Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,094)

Search Parameters:
Keywords = mean reaction time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1477 KiB  
Article
Objectification of the Functional Myodiagnosis Muscle Test
by Josef Franz Mahlknecht, Eugen Burtscher, Ivan Ramšak, Christine Zürcher and Johannes Bernard
J. Clin. Med. 2025, 14(15), 5555; https://doi.org/10.3390/jcm14155555 - 6 Aug 2025
Abstract
Objective: This study aimed to investigate whether the subjective assessments of strong and weak muscles in the Functional Myodiagnosis muscle test (FMD-MT) can be objectively and reproducibly verified using physically measurable parameters. Additionally, we sought to evaluate the reliability of the manual muscle [...] Read more.
Objective: This study aimed to investigate whether the subjective assessments of strong and weak muscles in the Functional Myodiagnosis muscle test (FMD-MT) can be objectively and reproducibly verified using physically measurable parameters. Additionally, we sought to evaluate the reliability of the manual muscle test in order to reinforce the scientific evidence supporting this accepted, yet not widely adopted, complementary medicine method. Methods: In a crossover observational study, three experienced medical practitioners conducted the FMD-MT of the rectus femoris muscle on 24 healthy participants using a specially designed therapy bench, with all measurements recorded via an oscillogram. The study investigated the force–time integral, joint angle change, additional force load, mean force turning point 1, as well as the interrater reliability and validity of both examiner assessments and instrumental analyses for the two muscle reaction variants: strong and weak. Results: A significant difference between the response pattern of strong and weak muscles was identified for the force–time integral (p = 0.005), the change in joint angle (p < 0.001), and the additional force load (p = 0.001). No difference between strong and weak muscles could be detected regarding the force turning point 1 (p = 0.972). The examiners demonstrated 100% accuracy in identifying weak muscle reactions as weak, and 99.2% accuracy in identifying strong muscle reactions as strong (p = 0.316). The overall intra-class correlation coefficient was 0.984. The oscillogram correctly visualized weak muscle reactions in weak muscles with an accuracy of 81.7%, and strong muscle reactions in strong muscles with an accuracy of 86.7% (p = 0.289). Conclusions: The Functional Myodiagnosis muscle test (FMD-MT) enables a clear and objective differentiation between strong and weak muscles, with statistically significant differences observed in the force–time integral, additional force load, and joint angle changes. Under rigorously standardized testing conditions, the FMD-MT of the rectus femoris muscle demonstrates a validity rate of 99.6% and an excellent reliability (ICC 0.984). Consequently, the FMD muscle test proves to be a reliable, reproducible, and objective diagnostic method. Trial registration: German Register of Clinical Studies U1111-1212-6622. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

12 pages, 12543 KiB  
Article
Combination of Laparoscopic Sutureless Gastropexy and Ovariectomy in Dogs
by Marta Guadalupi, Roberta Belvito, Alberto Maria Crovace, Pasquale Mininni, Francesco Staffieri and Luca Lacitignola
Animals 2025, 15(15), 2205; https://doi.org/10.3390/ani15152205 - 27 Jul 2025
Viewed by 296
Abstract
Prophylactic gastropexy is increasingly recommended in large-breed dogs predisposed to gastric dilatation-volvulus (GDV), particularly when combined with other elective procedures such as ovariectomy to reduce surgical trauma and anesthesia exposure. This prospective clinical study aimed to evaluate the feasibility, safety, and outcomes of [...] Read more.
Prophylactic gastropexy is increasingly recommended in large-breed dogs predisposed to gastric dilatation-volvulus (GDV), particularly when combined with other elective procedures such as ovariectomy to reduce surgical trauma and anesthesia exposure. This prospective clinical study aimed to evaluate the feasibility, safety, and outcomes of a combined laparoscopic ovariectomy (LOVE) and total laparoscopic gastropexy with absorbable fixation straps (TLG-SS) using a standardized three-port minimally invasive approach. Six female dogs of GDV-prone breeds underwent the combined procedure. Surgical times, intraoperative and postoperative complications, and follow-up outcomes were recorded. The mean total operative time was 29.0 ± 3.52 min, with ovariectomy and gastropexy requiring 7.5 ± 1.38 and 9.33 ± 2.58 min, respectively. No major intraoperative complications occurred, and no conversion to open surgery was necessary. Postoperative recovery was uneventful in all cases, with only one minor portal site reaction observed. Owner satisfaction was excellent. The use of absorbable fixation straps simplified the gastropexy procedure and reduced operative time compared to other laparoscopic techniques. These findings suggest that the combined LOVE and TLG-SS procedure is technically feasible and well-tolerated in a small cohort of large-breed dogs, supporting its potential integration into clinical protocols pending further validation. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

