Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,199)

Search Parameters:
Keywords = measurements fusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 673 KiB  
Article
Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action
by Yan Shi, Yan Wang, Lu-Nan Wang, Wei-Nan Wang and Tao-Yuan Yang
Buildings 2025, 15(15), 2733; https://doi.org/10.3390/buildings15152733 (registering DOI) - 2 Aug 2025
Abstract
The displacement of bridge towers is relatively large under strong wind action. Changes in tower displacement can reflect the usage status of the bridge towers. Therefore, it is necessary to conduct performance warning research on tower displacement under strong wind action. In this [...] Read more.
The displacement of bridge towers is relatively large under strong wind action. Changes in tower displacement can reflect the usage status of the bridge towers. Therefore, it is necessary to conduct performance warning research on tower displacement under strong wind action. In this paper, the triple standard deviation method, multiple linear regression method, and interpolation method are used to preprocess monitoring data with skipped points and missing anomalies. An improved multi-rate data fusion method, validated using simulated datasets, was applied to correct monitoring data at bridge tower tops. The fused data were used to feed predictive models and generate structural performance alerts. Spectral analysis confirmed that the fused displacement measurements achieve high precision by effectively merging the low-frequency GPS signal with the high-frequency accelerometer signal. Structural integrity monitoring of wind-loaded bridge towers used modeling residuals as alert triggers. The efficacy of this proactive monitoring strategy has been quantitatively validated through statistical evaluation of alarm accuracy rates. Full article
27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 (registering DOI) - 1 Aug 2025
Viewed by 16
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 (registering DOI) - 1 Aug 2025
Viewed by 23
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

17 pages, 2920 KiB  
Article
Device Reliability Analysis of NNBI Beam Source System Based on Fault Tree
by Qian Cao and Lizhen Liang
Appl. Sci. 2025, 15(15), 8556; https://doi.org/10.3390/app15158556 (registering DOI) - 1 Aug 2025
Viewed by 98
Abstract
Negative Ion Source Neutral beam Injection (NNBI), as a critical auxiliary heating system for magnetic confinement fusion devices, directly affects the plasma heating efficiency of tokamak devices through the reliability of its beam source system. The single-shot experiment constitutes a significant experimental program [...] Read more.
Negative Ion Source Neutral beam Injection (NNBI), as a critical auxiliary heating system for magnetic confinement fusion devices, directly affects the plasma heating efficiency of tokamak devices through the reliability of its beam source system. The single-shot experiment constitutes a significant experimental program for NNBI. This study addresses the frequent equipment failures encountered by the NNBI beam source system during a cycle of experiments, employing fault tree analysis (FTA) to conduct a systematic reliability assessment. Utilizing the AutoFTA 3.9 software platform, a fault tree model of the beam source system was established. Minimal cut set analysis was performed to identify the system’s weak points. The research employed AutoFTA 3.9 for both qualitative analysis and quantitative calculations, obtaining the failure probabilities of critical components. Furthermore, the F-V importance measure and mean time between failures (MTBF) were applied to analyze the system. This provides a theoretical basis and practical engineering guidance for enhancing the operational reliability of the NNBI system. The evaluation methodology developed in this study can be extended and applied to the reliability analysis of other high-power particle acceleration systems. Full article
Show Figures

Figure 1

18 pages, 622 KiB  
Article
Distributed Diffusion Multi-Distribution Filter with IMM for Heavy-Tailed Noise
by Guannan Chang, Changwu Jiang, Wenxing Fu, Tao Cui and Peng Dong
Signals 2025, 6(3), 37; https://doi.org/10.3390/signals6030037 (registering DOI) - 1 Aug 2025
Viewed by 52
Abstract
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise [...] Read more.
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise Interacting Multiple Model (IMM) filter for maneuvering target tracking in heavy-tailed noise. The proposed approach leverages parallel Gaussian and Student-t filters to enhance robustness against non-Gaussian process and measurement noise. This hybrid filter is implemented as a node within a distributed network, where the diffusion algorithm leads to the global state asymptotically reaching consensus as the filtering time progresses. Furthermore, a fusion of multiple motion models within the IMM algorithm enables robust tracking of maneuvering targets across the distributed network and process outlier caused by maneuver compared to previous studies. Simulation results demonstrate the effectiveness of the proposed filter in tracking maneuvering targets. Full article
Show Figures

