Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (409)

Search Parameters:
Keywords = mechanical metamaterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 9569 KB  
Review
Knowledge Mapping of Transformable Architecture Using Bibliometrics: Programmable Mechanical Metamaterials
by Xianjie Wang, Zheng Zhang, Xuelian Gao, Yong Sun, Yongdang Chen, Xingzhu Zhong and Donghai Jiang
Buildings 2026, 16(2), 423; https://doi.org/10.3390/buildings16020423 - 20 Jan 2026
Viewed by 136
Abstract
Programmable mechanical metamaterials enable precise regulation of mechanical responses through geometric design, ushering in transformative paradigms for transformable structures. To systematically map the knowledge landscape and development trends in this field, this study employs knowledge mapping methods to analyze the current research status, [...] Read more.
Programmable mechanical metamaterials enable precise regulation of mechanical responses through geometric design, ushering in transformative paradigms for transformable structures. To systematically map the knowledge landscape and development trends in this field, this study employs knowledge mapping methods to analyze the current research status, core hotspots, and future directions of programmable mechanical metamaterials. During the research process, we expanded keywords using the litsearchr tool to optimize the retrieval strategy. Bibliometric tools, including CiteSpace 6.3.R3 and bibliometrix, were utilized to conduct multidimensional analyses on 2017 original papers related to mechanical metamaterials in transformable architecture from 2015 to 2025. These analyses encompass co-word analysis, co-citation clustering, and structural variation analysis. Key aspects include (1) identifying core journals and their attributes to clarify interdisciplinary dynamics, (2) mapping research themes and evolutionary trends through keyword analysis and clustering, and (3) pinpointing research hotspots and future directions based on citation networks and clustering results. The results reveal significant interdisciplinary characteristics, with core knowledge emerging from the intersection of materials science, mechanics, and civil engineering. Mathematical system theory provides a cross-scale modeling foundation for metamaterial microstructure design. The field is evolving from static structural design toward environment-adaptive intelligent systems. Future efforts should prioritize multi-physics collaborative regulation, engineering integration, and technical chain refinement. These findings offer a theoretical reference for the innovative development of transformable architecture. Full article
Show Figures

Figure 1

29 pages, 10582 KB  
Article
Mechanical Responses of 3D Printed Periodic Arch-Inspired Structures Doped with NdFeB Powder
by Yangsen Wang, Bin Huang and Yan Guo
Mathematics 2026, 14(2), 284; https://doi.org/10.3390/math14020284 - 13 Jan 2026
Viewed by 113
Abstract
This work explores the mechanical responses of 3D-printed periodic arch-inspired structures (PASs) and PASs doped with NdFeB powder to advance their application in lightweight structural load-bearing and future structure–function integration. Three PAS configurations were fabricated via digital light processing (DLP), and magnetic PASs [...] Read more.
This work explores the mechanical responses of 3D-printed periodic arch-inspired structures (PASs) and PASs doped with NdFeB powder to advance their application in lightweight structural load-bearing and future structure–function integration. Three PAS configurations were fabricated via digital light processing (DLP), and magnetic PASs (MPASs) were produced by dispersing NdFeB powder (1–3 g/200 mL) into photosensitive resin. Under quasi-static compression, key mechanical properties—Young’s modulus (E), yield strength (σy), and compressive strength (σc)—of non-magnetic PASs increase linearly with relative density (ρ* = 0.18–0.48): for PAS22, E rises from 68.1 to 200.3 MPa (+194%), σy from 2.18 to 6.75 MPa (+210%), and σc from 2.98 to 9.07 MPa (+204%). Under dynamic impact (~100 s−1), mechanical enhancement is even more pronounced: E of PAS22 surges to 814.8 MPa (3.2× higher than quasi-static), and σc reaches 11.54 MPa. Finite element simulations reveal that the Ideal Plastic Model best predicts quasi-static brittle fracture, whereas the Hardening Function Model captures dynamic behavior most accurately. Stress and plastic strain concentrate at the straight–arc junctions—identified as critical weak points. MPASs exhibit higher stiffness and yield strength (e.g., E of MPAS22 up to 896.5 MPa under impact) but lower compressive strength (e.g., 11.01 MPa vs. 11.54 MPa for NMPAS22), attributed to NdFeB-induced brittleness that shifts the failure mode from “local damage accumulation” to “rapid overall failure”. This study establishes quantitative doping–structure–property correlations, providing design guidelines for next-generation functional arch-inspired metamaterials toward magnetically responsive, load-bearing applications. Full article
Show Figures