12 pages, 3396 KiB  
Article
The Influence of Precursor pH on the Synthesis and Morphology of AuNPs Synthesized Using Green Tea Leaf Extract
by Oksana Velgosova, Zuzana Mikulková and Maksym Lisnichuk
Crystals 2025, 15(8), 682; https://doi.org/10.3390/cryst15080682 - 26 Jul 2025
Viewed by 236
Abstract
This study investigates the effect of precursor pH (1.3, 2, 4, 6, 8, and 10) on the synthesis of gold nanoparticles (AuNPs) via a green synthesis approach using an aqueous extract of green tea (Camellia sinensis) leaves. The formation of AuNPs [...] Read more.
This study investigates the effect of precursor pH (1.3, 2, 4, 6, 8, and 10) on the synthesis of gold nanoparticles (AuNPs) via a green synthesis approach using an aqueous extract of green tea (Camellia sinensis) leaves. The formation of AuNPs was monitored using UV-vis spectrophotometry and confirmed using transmission electron microscopy (TEM). The results confirmed that the morphology and size of the AuNPs are strongly dependent on the pH of the reaction medium. Based on spectral features, the color of the colloids, and TEM analysis, the synthesized samples were classified into three groups. The first (pH 8 and 10) contained predominantly spherical nanoparticles with an average diameter of ~18 nm, the second (pH 1.3 and 2) contained different shaped nanoparticles (20–250 nm in diameter), and the third (pH 4 and 6) contained flower-like nanostructures with a mean diameter of ~60 nm. UV-vis analysis revealed good stability of all AuNP colloids, except at pH 1.3, where a significant decrease in absorbance intensity over time was observed. These findings confirm that tuning the precursor pH allows for controlled manipulation of nanoparticle morphology and stability in green synthesis systems. Full article
Show Figures