Figure 1

19 pages, 5466 KiB  
Article
Evaluation of Bending Stress and Shape Recovery Behavior Under Cyclic Loading in PLA 4D-Printed Lattice Structures
by Maria Pia Desole, Annamaria Gisario and Massimiliano Barletta
Appl. Sci. 2025, 15(15), 8540; https://doi.org/10.3390/app15158540 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in [...] Read more.
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in addition to a honeycomb structure. All geometries have a relative density of 50%. After being subjected to three-point bending tests, the capacity to spring back with respect to the bending angle and the shape recovery of the structures were measured. The roller and lozenge structures demonstrated the best performance, with shape recovery assessed through three consecutive hot water immersion cycles. The lozenge structure exhibits 25% higher energy absorption than the roller, but the latter ensures better replicability and shape stability. Additionally, the roller absorbs 15% less energy than the lozenge, which experiences a 27% decrease in absorption between the first and second cycle. This work provides new insights into the bending-based energy absorption and recovery behavior of PLA metamaterials, relevant for applications in adaptive and energy-dissipating systems. Full article
Show Figures

Figure 1

25 pages, 25022 KiB  
Article
Research on Underwater Laser Communication Channel Attenuation Model Analysis and Calibration Device
by Wenyu Cai, Hengmei Wang, Meiyan Zhang and Yu Wang
J. Mar. Sci. Eng. 2025, 13(8), 1483; https://doi.org/10.3390/jmse13081483 - 31 Jul 2025
Viewed by 87
Abstract
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, [...] Read more.
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, so as to explore the transmission influence mechanism under typical water quality environments. On this basis, a system of in situ measurements for underwater laser channel attenuation is designed and constructed, and several sets of experiments are carried out to verify the rationality and applicability of the model. The collected experimental data are denoised by the fusion of wavelet analysis and adaptive Kalman filtering (DWT-AKF in short) algorithm, and compared with the data measured by an underwater hyperspectral Absorption Coefficient Spectrophotometer (ACS in short), which shows that the channel attenuation coefficients of the model inversion and the measured values are in high agreement. The research results provide a reliable theoretical basis and experimental support for the performance optimization and engineering design of the underwater laser communication system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 12094 KiB  
Article
Intelligent Active Suspension Control Method Based on Hierarchical Multi-Sensor Perception Fusion
by Chen Huang, Yang Liu, Xiaoqiang Sun and Yiqi Wang
Sensors 2025, 25(15), 4723; https://doi.org/10.3390/s25154723 (registering DOI) - 31 Jul 2025
Viewed by 155
Abstract
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control [...] Read more.
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control precision. Initially, a binocular vision system is employed for target detection, enabling the identification of lane curvature initiation points and speed bumps, with real-time distance measurements. Subsequently, the integration of Global Positioning System (GPS) and inertial measurement unit (IMU) data facilitates the extraction of road elevation profiles ahead of the vehicle. A BP-PID control strategy is implemented to formulate mode-switching rules for the active suspension under three distinct road conditions: flat road, curved road, and obstacle road. Additionally, an ant colony optimization algorithm is utilized to fine-tune four suspension parameters. Utilizing the hardware-in-the-loop (HIL) simulation platform, the observed reductions in vertical, pitch, and roll accelerations were 5.37%, 9.63%, and 11.58%, respectively, thereby substantiating the efficacy and robustness of this approach. Full article
Show Figures

Figure 1

17 pages, 5247 KiB  
Article
An Intelligent Optimization-Based Secure Filter Design for State Estimation of Power Systems with Multiple Disturbances
by Yudong Xu, Wei Wang, Yong Liu, Xiaokai Meng, Yutong Chen and Zhixiang Liu
Electronics 2025, 14(15), 3059; https://doi.org/10.3390/electronics14153059 (registering DOI) - 31 Jul 2025
Viewed by 166
Abstract
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman [...] Read more.
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman filter (ISSA-UKF). Firstly, the problem of insufficient robustness in noise modeling and parameter selection of the conventional unscented Kalman filter (UKF) is analyzed. Secondly, an intelligent optimization method is adopted to adaptively update the UKF’s process and measurement noise covariances in real time, and an ISSA-UKF fusion framework is constructed to improve the estimation accuracy and system response capability. Thirdly, an adaptive weight function based on disturbance observation differences is provided to strengthen the stability of the algorithm in response to abnormal measurements at edge nodes and dynamic system changes. Finally, simulation analysis under a typical power system model shows that compared with the conventional UKF method, the developed ISSA-UKF algorithm demonstrates significant improvements in estimation accuracy, robustness, and dynamic response performance and can effectively cope with non-ideal disturbances that may occur in power systems. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