Figure 1

14 pages, 3031 KB  
Article
Highly Sensitive Detection and Discrimination of Cell Suspension Based on a Metamaterials-Based Biosensor Chip
by Kanglong Chen, Xiaofang Zhao, Jie Sun, Qian Wang, Qinggang Ge, Liang Hu and Jun Yang
Biosensors 2026, 16(1), 50; https://doi.org/10.3390/bios16010050 - 8 Jan 2026
Viewed by 317
Abstract
Metamaterials (MMs)-based terahertz (THz) biosensors hold promise for clinical diagnosis, featuring label-free operation, simple, rapid detection, low cost, and multi-cell-type discrimination. However, liquid around cells causes severe interference to sensitive detection. Most existing MMs-based cell biosensors detect dead cells without culture medium (losing [...] Read more.
Metamaterials (MMs)-based terahertz (THz) biosensors hold promise for clinical diagnosis, featuring label-free operation, simple, rapid detection, low cost, and multi-cell-type discrimination. However, liquid around cells causes severe interference to sensitive detection. Most existing MMs-based cell biosensors detect dead cells without culture medium (losing original morphology), hindering stable, sensitive multi-cell discrimination. Here, a terahertz biosensor composed of a microcavity and MMs can be used to detect and discriminate multiple cell types within suspension. Its detection mechanism relies on cellular size (radius)/density in suspension, which induces effective permittivity (εeff) differences. By designing MMs’ split rings with luxuriant gaps, the biosensor achieves a theoretical sensitivity of ~328 GHz/RIU, enabling sensitive responses to suspended cells. It shows a robust, increasing frequency shift (610–660 GHz) over 72 h of cell apoptosis. Moreover, it discriminates nerve cells, glioblastoma (GBM) cells, and their 1:1 mixture with obviously distinct frequency responses (~650, ~630, ~620 GHz), which suggests effective and reliable multi-cell-type recognition. Overall, this study and its measurement method should pave the way for metamaterial-based terahertz biosensors for living cell detection and discrimination, and this technology may inspire further innovations in tumor investigation and treatment. Full article
Show Figures

Figure 1

31 pages, 3452 KB  
Article
Improved Chimpanzee Optimization Algorithm Based on Multi-Strategy Fusion and Its Application in Multiphysics Parameter Optimization
by Bin Zhou, Chaoyun Shi, Ning Yan and Yangyang Chu
Symmetry 2026, 18(1), 108; https://doi.org/10.3390/sym18010108 - 7 Jan 2026
Viewed by 205
Abstract
To address the challenges of high computational costs, susceptibility to local optima, and heavy reliance on manual intervention in multi-physics parameter optimization for symmetric acoustic metamaterials, an enhanced Chimp Optimization Algorithm (DADCOA) is proposed in this paper. This algorithm integrates the double chaotic [...] Read more.
To address the challenges of high computational costs, susceptibility to local optima, and heavy reliance on manual intervention in multi-physics parameter optimization for symmetric acoustic metamaterials, an enhanced Chimp Optimization Algorithm (DADCOA) is proposed in this paper. This algorithm integrates the double chaotic initialization strategy (DCS), adaptive multimodal convergence mechanism (AMC), and dual-weight pinhole imaging update operator (DWPI). It employs a Logistic–Tent composite chaotic mapping strategy for population initialization, significantly enhancing distribution uniformity within high-dimensional parameter spaces. An AMC factor is then introduced to dynamically balance global exploration and local exploitation based on the real-time evolutionary state of the population. A dual-weight population update mechanism, incorporating distance and historical contributions, is integrated with a pinhole imaging opposition-based learning strategy to improve population diversity. Additionally, a composite single objective error feedback local differential mutation operation is introduced to improve optimization accuracy for coupled multi-physics objectives. Experimental validation based on the CEC 2022 test function suite and an acoustic metamaterial parameter optimization model demonstrates that compared to the standard COA algorithm and existing improved algorithms, the DADCOA algorithm reduces simulation time by 28.46% to 60.76% while maintaining high accuracy. This approach effectively addresses the challenges of high computational cost, stringent accuracy requirements, and composite single objective coupling in COMSOL physical parameter optimization, providing an effective solution for the design of acoustic metamaterials based on symmetric structures. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