Figure 1

19 pages, 2215 KiB  
Article
Evaluation of the Effectiveness of Driver Training in the Use of Advanced Driver Assistance Systems
by Małgorzata Pełka and Adam Rosiński
Appl. Sci. 2025, 15(15), 8169; https://doi.org/10.3390/app15158169 - 23 Jul 2025
Viewed by 217
Abstract
This paper evaluates the effectiveness of driver training programmes aimed at the proper use of Advanced Driver Assistance Systems (ADASs). Participants (N = 49) were divided into the following three groups based on the type of training received: practical training, e-learning, and brief [...] Read more.
This paper evaluates the effectiveness of driver training programmes aimed at the proper use of Advanced Driver Assistance Systems (ADASs). Participants (N = 49) were divided into the following three groups based on the type of training received: practical training, e-learning, and brief manual instruction. The effectiveness of the training methods was assessed using selected parameters obtained from driving simulator studies, including reaction times and system activation attempts. Given the large volume and nonlinear nature of the input data, a heuristic, expert-based approach was used to identify key evaluation criteria, structure the decision-making process, and define fuzzy rule sets and membership functions. This phase served as the foundation for the development of a fuzzy logic model in the MATLAB environment. The model processes inputs to generate a quantitative performance score. The results indicate that practical training (mean score = 4.0) demonstrates superior effectiveness compared to e-learning (3.09) and manual instruction (mean score = 3.01). The primary contribution of this work is a transparent, data-driven evaluation tool that overcomes the inherent subjectivity and bias of traditional trainer-based assessments. This model provides a standardised and reproducible approach for assessing driver competence, offering a significant advancement over purely qualitative, trainer-based assessments and supporting the development of more reliable certification processes. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Upregulation of 15-Hydroxyprostaglandin Dehydrogenase by Celecoxib to Reduce Pain After Laparoendoscopic Single-Site Surgery (POPCORN Trial): A Randomized Controlled Trial
by Kyung Hee Han, Sunwoo Park, Seungmee Lee, Jiyeon Ham, Whasun Lim, Gwonhwa Song and Hee Seung Kim
Biomedicines 2025, 13(7), 1784; https://doi.org/10.3390/biomedicines13071784 - 21 Jul 2025
Viewed by 366
Abstract
Background: Peritoneal stretching from CO2 insufflation is a primary mechanism of pain associated with laparoscopy. Cyclooxygenase-2 inhibitors are promising anti-inflammatory and analgesic agents. This study aimed to evaluate the effect of celecoxib on postoperative pain reduction and associated changes in peritoneal [...] Read more.
Background: Peritoneal stretching from CO2 insufflation is a primary mechanism of pain associated with laparoscopy. Cyclooxygenase-2 inhibitors are promising anti-inflammatory and analgesic agents. This study aimed to evaluate the effect of celecoxib on postoperative pain reduction and associated changes in peritoneal gene expression after laparoendoscopic single-site (LESS) surgery for benign gynecologic disease. Methods: In this randomized, double-blind, placebo-controlled pilot study, 70 patients were randomly assigned to receive either celecoxib or placebo (400 mg) 40 min before surgery. Peritoneal tissues were collected before and after CO2 insufflation. We analyzed changes in expressions of prostaglandin I2 synthase, prostaglandin E synthase (PTGES), PTGES3, aldo-keto reductase family 1 member C1, and 15-hydroxyprostaglandin dehydrogenase (HPGD). Numeric Rating Scale (NRS) pain scores were also compared between groups. Results: A total of 62 patients completed the study: 30 in the celecoxib group and 32 in the placebo group. The mean CO2 exposure time was 60.4 min. In a quantitative real-time polymerase chain reaction analysis, HPGD mRNA expression significantly increased after surgery in patients exposed to CO2 for more than 60 min. Patients treated with celecoxib showed a significantly higher rate of grade 3 expression (83.3% vs. 37.5%; p = 0.01) and a level 2 increase in HPGD expression on in situ hybridization (58.3% vs. 12.5%; p = 0.01), despite no significant difference on immunohistochemistry. Moreover, celecoxib effectively reduced NRS pain scores compared to placebo. Conclusions: In this pilot study, celecoxib appeared to reduce postoperative pain and was associated with increased HPGD mRNA expression in the peritoneal tissue of patients with prolonged CO2 exposure during LESS surgery. These exploratory findings warrant confirmation in larger trials with functional validation of HPGD expression (ClinicalTrials.gov, NCT03391570). Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