35 pages, 4940 KiB  
Article
A Novel Lightweight Facial Expression Recognition Network Based on Deep Shallow Network Fusion and Attention Mechanism
by Qiaohe Yang, Yueshun He, Hongmao Chen, Youyong Wu and Zhihua Rao
Algorithms 2025, 18(8), 473; https://doi.org/10.3390/a18080473 - 30 Jul 2025
Viewed by 244
Abstract
Facial expression recognition (FER) is a critical research direction in artificial intelligence, which is widely used in intelligent interaction, medical diagnosis, security monitoring, and other domains. These applications highlight its considerable practical value and social significance. Face expression recognition models often need to [...] Read more.
Facial expression recognition (FER) is a critical research direction in artificial intelligence, which is widely used in intelligent interaction, medical diagnosis, security monitoring, and other domains. These applications highlight its considerable practical value and social significance. Face expression recognition models often need to run efficiently on mobile devices or edge devices, so the research on lightweight face expression recognition is particularly important. However, feature extraction and classification methods of lightweight convolutional neural network expression recognition algorithms mostly used at present are not specifically and fully optimized for the characteristics of facial expression images, yet fail to make full use of the feature information in face expression images. To address the lack of facial expression recognition models that are both lightweight and effectively optimized for expression-specific feature extraction, this study proposes a novel network design tailored to the characteristics of facial expressions. In this paper, we refer to the backbone architecture of MobileNet V2 network, and redesign LightExNet, a lightweight convolutional neural network based on the fusion of deep and shallow layers, attention mechanism, and joint loss function, according to the characteristics of the facial expression features. In the network architecture of LightExNet, firstly, deep and shallow features are fused in order to fully extract the shallow features in the original image, reduce the loss of information, alleviate the problem of gradient disappearance when the number of convolutional layers increases, and achieve the effect of multi-scale feature fusion. The MobileNet V2 architecture has also been streamlined to seamlessly integrate deep and shallow networks. Secondly, by combining the own characteristics of face expression features, a new channel and spatial attention mechanism is proposed to obtain the feature information of different expression regions as much as possible for encoding. Thus improve the accuracy of expression recognition effectively. Finally, the improved center loss function is superimposed to further improve the accuracy of face expression classification results, and corresponding measures are taken to significantly reduce the computational volume of the joint loss function. In this paper, LightExNet is tested on the three mainstream face expression datasets: Fer2013, CK+ and RAF-DB, respectively, and the experimental results show that LightExNet has 3.27 M Parameters and 298.27 M Flops, and the accuracy on the three datasets is 69.17%, 97.37%, and 85.97%, respectively. The comprehensive performance of LightExNet is better than the current mainstream lightweight expression recognition algorithms such as MobileNet V2, IE-DBN, Self-Cure Net, Improved MobileViT, MFN, Ada-CM, Parallel CNN(Convolutional Neural Network), etc. Experimental results confirm that LightExNet effectively improves recognition accuracy and computational efficiency while reducing energy consumption and enhancing deployment flexibility. These advantages underscore its strong potential for real-world applications in lightweight facial expression recognition. Full article
Show Figures