10 pages, 1187 KB  
Article
Gigantic Vortical Dichroism and Handedness-Dependent Optical Response in Spiral Metamaterials
by Kangzhun Peng, Hengyue Luo, Shiqi Luo, Zhi-Yuan Li and Wenyao Liang
Nanomaterials 2026, 16(1), 65; https://doi.org/10.3390/nano16010065 - 1 Jan 2026
Viewed by 332
Abstract
Light carrying orbital angular momentum (OAM) has emerged as a promising tool for manipulating light–matter interactions, providing an additional degree of freedom to explore chiral-optical phenomena at the nanoscale. When such vortex beams interact with chiral metamaterials, a unique phenomenon of optical asymmetry [...] Read more.
Light carrying orbital angular momentum (OAM) has emerged as a promising tool for manipulating light–matter interactions, providing an additional degree of freedom to explore chiral-optical phenomena at the nanoscale. When such vortex beams interact with chiral metamaterials, a unique phenomenon of optical asymmetry known as vortical dichroism (VD) arises. Nevertheless, most existing chiral metamaterials exhibit limited VD responses, and the underlying physical mechanisms are yet to be fully clarified. In this work, we propose three-dimensional spiral metamaterials that achieve gigantic VD effect. This pronounced VD effect originates from the intrinsic coupling between the spiral structure and the chirality inherent to optical vortices, which leads to strongly asymmetric scattering intensities for left- and right-handed OAM beams of opposite topological charges. Numerical simulations confirm a remarkable VD value of 0.69. Further analysis of electric field distributions reveals that the asymmetric VD response stems from a handedness-dependent excitation of distinct electromagnetic modes. For opposite handedness, spatial mode mismatch results in enhanced scattering. In contrast, matching handedness enables efficient energy coupling into a guided spiral mode, which suppresses scattering. These findings not only deepen the physical understanding of VD mechanisms but also establish a versatile platform for developing advanced chiral photonic devices and enhancing OAM-based light–matter interactions. Full article
Show Figures

Graphical abstract

17 pages, 3068 KB  
Article
Magnetoresponsive Fiber-Reinforced Periodic Impedance-Gradient Absorber: Design and Microwave Absorption Performance
by Yuan Liang, Wei Chen, Shude Gu, Xu Ding and Yuping Duan
Nanomaterials 2026, 16(1), 42; https://doi.org/10.3390/nano16010042 - 29 Dec 2025
Viewed by 410
Abstract
In recent years, achieving ultra-wideband electromagnetic absorption has emerged as a critical challenge in confronting advanced broadband electromagnetic detection technologies. This capability is essential for effectively countering sophisticated radar systems. In this study, we present a novel multilayer metamaterial absorber that integrates an [...] Read more.
In recent years, achieving ultra-wideband electromagnetic absorption has emerged as a critical challenge in confronting advanced broadband electromagnetic detection technologies. This capability is essential for effectively countering sophisticated radar systems. In this study, we present a novel multilayer metamaterial absorber that integrates an FR4 transmission layer, a periodic gradient dielectric structure designed for resonant impedance matching, and a magnetic skin layer for enhanced energy dissipation. By employing asymptotic gradients in both structure and composition, this design achieves dual-gradient electromagnetic parameter modulation, enabling efficient absorption across the X, Ku, and K bands (8.6–26.4 GHz) with a total thickness of 3.5 mm (effective thickness: 2 mm) and a density that is one-third that of conventional magnetic metamaterials. The proposed absorber demonstrates polarization insensitivity, stability across wide incident angles (up to 60°), and an absorption efficiency of 94%, as confirmed by full-wave simulations and experimental validation. Moreover, the fiber-reinforced hierarchical structure addresses the traditional trade-off between broadband absorption performance and mechanical load-bearing capacity. Full article
Show Figures