17 pages, 3415 KiB  
Article
A Hybrid Multi-Step Forecasting Approach for Methane Steam Reforming Process Using a Trans-GRU Network
by Qinwei Zhang, Xianyao Han, Jingwen Zhang and Pan Qin
Processes 2025, 13(7), 2313; https://doi.org/10.3390/pr13072313 - 21 Jul 2025
Viewed by 295
Abstract
During the steam reforming of methane (SRM) process, elevated CH4 levels after the reaction often signify inadequate heat supply or incomplete reactions within the reformer, jeopardizing process stability. In this paper, a novel multi-step forecasting method using a Trans-GRU network was proposed [...] Read more.
During the steam reforming of methane (SRM) process, elevated CH4 levels after the reaction often signify inadequate heat supply or incomplete reactions within the reformer, jeopardizing process stability. In this paper, a novel multi-step forecasting method using a Trans-GRU network was proposed for predicting the methane content outlet of the SRM reformer. First, a novel feature selection based on the maximal information coefficient (MIC) was applied to identify critical input variables and determine their optimal input order. Additionally, the Trans-GRU network enables the simultaneous capture of multivariate correlations and the learning of global sequence representations. The experimental results based on time-series data from a real SRM process demonstrate that the proposed approach significantly improves the accuracy of multi-step methane content prediction. Compared to benchmark models, including the TCN, Transformer, GRU, and CNN-LSTM, the Trans-GRU consistently achieves the lowest root mean squared error (RMSE) and mean absolute error (MAE) values across all prediction steps (1–6). Specifically, at the one-step horizon, it yields an RMSE of 0.0120 and an MAE of 0.0094. This high performance remains robust across the 2–6-step predictions. The improved predictive capability supports the stable operation and predictive optimization strategies of the steam reforming process in hydrogen production. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 377 KiB  
Article
Treatment of Wounds That Are Difficult to Heal with Photobiomodulation: A Pilot Study
by Sara De Angelis, Alessio Conti, Antonella Di Nunzio, Patrizia Stoppa, Fabiano Zanchi and Valerio Dimonte
Healthcare 2025, 13(14), 1652; https://doi.org/10.3390/healthcare13141652 - 9 Jul 2025
Viewed by 373
Abstract
Background/Objectives: Hard-to-heal wounds are resistant to standard treatments and significantly impact patients’ quality of life and healthcare costs. Photobiomodulation with blue light has shown potential in wound healing, but evidence in wounds persisting for extended periods is limited. This pilot study evaluated [...] Read more.
Background/Objectives: Hard-to-heal wounds are resistant to standard treatments and significantly impact patients’ quality of life and healthcare costs. Photobiomodulation with blue light has shown potential in wound healing, but evidence in wounds persisting for extended periods is limited. This pilot study evaluated the effectiveness of an accelerated photobiomodulation protocol in patients with hard-to-heal wounds in a nurse-led outpatient setting. Methods: Eleven patients with venous, lymphatic, diabetic, or mixed etiology wounds, unhealed for at least two years, were recruited from two clinics in the North District of the ASL Città di Torino. Participants received twice-weekly sessions of blue light photobiomodulation (EmoLED™, 400–430 nm lasting 60–120 s) for four weeks, in addition to standard care. The wound area was measured at baseline, week 4, and week 12 using the CutiMed Wound Navigator® Version 2.2.8. The secondary endpoints included pain, wound exudate quantity and quality, and the surrounding skin condition. Results: All participants (average wound duration 5.9 years; mean area 13.1 cm2, SD ± 14.4) completed the treatment; two were lost at follow-up due to unrelated clinical events. No adverse reactions were reported. At week 4, an area reduction was shown in 9 of 11 wounds (mean: 9.5 cm2, SD ± 11.4), though not statistically significant (p = 0.240). At week 12, a significant reduction was observed (mean: 7.2 cm2, SD ± 13; p = 0.04), with a mean percentage area decrease of 40.5%. Significant improvements were also noted in pain levels, exudate characteristics, and surrounding skin conditions over time. Conclusions: Accelerated blue light photobiomodulation appears to support long-term wound healing and symptom improvement in patients with hard-to-heal wounds. These findings warrant confirmation in larger, controlled studies. Full article
(This article belongs to the Section Preventive Medicine)
Show Figures

