility of marking materials are discussed in detail, focusing on the advantages of aluminate long afterglow materials and challenges related to their hydrolysis and thermal stability. Through the application of organic–inorganic composite coating technology, the water resistance and thermal stability of the materials can be improved, thus enhancing the performance of road markings. This article also summarizes the current research status of different types of long afterglow road marking coatings. It analyzes the luminescence mechanism of aluminate long afterglow materials. Additionally, this article discusses future research directions and application prospects. The aim is to provide technical references and support for the wide application of long afterglow self-luminous road marking coatings. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 7519 KB  
Review
Recent Progress in Solid-State Room Temperature Afterglow Based on Pure Organic Small Molecules
by Xin Shen, Wanhua Wu and Cheng Yang
Molecules 2024, 29(13), 3236; https://doi.org/10.3390/molecules29133236 - 8 Jul 2024
Cited by 3 | Viewed by 2942
Abstract
Organic room temperature afterglow (ORTA) can be categorized into two key mechanisms: continuous thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP), both of which involve a triplet excited state. However, triplet excited states are easily quenched by non-radiative transitions due to oxygen [...] Read more.
Organic room temperature afterglow (ORTA) can be categorized into two key mechanisms: continuous thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP), both of which involve a triplet excited state. However, triplet excited states are easily quenched by non-radiative transitions due to oxygen and molecular vibrations. Solid-phase systems provide a conducive environment for triplet excitons due to constrained molecular motion and limited oxygen permeation within closely packed molecules. The stimulated triplet state tends to release energy through radiative transitions. Despite numerous reports on RTP in solid-phase systems in recent years, the complexity of these systems precludes the formulation of a universal theory to elucidate the underlying principles. Several strategies for achieving ORTA luminescence in the solid phase have been developed, encompassing crystallization, polymer host-guest doping, and small molecule host-guest doping. Many of these systems exhibit luminescent responses to various physical stimuli, including light stimulation, mechanical stimuli, and solvent vapor exposure. The appearance of these intriguing luminescent phenomena in solid-phase systems underscores their significant potential applications in areas such as light sensing, biological imaging, and information security. Full article
Show Figures

Figure 1

41 pages, 5168 KB  
Review
A Short History of the First 50 Years: From the GRB Prompt Emission and Afterglow Discoveries to the Multimessenger Era
by Filippo Frontera
Universe 2024, 10(6), 260; https://doi.org/10.3390/universe10060260 - 12 Jun 2024
Cited by 4 | Viewed by 2553
Abstract
More than fifty years have elapsed from the first discovery of gamma-ray bursts (GRBs) with American Vela satellites, and more than twenty-five years from the discovery with the BeppoSAX satellite of the first X-ray afterglow of a GRB. Thanks to the afterglow discovery [...] Read more.
More than fifty years have elapsed from the first discovery of gamma-ray bursts (GRBs) with American Vela satellites, and more than twenty-five years from the discovery with the BeppoSAX satellite of the first X-ray afterglow of a GRB. Thanks to the afterglow discovery and to the possibility given to the optical and radio astronomers to discover the GRB optical counterparts, the long-time mystery about the origin of these events has been solved. Now we know that GRBs are huge explosions, mainly ultra relativistic jets, in galaxies at cosmological distances. Starting from the first GRB detection with the Vela satellites, I will review the story of these discoveries, those obtained with BeppoSAX, the contribution to GRBs by other satellites and ground experiments, among them being Venera, Compton Gamma Ray Observatory, HETE-2, Swift, Fermi, AGILE, MAGIC, H.E.S.S., which were, and some of them are still, very important for the study of GRB properties. Then, I will review the main results obtained thus far and the still open problems and prospects of GRB astronomy. Full article
(This article belongs to the Special Issue GRBs Phenomenology, Models and Applications: A Beginner Guide)
Show Figures

Figure 1

16 pages, 14653 KB  
Article
Influence of Light Conditions on the Antibacterial Performance and Mechanism of Waterborne Fluorescent Coatings Based on Waterproof Long Afterglow Phosphors/PDMS Composites
by Sinan Hao, Yuhong Qi and Zhanping Zhang
Polymers 2023, 15(19), 3873; https://doi.org/10.3390/polym15193873 - 24 Sep 2023
Cited by 8 | Viewed by 2350
Abstract
Marine microbial adhesion is the fundamental cause of large-scale biological fouling. Low surface energy coatings can prevent marine installations from biofouling; nevertheless, their static antifouling abilities are limited in the absence of shear forces produced by seawater. Novel waterborne antifouling coatings inspired by [...] Read more.
Marine microbial adhesion is the fundamental cause of large-scale biological fouling. Low surface energy coatings can prevent marine installations from biofouling; nevertheless, their static antifouling abilities are limited in the absence of shear forces produced by seawater. Novel waterborne antifouling coatings inspired by fluorescent coral were reported in this paper. Waterproof long afterglow phosphors (WLAP) were introduced into waterborne silicone elastomers by the physical blending method. The composite coatings store energy during the day, and the various colors of light emitted at night affect the regular physiological activities of marine bacteria. Due to the synergistic effect of fouling-release and fluorescence antifouling, the WLAP/polydimethylsiloxane (PDMS) composite coating showed excellent antifouling abilities. The antibacterial performance of coatings was tested under simulated day-night alternation, continuous light, and constant dark conditions, respectively. The results illustrated that the antibacterial performance of composite coatings under simulated day-night alternation conditions was significantly better than that under continuous light or darkness. The weak lights emitted by the coating can effectively inhibit the adhesion of bacteria. C-SB/PDMS showed the best antibacterial effect, with a bacterial adhesion rate (BAR) of only 3.7%. Constant strong light also affects the normal physiological behavior of bacteria, and the weak light of coatings was covered. The antibacterial ability of coatings primarily relied on their surface properties under continuous dark conditions. The fluorescent effect played a vital role in the synergetic antifouling mechanism. This study enhanced the static antifouling abilities of coatings and provided a new direction for environmentally friendly and long-acting marine antifouling coatings. Full article
Show Figures