Graphical abstract

62 pages, 5074 KB  
Review
Advancements in Two-Photon Polymerization (2PP) for Micro and Nanoscale Fabrication
by Prithvi Basu
Nanomanufacturing 2026, 6(1), 1; https://doi.org/10.3390/nanomanufacturing6010001 - 23 Dec 2025
Viewed by 862
Abstract
Two-photon polymerization (2PP) is revolutionizing micro- and nanoscale manufacturing by enabling true 3D fabrication with feature sizes far below the diffraction limit—capabilities that traditional lithography cannot match. By using ultrafast femtosecond laser pulses and nonlinear absorption, 2PP initiates polymerization only at the laser’s [...] Read more.
Two-photon polymerization (2PP) is revolutionizing micro- and nanoscale manufacturing by enabling true 3D fabrication with feature sizes far below the diffraction limit—capabilities that traditional lithography cannot match. By using ultrafast femtosecond laser pulses and nonlinear absorption, 2PP initiates polymerization only at the laser’s focal point, offering unmatched spatial precision. This paper highlights key advancements driving the field forward: the development of new materials engineered for 2PP with improved sensitivity, mechanical strength, and the introduction of high-speed, parallelized fabrication strategies that significantly enhance throughput. These innovations are shifting 2PP from a prototyping tool to a viable method for scalable production. Applications now range from custom biomedical scaffolds to complex photonic and metamaterial structures, demonstrating their growing real-world impact. We also address persistent challenges—including slow writing speeds and limited material options—and explore future directions to overcome these barriers. With continued progress in materials and hardware, 2PP is well positioned to become a cornerstone of next-generation additive manufacturing. Full article
Show Figures

Figure 1

18 pages, 8206 KB  
Article
Structural–Material Coupling Enabling Broadband Absorption for a Graphene Aerogel All-Medium Metamaterial Absorber
by Kemeng Yan, Yuhui Ren, Jiaxuan Zhang, Man Song, Xuhui Du, Meijiao Lu, Dingfan Wu, Yiqing Li and Jiangni Yun
Nanomaterials 2026, 16(1), 18; https://doi.org/10.3390/nano16010018 - 22 Dec 2025
Cited by 1 | Viewed by 541
Abstract
All-medium metamaterial absorbers (MMAs) have attracted considerable attention for ultra-broadband electromagnetic wave (EMW) absorption. Herein, a lightweight graphene aerogel (GA) was synthesized through a low-temperature, atmospheric-pressure reduction route. Benefiting from its 3D porous network, enriched oxygen-containing functional groups, and improved graphitization, the GA [...] Read more.
All-medium metamaterial absorbers (MMAs) have attracted considerable attention for ultra-broadband electromagnetic wave (EMW) absorption. Herein, a lightweight graphene aerogel (GA) was synthesized through a low-temperature, atmospheric-pressure reduction route. Benefiting from its 3D porous network, enriched oxygen-containing functional groups, and improved graphitization, the GA offers diverse intrinsic attenuation pathways and a limited effective absorption bandwidth (EAB) of only 6.46 GHz (11.54–18.00 GHz at 1.95 mm). To clarify its attenuation mechanism, nonlinear least-squares fitting was used to quantitatively separate electrical loss contributions. Compared with graphene, the GA shows markedly superior attenuation capability, making it a more suitable medium for MMA design. Guided by equivalent circuit modeling, a stacked frustum-configured GA-based MMA (GA-MMA) was developed, where structure-induced resonances compensate for the intrinsic absence of magnetic components in the GA, thereby substantially broadening its absorption range. The GA-MMA achieves an EAB of 40.7 GHz (9.1–49.8 GHz, reflection loss < −10 dB) and maintains stable absorption under incident angles up to ± 70°. Radar cross-section simulations further indicate its potential in electromagnetic interference mitigation, human health protection, and defense information security. This work provides a feasible route for constructing ultralight and broadband MMAs by coupling electrical loss with structural effects. Full article
(This article belongs to the Special Issue Harvesting Electromagnetic Fields with Nanomaterials)
Show Figures