Figure 1

53 pages, 2879 KiB  
Systematic Review
Hypersensitivity in Orthodontics: A Systematic Review of Oral and Extra-Oral Reactions
by Alessandra Amato, Stefano Martina, Giuseppina De Benedetto, Ambrosina Michelotti, Massimo Amato and Federica Di Spirito
J. Clin. Med. 2025, 14(13), 4766; https://doi.org/10.3390/jcm14134766 - 5 Jul 2025
Viewed by 467
Abstract
Background/Objectives: This systematic review analyzed the epidemiologic and macro/microscopic features of manifestations of hypersensitivity reactions with oral and extra-oral involvement in orthodontic patients with fixed (FAs) or removable (RAs) appliances or clear aligners (CAs), and evaluated them based on patient and treatment [...] Read more.
Background/Objectives: This systematic review analyzed the epidemiologic and macro/microscopic features of manifestations of hypersensitivity reactions with oral and extra-oral involvement in orthodontic patients with fixed (FAs) or removable (RAs) appliances or clear aligners (CAs), and evaluated them based on patient and treatment characteristics to provide clinical recommendations. Methods: The study protocol followed the PRISMA guidelines and was registered on PROSPERO (CRD42024517942). Results: Thirty-one studies were qualitatively assessed and synthetized, involving 858 subjects (114 males and 714 females, 9–49 years old), of whom there were 86 with a history of allergy, and 743 wearing recorded appliances (FAs = 656, FAs and RAs = 81, intra- and extra-oral RAs = 3, CAs = 3), with a mean treatment duration of 21.5 months (6 weeks–40 months). Among 75 reports, 29 (38.67%), describing burning, gingival hyperplasia, erythema, and vesicles, had oral involvement, while 46 (61.33%) had skin, eye, and systemic involvement, with erythema, papules, conjunctival hyperemia, and vertigo. Positive allergy tests concomitant with the manifestations identified nickel 451 times, cobalt 6 times, titanium 5 times, and chromium 4 times. Management included antihistamines or corticosteroids and removing the offending materials, with treatment discontinuation/appliance substitution. Conclusions: Pre-treatment evaluations, including patient histories and allergy testing, are essential to identify potential allergens and select hypoallergenic materials like titanium or ceramic brackets; regular monitoring and early intervention during treatment are crucial to prevent severe outcomes. Full article
(This article belongs to the Special Issue Oral Health and Dental Care: Current Advances and Future Options)
Show Figures

Figure 1

18 pages, 1568 KiB  
Article
Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact
by Danny Cliceri, Iuliia Khomenko, Franco Biasioli, Flavia Gasperi and Eugenio Aprea
Foods 2025, 14(13), 2343; https://doi.org/10.3390/foods14132343 - 1 Jul 2025
Viewed by 332
Abstract
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and [...] Read more.
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and external elements, play a crucial role in shaping its sensory perception. A more realistic representation of EVOO perception can be achieved by considering these cross-modal effects and their temporal dynamics. This study employed dynamic sensory and instrumental techniques to investigate the product-related mechanisms that influence EVOO flavor perception. Ten trained panelists (mean age = 41.5 years; 50% female) evaluated two EVOO samples under two consumption conditions: alone and accompanied by a solid carrier (bread or chickpeas). Temporal Check-All-That-Apply (TCATA) and nose-space analysis using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were conducted simultaneously. Sensory descriptors and mass spectral peaks were analyzed through temporal curve indices (Area Under the Curve, Maximum Citation/Concentration, Time to Maximum), which were then used to construct multi-dimensional sensory and VOC release maps. Findings revealed that the composition and texture of the food carriers had a greater influence on temporal flavor perception than the variability in VOCs released by the different EVOO samples. These results underscore the importance of considering cross-modal sensory interactions when predicting EVOO flavor perception. The carriers modulated both the perception and VOC release, with effects dependent on their specific composition and texture. This methodological approach enabled a deeper understanding of the dynamic relationship between VOC release and EVOO sensory experience. Full article
Show Figures