Figure 1

18 pages, 9469 KB  
Article
Enhanced Fluorescence Characteristics of SrAl2O4: Eu2+, Dy3+ Phosphor by Co-Doping Gd3+ and Anti-Counterfeiting Application
by Peng Gao, Quanxiao Liu, Jiao Wu, Jun Jing, Wenguan Zhang, Junying Zhang, Tao Jiang, Jigang Wang, Yuansheng Qi and Zhenjun Li
Nanomaterials 2023, 13(14), 2034; https://doi.org/10.3390/nano13142034 - 9 Jul 2023
Cited by 14 | Viewed by 4360
Abstract
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via [...] Read more.
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via the combustion method. Temperature and concentration control experiments were conducted on these materials to determine the optimal reaction temperature and ion doping concentration for each sample. The crystal structure and luminescent properties were analyzed via X-ray diffraction (XRD), photoluminescence (PL), and afterglow attenuation curves. The outcomes demonstrate that the kind of crystal structure and the location of the emission peak were unaffected by the addition of ions. The addition of Eu2+ to the matrix’s lattice caused a broad green emission with a central wavelength of 508 nm, which was attributed to the characteristic 4f65d1 to 4f7 electronic dipole, which allowed the transition of Eu2+ ions. While acting as sensitizers, Dy3+ and Gd3+ could produce holes to create a trap energy level, which served as an electron trap center to catch some of the electrons produced by the excitation of Eu2+ but did not itself emit light. After excitation ceased, this allowed them to gently transition to the ground state to produce long-afterglow luminescence. It was observed that with the addition of sensitizer ions, the luminous intensity of the sample increased, and the afterglow duration lengthened. The elemental structure and valence states of the doped ions were determined with an X-ray photoelectron spectrometer (XPS). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the samples. The results show that the sample was synthesized successfully, and the type and content of ions in the fluorescent powder could be determined. The fluorescence lifetime, quantum yield, bandgap value, afterglow decay time, and coordinate position in the coherent infrared energy (CIE) diagram of the three best sample groups were then analyzed and compared. Combining the prepared phosphor with ink provides a new idea and method for the field of anti-counterfeiting through screen printing. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Figure 1

23 pages, 11783 KB  
Article
Quality of Fine Yarns from Modacrylic/Polyacrylate/Lyocell Blends Intended for Affordable Flame-Resistant Underwear
by Tatjana Rijavec, Mirjam Leskovšek, Neža Sukič, Barbara Rajar and Alenka Pavko Čuden
Materials 2023, 16(12), 4386; https://doi.org/10.3390/ma16124386 - 14 Jun 2023
Cited by 3 | Viewed by 3284
Abstract
Flammability testing of undergarments is a topic that is often overlooked and rarely on the list of textiles to be tested for fire safety. However, it is particularly important for professionals exposed to fire risk to investigate the flammability of underwear as its [...] Read more.
Flammability testing of undergarments is a topic that is often overlooked and rarely on the list of textiles to be tested for fire safety. However, it is particularly important for professionals exposed to fire risk to investigate the flammability of underwear as its direct contact with the skin can be critical to the extent and degree of skin burns. This research focuses on the suitability of affordable blends of 55 wt.% modacrylic, 15 wt.% polyacrylate, and 30 wt.% lyocell fibres that have the potential to be used for flame-resistant underwear. The influence of modacrylic fibre linear density (standard and microfibres), ring spinning processes (conventional, Sirospun, and compact), and knitted structure (plain, 2:1 rib, 2:1 tuck rib, single pique, and triple tuck) on their properties required for thermal comfort in high-temperature environments was investigated. Scanning electron and optical microscopy, FT-IR spectroscopy, mechanical testing, moisture regain, water sorption, wettability, absorption, DSC, TGA, and flammability were tested to assess the desired suitability. The wetting time (5–14.6 s) and water absorption time (4.6–21.4 s) of the knitted fabrics have shown excellent ability to transport and absorb water compared to the knitted fabrics created from a conventional blend of 65% modacrylic and 35% cotton fibres. The afterflame and afterglow times of less than 2 s met the criteria for non-flammability of the knitted fabrics according to the limited flame spread test method. The results show that the investigated blends have the potential to be used for affordable flame-retardant and thermally comfortable knitted fabrics for underwear. Full article
Show Figures

Figure 1

Back to TopTop