Graphical abstract

21 pages, 9201 KB  
Article
Study on the Complex Band Structure and Auxetic Behavior of Fractal Re-Entrant Honeycomb Metamaterials
by Jingru Li, Siyu Chen, Wei Lin and Yuzhang Lin
Materials 2025, 18(24), 5695; https://doi.org/10.3390/ma18245695 - 18 Dec 2025
Viewed by 429
Abstract
In order to break the limitation of metamaterials used in the vibration and sound reduction field, this work designed a two-dimensional metamaterial based on the re-entrant honeycomb lattice and using the fractal technique. The first, second, and third-order fractal re-entrant honeycomb metamaterials are [...] Read more.
In order to break the limitation of metamaterials used in the vibration and sound reduction field, this work designed a two-dimensional metamaterial based on the re-entrant honeycomb lattice and using the fractal technique. The first, second, and third-order fractal re-entrant honeycomb metamaterials are analyzed, respectively, within the established numerical models responsible for predicting the effective Poisson’s ratio, the real band structure, and the attenuation diagram. The effects of the fractal order, fractal ratio, and geometrical characteristics on these multiple functionalities are investigated simultaneously. Through adjusting the proposed fractal metamaterials, the results show that the transformation of auxetic performance, the number and location of multiple stop bands, the attenuation level inside the stop bands, and the wave decaying directionality can be flexibly tuned. This demonstrates that the compatibility of mechanical features and wave motion characteristics is successfully achieved in the present work. It provides a theoretical and technical basis for the development of multi-functional design methods of metamaterials in solving engineering problems. Full article
(This article belongs to the Special Issue Advanced Materials in Acoustics and Vibration)
Show Figures

Graphical abstract

21 pages, 9468 KB  
Article
Influence of Nodal Spheres on the Mechanical Behaviour of Auxetic Materials Manufactured with PA12
by Ismael Lamas, Iria Feijoo, Silvia Gómez, Alejandro Pereira, José A. Pérez and M. Consuelo Pérez
Materials 2025, 18(24), 5688; https://doi.org/10.3390/ma18245688 - 18 Dec 2025
Viewed by 381
Abstract
Auxetic metamaterials, characterised by a negative Poisson’s ratio, offer excellent energy absorption but often present limited compressive strength due to their strut-based architectures. Selective laser sintering (SLS) enables the precise fabrication of these structures, yet enhancing their mechanical performance remains challenging. This research [...] Read more.
Auxetic metamaterials, characterised by a negative Poisson’s ratio, offer excellent energy absorption but often present limited compressive strength due to their strut-based architectures. Selective laser sintering (SLS) enables the precise fabrication of these structures, yet enhancing their mechanical performance remains challenging. This research investigates the influence of nodal spheres on re-entrant dodecahedral unit cells produced in PA12, varying node-to-strut diameter ratios (1:1, 2:1, and 3:1). Compression tests reveal significant increases in stiffness and compressive strength, reaching up to 88.70% for the 3:1 ratio. When normalised by relative density, the 2:1 configuration proves most effective, achieving a 35.33% increase in specific strength and a 19.58% improvement in specific energy absorption. The deformation behaviour indicates a mixed bending–stretching mechanism, with geometry exerting a stronger influence than the base material. Although larger nodal spheres enhance absolute strength, they also increase mass and relative density, which may limit their suitability for weight-sensitive applications. Overall, these findings highlight nodal reinforcement as a promising strategy to enhance the mechanical efficiency of auxetic metamaterials while maintaining their auxetic response. These improvements support applications in aerospace, automotive engineering, personal protection systems, lightweight structural panels, and energy-absorbing components. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Graphical abstract

18 pages, 4000 KB  
Article
Broadband Seismic Metamaterials Based on Gammadion-Shaped Chiral Structures
by Yawen Shen, Boyang Zhang, Pengcheng Ma, Qiujiao Du, Hongwu Yang, Pai Peng and Fengming Liu
Crystals 2025, 15(12), 1063; https://doi.org/10.3390/cryst15121063 - 18 Dec 2025
Viewed by 354
Abstract
Controlling seismic wave propagation to protect critical infrastructure through metamaterials has emerged as a frontier research topic. The narrow bandgap and heavy weight of a resonant seismic metamaterial (SM) limit its application for securing buildings. In this research, we first develop a two-dimensional [...] Read more.
Controlling seismic wave propagation to protect critical infrastructure through metamaterials has emerged as a frontier research topic. The narrow bandgap and heavy weight of a resonant seismic metamaterial (SM) limit its application for securing buildings. In this research, we first develop a two-dimensional (2D) seismic metamaterial with gammadion-shaped chiral inclusions, achieving a high relative bandgap width of 77.34%. Its effective mass density is investigated to clarify the generation mechanism of the bandgap due to negative mass density between 12.53 and 28.33 Hz. Then, the gammadion-shaped pillars are introduced on a half-space to design a three-dimensional (3D) chiral SM to attenuate Rayleigh waves within a wider low-frequency range. Further, time-frequency analyses for real seismic waves and scaled experimental tests confirm the practical feasibility of the 3D SM. Compared with common resonant SMs, our chiral configurations offer a wider attenuation zone and lighter weight. Full article
(This article belongs to the Special Issue Research and Applications of Acoustic Metamaterials)
Show Figures