Graphical abstract

13 pages, 1624 KiB  
Article
Virtual Reality Gaming and Its Impact and Effectiveness in Improving Eye–Hand Coordination and Attention Concentration in the Oldest-Old Population
by Żaneta Grzywacz, Justyna Jaśniewicz, Anna Koziarska, Dorota Borzucka and Edyta Majorczyk
J. Clin. Med. 2025, 14(13), 4651; https://doi.org/10.3390/jcm14134651 - 1 Jul 2025
Viewed by 849
Abstract
Background: The ageing process is associated with a decline in cognitive functions, including eye–hand coordination, attention concentration, and psychomotor reaction time. This study aimed to assess the effectiveness of virtual reality–based therapy in enhancing cognitive functions in seniors. Methods: This study [...] Read more.
Background: The ageing process is associated with a decline in cognitive functions, including eye–hand coordination, attention concentration, and psychomotor reaction time. This study aimed to assess the effectiveness of virtual reality–based therapy in enhancing cognitive functions in seniors. Methods: This study was conducted on 38 cases (29 women and 9 men) with a mean age of 87.2 years, who were divided into two groups: a VR group (with a 4-week, three-time-week training program using the game “Beat Saber”) and a control group (with a standard 4-week exercise program). Assessments of eye–hand coordination and attentional concentration were conducted at the beginning (T0) and the end (T1) of the training. Results: Analysis of eye–hand coordination and attentional concentration showed significant improvement in both groups (T0 vs. T1: p = 0.0002 for the intervention group and p = 0.007 for the control group). However, the effect in the VR group was almost three times greater than in the control group (1.689 vs. 0.615 in D effect). Moreover, in the VR group, an analysis of “good cuts” indicated improvements in both parameters after 4 weeks of VR training. The percentage of correctly received stimuli increased significantly across sessions (p < 0.00001). Furthermore, 84.3% of participants experienced a twofold improvement in performance over the 12 VR sessions (42% vs. 80% accuracy in successful hits). The distribution of results also suggests a positive subjective impact of VR therapy in maintaining mental activity. Conclusions: The findings indicate that VR-related training can support elderly individuals in recovering cognitive function, potentially enhancing their independence and life quality. Full article
(This article belongs to the Special Issue Advances in Rehabilitation Care for Geriatric Diseases)
Show Figures

Figure 1

13 pages, 4081 KiB  
Article
Tailored Morphology and Phase Evolution of Magnesium Whitlockite Granules via a Dissolution–Precipitation Approach
by Ruta Raiseliene, Greta Linkaite, Akvile Ezerskyte and Inga Grigoraviciute
Appl. Sci. 2025, 15(13), 7221; https://doi.org/10.3390/app15137221 - 26 Jun 2025
Viewed by 303
Abstract
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for [...] Read more.
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for possible use in bone regeneration applications. Three distinct precursor granules were prepared by mixing varying amounts of ammonium dihydrogen phosphate and magnesium hydrogen phosphate with calcium sulfate. The precursors were then transformed into biphasic and single-phase Mg-WH granules by means of immersion in magnesium- and phosphate-containing solutions under controlled conditions. The X-ray diffraction results demonstrated that biphasic materials containing Mg-WH and either calcium-deficient hydroxyapatite (CDHA) or dicalcium phosphate anhydrous (DCPA) formed after 24 h of synthesis, depending on the synthesis conditions. Prolonging the reaction time to 48 h resulted in complete transformation into single-phase Mg-WH granules. Fourier-transform infrared spectroscopy confirmed the presence of functional groups characteristic of Mg-WH, CDHA, and DCPA in the intermediate products. The spectra also indicated the absence of precursor phases and the progressive elimination of secondary phases as the reaction time increased. Scanning electron microscopy analyses revealed notable morphological transformations from the raw granules to the product granules, with the latter exhibiting interlocked spherical and rod-like particles composed of fine Mg-WH rhombohedral crystals. N2 adsorption–desorption analyses exposed significant differences in the surface properties of the synthesized granules. By varying precursor, reaction solution compositions, and reaction times, the study elucidated the phase evolution mechanisms and demonstrated their impact on the structural, morphological, and surface properties of Mg-WH granules. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