Figure 1

27 pages, 12922 KiB  
Article
A Nasal Resistance Measurement System Based on Multi-Sensor Fusion of Pressure and Flow
by Xiaoqin Lian, Guochun Ma, Chao Gao, Chunquan Liu, Yelan Wu and Wenyang Guan
Micromachines 2025, 16(8), 886; https://doi.org/10.3390/mi16080886 - 29 Jul 2025
Viewed by 118
Abstract
Nasal obstruction is a common symptom of nasal conditions, with nasal resistance being a crucial physiological indicator for assessing severity. However, traditional rhinomanometry faces challenges with interference, limited automation, and unstable measurement results. To address these issues, this research designed a nasal resistance [...] Read more.
Nasal obstruction is a common symptom of nasal conditions, with nasal resistance being a crucial physiological indicator for assessing severity. However, traditional rhinomanometry faces challenges with interference, limited automation, and unstable measurement results. To address these issues, this research designed a nasal resistance measurement system based on multi-sensor fusion of pressure and flow. The system comprises lower computer hardware for acquiring raw pressure–flow signals in the nasal cavity and upper computer software for segmenting and filtering effective respiratory cycles and calculating various nasal resistance indicators. Meanwhile, the system’s anti-interference capability was assessed using recall, precision, and accuracy rates for respiratory cycle recognition, while stability was evaluated by analyzing the standard deviation of nasal resistance indicators. The experimental results demonstrate that the system achieves recall and precision rates of 99% and 86%, respectively, for the recognition of effective respiratory cycles. Additionally, under the three common interference scenarios of saturated or weak breaths, breaths when not worn properly, and multiple breaths, the system can achieve a maximum accuracy of 96.30% in identifying ineffective respiratory cycles. Furthermore, compared to the measurement without filtering for effective respiratory cycles, the system reduces the median within-group standard deviation across four types of nasal resistance measurements by 5 to 18 times. In conclusion, the nasal resistance measurement system developed in this research demonstrates strong anti-interference capabilities, significantly enhances the automation of the measurement process and the stability of the measurement results, and offers robust technical support for the auxiliary diagnosis of related nasal conditions. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

20 pages, 2108 KiB  
Review
Underwater Polarized Light Navigation: Current Progress, Key Challenges, and Future Perspectives
by Mingzhi Chen, Yuan Liu, Daqi Zhu, Wen Pang and Jianmin Zhu
Robotics 2025, 14(8), 104; https://doi.org/10.3390/robotics14080104 - 29 Jul 2025
Viewed by 342
Abstract
Underwater navigation remains constrained by technological limitations, driving the exploration of alternative approaches such as polarized light-based systems. This review systematically examines advances in polarized navigation from three perspectives. First, the principles of atmospheric polarization navigation are analyzed, with their operational mechanisms, advantages, [...] Read more.
Underwater navigation remains constrained by technological limitations, driving the exploration of alternative approaches such as polarized light-based systems. This review systematically examines advances in polarized navigation from three perspectives. First, the principles of atmospheric polarization navigation are analyzed, with their operational mechanisms, advantages, and inherent constraints dissected. Second, innovations in bionic polarization multi-sensor fusion positioning are consolidated, highlighting progress beyond conventional heading-direction extraction. Third, emerging underwater polarization navigation techniques are critically evaluated, revealing that current methods predominantly adapt atmospheric frameworks enhanced by advanced filtering to mitigate underwater interference. A comprehensive synthesis of underwater polarization modeling methodologies is provided, categorizing physical, data-driven, and hybrid approaches. Through rigorous analysis of studies, three persistent barriers are identified: (1) inadequate polarization pattern modeling under dynamic cross-media conditions; (2) insufficient robustness against turbidity-induced noise; (3) immature integration of polarization vision with sonar/IMU (Inertial Measurement Unit) sensing. Targeted research directions are proposed, including adaptive deep learning models, multi-spectral polarization sensing, and bio-inspired sensor fusion architectures. These insights establish a roadmap for developing reliable underwater navigation systems that transcend current technological boundaries. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

4 pages, 976 KiB  
Proceeding Paper
Developing a Risk Recognition System Based on a Large Language Model for Autonomous Driving
by Donggyu Min and Dong-Kyu Kim
Eng. Proc. 2025, 102(1), 7; https://doi.org/10.3390/engproc2025102007 - 29 Jul 2025
Viewed by 114
Abstract
Autonomous driving systems have the potential to reduce traffic accidents dramatically; however, conventional modules often struggle to accurately detect risks in complex environments. This study presents a novel risk recognition system that integrates the reasoning capabilities of a large language model (LLM), specifically [...] Read more.
Autonomous driving systems have the potential to reduce traffic accidents dramatically; however, conventional modules often struggle to accurately detect risks in complex environments. This study presents a novel risk recognition system that integrates the reasoning capabilities of a large language model (LLM), specifically GPT-4, with traffic engineering domain knowledge. By incorporating surrogate safety measures such as time-to-collision (TTC) alongside traditional sensor and image data, our approach enhances the vehicle’s ability to interpret and react to potentially dangerous situations. Utilizing the realistic 3D simulation environment of CARLA, the proposed framework extracts comprehensive data—including object identification, distance, TTC, and vehicle dynamics—and reformulates this information into natural language inputs for GPT-4. The LLM then provides risk assessments with detailed justifications, guiding the autonomous vehicle to execute appropriate control commands. The experimental results demonstrate that the LLM-based module outperforms conventional systems by maintaining safer distances, achieving more stable TTC values, and delivering smoother acceleration control during dangerous scenarios. This fusion of LLM reasoning with traffic engineering principles not only improves the reliability of risk recognition but also lays a robust foundation for future real-time applications and dataset development in autonomous driving safety. Full article
Show Figures

Figure 1

14 pages, 827 KiB  
Article
Sensor Fusion for Enhancing Motion Capture: Integrating Optical and Inertial Motion Capture Systems
by Hailey N. Hicks, Howard Chen and Sara A. Harper
Sensors 2025, 25(15), 4680; https://doi.org/10.3390/s25154680 - 29 Jul 2025
Viewed by 296
Abstract
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The [...] Read more.
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The proposed algorithm takes the first and last frame of OMC data and fills the rest with gyroscope data from the IMC. The algorithm was validated using data from twelve participants who performed a hand cycling task with an inertial measurement unit (IMU) placed on their hand, forearm, and upper arm. The OMC tracked a cluster of reflective markers that were placed on top of each IMU. The proposed algorithm was evaluated with simulated gaps of up to five minutes. Average total root-mean-square errors (RMSE) of <1.8° across a 5 min duration were observed for all sensor placements for the cyclic upper limb motion pattern used in this study. The results demonstrated that the fusion of these two sensing modalities is feasible and shines light on the possibility of more field-based studies for human motion analysis. Full article
Show Figures

Figure 1

19 pages, 8766 KiB  
Article
Fusion of Airborne, SLAM-Based, and iPhone LiDAR for Accurate Forest Road Mapping in Harvesting Areas
by Evangelia Siafali, Vasilis Polychronos and Petros A. Tsioras
Land 2025, 14(8), 1553; https://doi.org/10.3390/land14081553 - 28 Jul 2025
Viewed by 287
Abstract
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and [...] Read more.
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and ensure accurate and efficient data collection and mapping. Airborne data were collected using the DJI Matrice 300 RTK UAV equipped with a Zenmuse L2 LiDAR sensor, which achieved a high point density of 285 points/m2 at an altitude of 80 m. Ground-level data were collected using the BLK2GO handheld laser scanner (HPLS) with SLAM methods (LiDAR SLAM, Visual SLAM, Inertial Measurement Unit) and the iPhone 13 Pro Max LiDAR. Data processing included generating DEMs, DSMs, and True Digital Orthophotos (TDOMs) via DJI Terra, LiDAR360 V8, and Cyclone REGISTER 360 PLUS, with additional processing and merging using CloudCompare V2 and ArcGIS Pro 3.4.0. The pairwise comparison analysis between ALS data and each alternative method revealed notable differences in elevation, highlighting discrepancies between methods. ALS + iPhone demonstrated the smallest deviation from ALS (MAE = 0.011, RMSE = 0.011, RE = 0.003%) and HPLS the larger deviation from ALS (MAE = 0.507, RMSE = 0.542, RE = 0.123%). The findings highlight the potential of fusing point clouds from diverse platforms to enhance forest road mapping accuracy. However, the selection of technology should consider trade-offs among accuracy, cost, and operational constraints. Mobile LiDAR solutions, particularly the iPhone, offer promising low-cost alternatives for certain applications. Future research should explore real-time fusion workflows and strategies to improve the cost-effectiveness and scalability of multisensor approaches for forest road monitoring. Full article
Show Figures

Figure 1

Back to TopTop