Figure 1

33 pages, 11655 KB  
Article
Biocompatibility of Materials Dedicated to Non-Traumatic Surgical Instruments Correlated to the Effect of Applied Force of Working Part on the Coronary Vessel
by Marcin Dyner, Aneta Dyner, Adam Byrski, Marcin Surmiak, Magdalena Kopernik, Katarzyna Kasperkiewicz, Przemyslaw Kurtyka, Karolina Szawiraacz, Kamila Pietruszewska, Zuzanna Zajac, Lukasz Mucha, Juergen M. Lackner, Michael Berer, Boguslaw Major and Marcin Basiaga
Materials 2025, 18(24), 5645; https://doi.org/10.3390/ma18245645 - 16 Dec 2025
Viewed by 456
Abstract
Cardiovascular clamping procedures can cause tissue traumatization, leading to serious adverse events interrupting blood flow and causing life-threatening hemorrhage. The aim of the study is to evaluate the properties of 3D-printed, high-elasticity elastomeric materials—BioMed Flex 50A and 80A (Formlabs Inc., Sommerville, MA, USA)—in [...] Read more.
Cardiovascular clamping procedures can cause tissue traumatization, leading to serious adverse events interrupting blood flow and causing life-threatening hemorrhage. The aim of the study is to evaluate the properties of 3D-printed, high-elasticity elastomeric materials—BioMed Flex 50A and 80A (Formlabs Inc., Sommerville, MA, USA)—in terms of their suitability for the fabrication of atraumatic inserts used for surgical clamping instruments. To show the importance of the elaboration of the new atraumatic materials, finite element simulations of blood vessel compression by a surgical tool were validated experimentally with porcine vessels, and histopathology assessed the tissue response. These results confirm that excessive clamping forces can cause vessel wall stratification and rupture. Specimens BioMed Flex 50A and 80A underwent surface, mechanical, and biological testing, including topography, wettability, acoustic microscopy for structural voids, cytotoxicity with human dermal fibroblasts, pro-inflammatory marker analysis, and bacterial biofilm assessment. The results of the testing of the 3D-printed BioMed Flex 50A and 80A materials show good potential for applications in safe atraumatic surgical instruments. Further research may include the possibilities to develop 3D-printed metamaterials with pressure adapting properties. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

24 pages, 12828 KB  
Article
Surrogate-Model Prediction of Mechanical Response in Architected Ti6Al4V Cylindrical TPMS Metamaterials
by Mansoureh Rezapourian, Ali Cheloee Darabi, Mohammadreza Khoshbin, Siegfried Schmauder and Irina Hussainova
Metals 2025, 15(12), 1372; https://doi.org/10.3390/met15121372 - 15 Dec 2025
Viewed by 548
Abstract
A Machine Learning (ML)-based surrogate modeling framework is presented for mapping structure–property relationships in architected Ti6Al4V cylindrical TPMS metamaterials subjected to quasi-static compression. A Python–nTop pipeline automatically generated 3456 cylindrical shell lattices (Gyroid, Diamond, Split-P), and ABAQUS/Explicit simulations with a Johnson–Cook failure model [...] Read more.
A Machine Learning (ML)-based surrogate modeling framework is presented for mapping structure–property relationships in architected Ti6Al4V cylindrical TPMS metamaterials subjected to quasi-static compression. A Python–nTop pipeline automatically generated 3456 cylindrical shell lattices (Gyroid, Diamond, Split-P), and ABAQUS/Explicit simulations with a Johnson–Cook failure model for Ti6Al4V quantified their mechanical response. From 3024 valid designs, key mechanical properties targets including elastic modulus (E), yield stress (Y), ultimate strength (U), plateau stress (PL), and energy absorption (EA) were extracted alongside geometric descriptors such as surface area (SA), surface-area-to-volume ratio (SA/VR), and relative density (RD). A multi-output surrogate model (feedforward neural network) trained on the simulated set accurately predicts these properties directly from seven design parameters (thickness; unit cell counts in X, Y, and Z directions; unit cell orientation; height; diameter), enabling rapid property estimation across large design spaces. Topology-dependent trends indicate that Split-P exhibits the highest strength, energy absorption, and total SA, and shows the largest variation in SA/VR; Gyroid exhibits the lowest SA with a moderate SA/VR; and Diamond is the most compliant lattice and maintains a higher SA/VR than Gyroid despite lower SA. RD increases with both SA and SA/VR across all topologies. The framework provides a reusable computational tool for architectured lattices, enabling quick prescreening of implant designs without repeated finite-element analyses. Full article
(This article belongs to the Special Issue Application of Machine Learning in Metallic Materials)
Show Figures

Figure 1

12 pages, 2451 KB  
Article
Microwave Dynamic Modulation Metasurface Absorber Based on Origami Structure
by Zhaoxu Pan, Qiaobai He, Ruicong Zhang, Tianyu Wang, Jiaqi Zhu and Zicheng Song
Optics 2025, 6(4), 67; https://doi.org/10.3390/opt6040067 - 15 Dec 2025
Viewed by 390
Abstract
With the rapid advancement of detection technologies, traditional static electromagnetic absorbers increasingly struggle to meet controllable stealth requirements across diverse dynamic environments. To achieve active and controllable modulation of electromagnetic reflection characteristics, this paper proposes a transparent reconfigurable metamaterial absorber based on an [...] Read more.
With the rapid advancement of detection technologies, traditional static electromagnetic absorbers increasingly struggle to meet controllable stealth requirements across diverse dynamic environments. To achieve active and controllable modulation of electromagnetic reflection characteristics, this paper proposes a transparent reconfigurable metamaterial absorber based on an origami structure. By adjusting the folding angles of the indium tin oxide (ITO)-polyethylene terephthalate (PET) film, the structure achieves reversible deformation from the vertical state to the horizontal state. This enables continuous modulation of the reflectance from below −10 dB (absorbing state) to nearly 0 dB (reflecting state) within the 4–18.9 GHz frequency range, with a relative bandwidth exceeding 130% and excellent angular stability. The energy loss and current distribution under different states are analyzed, revealing the mechanisms behind broadband absorption and deep modulation. Experimental measurements of the fabricated metamaterial align well with simulation results. Leveraging its flexible structure, reversible modulation capability, and angular stability, this origami-inspired reconfigurable metamaterial demonstrates promising application potential in the fields of adaptive electromagnetic camouflage and stealth protection. Full article
Show Figures

Figure 1

15 pages, 3958 KB  
Article
Experimental Investigations of Vibration Band Gaps in Platonic 3D Lattice Structures
by Ihab Abu Ajamieh, Vincent Iacobellis and Ali Radhi
Vibration 2025, 8(4), 78; https://doi.org/10.3390/vibration8040078 - 8 Dec 2025
Viewed by 427
Abstract
Vibration band gap structures are advanced materials for vibration wave mitigation from metamaterials to phononic crystals from simple geometrical manipulations. Here, we present geometrical structures, made from platonic solids, that are capable of providing multi-passband frequency ranges with face symmetry in each unit [...] Read more.
Vibration band gap structures are advanced materials for vibration wave mitigation from metamaterials to phononic crystals from simple geometrical manipulations. Here, we present geometrical structures, made from platonic solids, that are capable of providing multi-passband frequency ranges with face symmetry in each unit cell. We fabricated the metamaterial structures using stereolithography, after which we experimentally characterized band gaps through impulse vibration testing. Experimental results have shown that the band gaps can be changed for different types of platonic structures along with the loading direction. This provided a comparison between axial and two bending direction band gaps, revealing ranges where the structures behave in either a “fluid-like” or an “optical-like” manner. Dodecahedron unit cells have exhibited the most promising results, when compared with reduced relative densities and a number of stacking unit cells. We utilized the coherence function during signal processing analysis, which provided strong predictions for the band gap frequency ranges. Full article
Show Figures

Figure 1

Back to TopTop