18 pages, 3862 KiB  
Article
Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye
by Sarra Hamouda, Nourredine Bettahar, Miloud Aissat, Mika Sillanpää, Saleh AL-Farraj and Abdellah Bahmani
Catalysts 2025, 15(7), 616; https://doi.org/10.3390/catal15070616 - 22 Jun 2025
Viewed by 562
Abstract
Layered double hydroxide Ti-Zn-CO3 was synthesized by the co-precipitation method with a molar ratio of 2. The synthesized material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DTG), UV–vis diffuse reflection spectroscopy (DRS), and Scanning Electron Microscopy [...] Read more.
Layered double hydroxide Ti-Zn-CO3 was synthesized by the co-precipitation method with a molar ratio of 2. The synthesized material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DTG), UV–vis diffuse reflection spectroscopy (DRS), and Scanning Electron Microscopy (SEM). The photocatalytic degradation of Trypan Blue (TB) and Naphthol Green B (NGB) dyes from aqueous solutions under UV irradiation was investigated. The effects of contact time, photocatalyst dose, dye concentration, solution pH, scavenger effect, and regeneration of catalyst were investigated. The kinetic study showed that the equilibrium was reached within 30 min and 40 min for TB and NGB dyes, respectively, with photodegradation efficiency of around 91% and 83% for TB and NGB dyes, respectively, for dye concentration of 25 mg∙L−1, and the pseudo-first order showed good agreement with the reaction. The optimum photocatalyst dose is 20 mg (1 g∙L−1) and 30 mg (1.5 g∙L−1) for TB and NGB dyes, respectively, and the optimal pH of reaction was found to be 7 for both TB and NGB dyes. This study was established to highlight the photodegradation performance of the prepared catalyst Ti-Zn-CO3 for the degradation of (TB and NGB) dyes chosen as pollutants, and the fact that it can be used many times, which has an economical effect. This mean that the prepared sample is a potential catalyst with good photocatalytic activity, stability, and reusability. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

14 pages, 1611 KiB  
Article
Predicting Running Vertical Ground Reaction Forces Using Neural Network Models Based on an IMU Sensor
by Shangxiao Li, Jiahui Pan, Dongmei Wang, Shufang Yuan, Jin Yang and Weiya Hao
Sensors 2025, 25(13), 3870; https://doi.org/10.3390/s25133870 - 21 Jun 2025
Viewed by 670
Abstract
Vertical ground reaction force (vGRF) plays an important role in the study of running-related injuries (RRIs). This study explores the synchronization method between inertial measurement unit (IMU) and vGRF data of running and develops ANN models to accurately predict vGRF. Fifteen runners participated [...] Read more.
Vertical ground reaction force (vGRF) plays an important role in the study of running-related injuries (RRIs). This study explores the synchronization method between inertial measurement unit (IMU) and vGRF data of running and develops ANN models to accurately predict vGRF. Fifteen runners participated in this study. Acceleration data and vGRF values of eight rearfoot strikers and seven forefoot strikers running at 12, 14, and 16 km/h were collected by a single IMU and an instrumented treadmill. The sliding time window synchronization (STWS) algorithm was developed to sync IMU data with vGRF data. The wavelet neural network model (WNN) and feed-forward neural network model (FFNN) were adapted to predict vGRF using three-axis or sagittal-axis acceleration data in the stance phase, respectively. One rearfoot striker and one forefoot striker were randomly selected as a test set, while the other participants formed training sets. After synchronization, mean absolute errors for stride time of the IMU and vGRF data were less than 11.2 ms. The coefficient of multiple correlations for vGRF measured curves and predicted curves was more than 0.97. The normalized root mean square errors (NRMSEs) between two curves were 4.6~9.2%, and R2 was 0.93~0.99. For peak vGRF, the NRMSEs were 1.6~8.2%, except for rearfoot strike runners at 16 km/h using the FFNN model (10.7% and 11.1%). The Bland–Altman plots indicate that the errors for both the WNN and FFNN models are within acceptable limits. The STWS algorithm can effectively achieve the data synchronization between the IMU and the force plate during running. Both WNN and FFNN models demonstrated good accuracy and agreement in predicting vGRF. Using sagittal-axis acceleration data may be an ideal model with good prediction accuracy and less input data. This work provides direction for developing ANN models of personalized monitoring of lower limb load. Full article
Show Figures

Figure 1

34 pages, 3830 KiB  
Article
Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects
by Alia Wokan and Mădălina Iordache
Sustainability 2025, 17(12), 5564; https://doi.org/10.3390/su17125564 - 17 Jun 2025
Viewed by 421
Abstract
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: [...] Read more.
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: fine particulate matter PM2.5, coarse particulate matter PM10, AQI (Air Quality Index) (resulted from PM2.5 and PM10), particle number, air temperature, relative air humidity, TVOC (total volatile organic compounds), and HCHO (formaldehyde). The results of this study show that urban vegetation remains a reliable factor in reducing PM2.5 and PM10 in city air and in keeping the AQI within the limits corresponding to good air quality, but also that relative air humidity counteracts the contribution of vegetation in achieving this goal. Inside the park, the HCHO concentration increased by up to 4–5 times compared to the outside, and this increase was not caused by vehicle traffic but rather by the photochemical reactions generating HCHO. Regarding the cooling effect on air temperature, the studied green space did not exhibit this effect, as the air temperature inside it increased by up to 1–6 °C compared to the outside. Our results contrast with the general perception that urban parks and green spaces are cooler islands within the cities and draw attention to the fact that having a green space in a city does not necessarily mean achieving environmental goals, such as reducing the heat risk of cities. Based on the results, we consider that the main limitations in achieving these objectives were the park’s small size (88 hectares) and its morphology and architecture resulting from the integration of the species that compose it. It follows from these data that it is not enough for an urban green space to be established, but its design must be combined with urban morphology strategies if the heat mitigation effect is to be achieved and the cooling benefits are to be maximized in cities. Full article
Show Figures

Figure 1

25 pages, 6108 KiB  
Article
Preparation and Composition Analysis of Modified Asphalt for Preparing Carbon Fiber from Coal Direct Liquefaction Asphalt
by Yong Liu, Chenguang Jiang and Miao Gao
Processes 2025, 13(6), 1869; https://doi.org/10.3390/pr13061869 - 13 Jun 2025
Viewed by 412
Abstract
The modified asphalt with high softening point was prepared by air oxidation polymerization with coal liquefied asphalt as raw material. The quality control model regarding the coking value and softening point of the product were established based on the DFSS (Design for Six [...] Read more.
The modified asphalt with high softening point was prepared by air oxidation polymerization with coal liquefied asphalt as raw material. The quality control model regarding the coking value and softening point of the product were established based on the DFSS (Design for Six Sigma) and RSM (response surface method). By means of elemental analysis, infrared, XPS, XRD, nuclear magnetic, MALDI-TOF and other characterization methods, the composition and structure characteristics of the modified asphalt were analyzed. Using the target product as raw material, general base asphalt carbon fiber was prepared by spinning, pre-oxidation and carbonization. The results show that the fitting effect of the quality control model about the coking value and softening point of the product is good, and the operating window range of the polymerization process parameters corresponding to the preparation of target product is wide. It can be found that the oxidation time and oxidation temperature has the most significant effect on the coking value and softening point of products, respectively, and all of them show a positive correlation. The dealkylation reaction and oxidative crosslinking reaction were carried out at the same time, and the bridging products of methylene bridging products, ether–oxygen bonds, carbonyl bonds, anhydride bonds and other oxygen-containing groups were generated. The properties of carbon fiber prepared with the target product are better: the tensile strength is 775 MPa, the elastic modulus is 68.6 GPa and the elongation at break is 1.13%. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop