Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = mean envelope entropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3854 KiB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 232
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

18 pages, 3373 KiB  
Article
A Novel FMCW LiDAR Multi-Target Denoising Method Based on Optimized CEEMDAN with Singular Value Decomposition
by Zhiwei Li, Ning Wang, Yao Li, Jiaji He and Yiqiang Zhao
Electronics 2025, 14(13), 2697; https://doi.org/10.3390/electronics14132697 - 3 Jul 2025
Viewed by 251
Abstract
Frequency-modulated continuous-wave (FMCW) LiDAR systems frequently experience noise interference during multi-target measurements in real-world applications, resulting in target overlapping and diminished detection accuracy. Conventional denoising approaches—such as Empirical Mode Decomposition (EMD) and wavelet thresholding—are often constrained by challenges like mode mixing and the [...] Read more.
Frequency-modulated continuous-wave (FMCW) LiDAR systems frequently experience noise interference during multi-target measurements in real-world applications, resulting in target overlapping and diminished detection accuracy. Conventional denoising approaches—such as Empirical Mode Decomposition (EMD) and wavelet thresholding—are often constrained by challenges like mode mixing and the attenuation of weak target signals, which limits their detection precision. To address these limitations, this study presents a novel denoising framework that integrates an optimized Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm and singular value decomposition (SVD). The CEEMDAN algorithm’s two critical parameters—the noise standard deviation and the number of noise additions—are optimally determined using particle swarm optimization (PSO), with the envelope entropy of the intrinsic mode functions (IMFs) serving as the fitness criterion. IMFs are subsequently selected based on spectral and amplitude comparisons with the original signal to facilitate initial signal reconstruction. Following CEEMDAN-based decomposition, SVD is employed with a normalized soft thresholding technique to further suppress residual noise. Validation using both synthetic and experimental datasets demonstrates the superior performance of the proposed approach over existing methods in multi-target scenarios. Specifically, it reduces the root mean square error (RMSE) by 45% to 59% and the mean square error (MSE) by 34% to 69%, and improves the signal-to-noise ratio (SNR) by 1.85–4.38 dB and the peak signal-to-noise ratio (PSNR) by 1.18–6.94 dB. These results affirm the method’s effectiveness in enhancing signal quality and target distinction in noisy FMCW LiDAR measurements. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

17 pages, 5331 KiB  
Article
Noise Reduction of Steam Trap Based on SSA-VMD Improved Wavelet Threshold Function
by Shuxun Li, Qian Zhao, Jinwei Liu, Xuedong Zhang and Jianjun Hou
Sensors 2025, 25(5), 1573; https://doi.org/10.3390/s25051573 - 4 Mar 2025
Cited by 1 | Viewed by 827
Abstract
The performance of steam traps plays an important role in the normal operation of steam systems. It also contributes to the improvement of thermal efficiency of steam-using equipment and the rational use of energy. As an important component of the steam system, it [...] Read more.
The performance of steam traps plays an important role in the normal operation of steam systems. It also contributes to the improvement of thermal efficiency of steam-using equipment and the rational use of energy. As an important component of the steam system, it is crucial to monitor the state of the steam trap and establish a correlation between the acoustic emission signal and the internal leakage state. However, in actual test environments, the acoustic emission sensor often collects various background noises alongside the valve internal leakage acoustic emission signal. Therefore, to minimize the impact of environmental noise on valve internal leakage identification, it is necessary to preprocess the original acoustic emission signals through noise reduction before identification. To address the above problems, a denoising method based on a sparrow search algorithm, variational modal decomposition, and improved wavelet thresholding is proposed. The sparrow search algorithm, using minimum envelope entropy as the fitness function, optimizes the decomposition level K and the penalty factor α of the variational modal decomposition algorithm. This removes modes with higher entropy in the modal envelopes. Subsequently, wavelet threshold denoising is applied to the remaining modes, and the denoised signal is reconstructed. Validation analysis demonstrates that the combination of SSA-VMD and the improved wavelet threshold function effectively filters out noise from the signal. Compared to traditional thresholding methods, this approach increases the signal-to-noise ratio and reduces the root-mean-square error, significantly enhancing the noise reduction effect on the steam trap’s background noise signal. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 5291 KiB  
Article
Fault Diagnosis Method of Motor Bearing Under Variable Load Condition Based on Parameter Optimization VMD-NLMS
by Youbing Li, Zhenning Zhu, Zhixian Zhong and Guangbin Wang
Appl. Sci. 2025, 15(5), 2607; https://doi.org/10.3390/app15052607 - 28 Feb 2025
Cited by 1 | Viewed by 465
Abstract
Given that the fault information of motor bearing is submerged due to strong noise under variable load conditions, a fault diagnosis method of motor bearing based on parameter optimization variational mode decomposition (VMD) and normalized least mean square (NLMS) is proposed. Firstly, VMD’s [...] Read more.
Given that the fault information of motor bearing is submerged due to strong noise under variable load conditions, a fault diagnosis method of motor bearing based on parameter optimization variational mode decomposition (VMD) and normalized least mean square (NLMS) is proposed. Firstly, VMD’s modal number K and α penalty factor are optimized by symbolic dynamic entropy (SDE). Then, the VMD algorithm with optimized parameters is used to extract the fault signals of bearing inner and outer rings under different load conditions. Then, the appropriate intrinsic mode decomposition (IMF) is selected, according to the weighted kurtosis index to reconstruct the fault feature signals. Finally, the NLMS algorithm reduces noise in the reconstructed signal and highlights the fault characteristics. The fault characteristics are analyzed by envelope demodulation. The RMSE and SNR of the simulated signal are calculated by filtering the improved method. It is found that the RMSE of the filtered signal is reduced 60%, and the signal-to-noise ratio is increased by about 119.87%. Compared to the sparrow search algorithm (SSA)-optimized VMD method, the proposed approach shows significant improvements in fault feature extraction. This study provides an effective solution for motor bearing fault diagnosis in noisy and variable load environments. Full article
Show Figures

Figure 1

27 pages, 24008 KiB  
Article
Adaptive Feature Extraction Using Sparrow Search Algorithm-Variational Mode Decomposition for Low-Speed Bearing Fault Diagnosis
by Bing Wang, Haihong Tang, Xiaojia Zu and Peng Chen
Sensors 2024, 24(21), 6801; https://doi.org/10.3390/s24216801 - 23 Oct 2024
Cited by 4 | Viewed by 1560
Abstract
To address the challenge of extracting effective fault features at low speeds, where fault information is weak and heavily influenced by environmental noise, a parameter-adaptive variational mode decomposition (VMD) method is proposed. This method aims to overcome the limitations of traditional VMD, which [...] Read more.
To address the challenge of extracting effective fault features at low speeds, where fault information is weak and heavily influenced by environmental noise, a parameter-adaptive variational mode decomposition (VMD) method is proposed. This method aims to overcome the limitations of traditional VMD, which relies on manually set parameters. The sparrow search algorithm is used to calculate the fitness function based on mean envelope entropy, enabling the adaptive determination of the number of mode decompositions and the penalty factor in VMD. Afterward, the optimised parameters are used to enhance traditional VMD, enabling the decomposition of the raw signal to obtain intrinsic mode function components. The kurtosis criterion is then used to select relevant intrinsic mode functions for signal reconstruction. Finally, envelope analysis is applied to the reconstructed signal, and the results reveal the relationship between fault characteristic frequencies and their harmonics. The experimental results demonstrate that compared with other advanced methods, the proposed approach effectively reduces noise interference and extracts fault features for diagnosing low-speed bearing faults. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

28 pages, 10836 KiB  
Article
Fuzzy Entropy-Assisted Deconvolution Method and Its Application for Bearing Fault Diagnosis
by Di Pei, Jianhai Yue and Jing Jiao
Entropy 2024, 26(4), 304; https://doi.org/10.3390/e26040304 - 29 Mar 2024
Cited by 2 | Viewed by 1456
Abstract
Vibration signal analysis is an important means for bearing fault diagnosis. Affected by the vibration of other machine parts, external noise and the vibration transmission path, the impulses induced by a bearing defect in the measured vibrations are very weak. Blind deconvolution (BD) [...] Read more.
Vibration signal analysis is an important means for bearing fault diagnosis. Affected by the vibration of other machine parts, external noise and the vibration transmission path, the impulses induced by a bearing defect in the measured vibrations are very weak. Blind deconvolution (BD) methods can counteract the effect of the transmission path and enhance the fault impulses. Most BD methods highlight fault features of the filtered signals by impulse-featured objective functions (OFs). However, residual noise in the filtered signals has not been well tackled. To overcome this problem, a fuzzy entropy-assisted deconvolution (FEAD) method is proposed. First, FEAD takes advantage of the high noise sensitivity of fuzzy entropy (FuzzyEn) and constructs a weighted FuzzyEn–kurtosis OF to enhance the fault impulses while suppressing noise interference. Then, the PSO algorithm is used to iteratively solve the optimal inverse deconvolution filter. Finally, envelope spectrum analysis is performed on the filtered signal to realize bearing fault diagnosis. The feasibility of FEAD was first verified by the bearing fault simulation signals at constant and variable speeds. The bearing test signals from Case Western Reserve University (CWRU), the railway wheelset and the test bench validated the good performance of FEAD in fault feature enhancement. A comparison with and quantitative results for the other state-of-the-art BD methods indicated the superiority of the proposed method. Full article
Show Figures

Figure 1

16 pages, 3735 KiB  
Article
The Effect of Exit Time and Entropy on Asset Performance Evaluation
by Mohammad Ghasemi Doudkanlou, Prokash Chandro and Shokoofeh Banihashemi
Entropy 2023, 25(9), 1252; https://doi.org/10.3390/e25091252 - 23 Aug 2023
Viewed by 3588
Abstract
The objective of this study is to evaluate assets’ performance by considering the exit time within the risk measurement framework alongside Shannon entropy and, alternatively, excluding these factors, which can be used to create a portfolio aligned with short- or long-term objectives. This [...] Read more.
The objective of this study is to evaluate assets’ performance by considering the exit time within the risk measurement framework alongside Shannon entropy and, alternatively, excluding these factors, which can be used to create a portfolio aligned with short- or long-term objectives. This portfolio effectively balances the potential risks and returns, guiding investors to make decisions that are in line with their financial goals. To assess the performance, we used data envelopment analysis (DEA), whereby we utilized the risk measure as an input and the mean return as an output. The stop point probability–CVaR (SPP-CVaR) was the risk measurement used when considering the exit time. We calculated the SPP-CVaR by converting the risk-neutral density to the real-world density, calibrating the parameters, running simulations for price paths, setting the stop-profit points, determining the exit times, and calculating the SPP-CVaR for each stop-profit point. To account for negative data and to incorporate the exit time, we have proposed a model that integrates the mean return and SPP-CVaR, utilizing DEA. The resulting inefficiency scores of this model were compared with those of the mean-CVaR model, which calculates the risk across the entire time horizon and does not take the exit time and Shannon entropy into account. To accomplish this, an analysis was conducted on a portfolio that included a variety of stocks, cryptocurrencies, commodities, and precious metals. The empirical application demonstrated the enhancement of asset selection for both short-term and long-term investments through the combined use of Shannon entropy and the exit time. Full article
(This article belongs to the Special Issue Entropy-Based Applications in Economics, Finance, and Management II)
Show Figures

Figure 1

24 pages, 2705 KiB  
Article
The Classification Impact of Different Types of Environmental Regulation on Chinese Provincial Carbon Emission Efficiency
by Feifei Ye, Rongyan You, Haitian Lu, Sirui Han and Long-Hao Yang
Sustainability 2023, 15(15), 12092; https://doi.org/10.3390/su151512092 - 7 Aug 2023
Cited by 6 | Viewed by 1908
Abstract
The evaluation of inter-provincial carbon emission efficiency and the analysis of its influencing factors hold great practical significance for reducing carbon emissions and promoting sustainable development in ecological management. To address the shortcomings of existing research in the classification evaluation of carbon emission [...] Read more.
The evaluation of inter-provincial carbon emission efficiency and the analysis of its influencing factors hold great practical significance for reducing carbon emissions and promoting sustainable development in ecological management. To address the shortcomings of existing research in the classification evaluation of carbon emission efficiency and account for the impacts of different environmental regulatory policies on carbon emissions, this paper aims to examine the impact of formal and informal environmental regulations on carbon emission efficiency. This is accomplished by utilizing a combination of the data envelopment analysis (DEA) model, entropy weighting, and k-means cluster analysis methods. The fixed-effects model is also applied to examine the influences of different factors on carbon emission efficiency under different categories. To conduct the case studies, carbon emission management data from 30 provinces in China are collected, and the results show the following: (1) Formal environmental regulations exhibit a “U-shaped” relationship with carbon emission efficiency, whereas informal environmental regulations have an “inverted U-shaped” relationship with carbon emission efficiency. (2) Under the cluster analysis of carbon emission efficiency, formal environmental regulations are found to have a stronger incentive effect on inter-provincial carbon efficiency compared to informal environmental regulations. This study carries significant theoretical and practical implications for China’s timely attainment of its double-carbon target. Full article
Show Figures

Figure 1

13 pages, 6515 KiB  
Article
Research on VMD-Based Adaptive TDLAS Signal Denoising Method
by Minghui Mao, Jun Chang, Jiachen Sun, Shan Lin and Zihan Wang
Photonics 2023, 10(6), 674; https://doi.org/10.3390/photonics10060674 - 11 Jun 2023
Cited by 19 | Viewed by 2874
Abstract
We propose an adaptive algorithm that is a Variational Mode Decomposition (VMD) optimized by the particle swarm optimization (PSO) algorithm, named PSO-VMD. The method selects the envelope entropy of the last intrinsic mode function (IMF) in the VMD as the fitness function of [...] Read more.
We propose an adaptive algorithm that is a Variational Mode Decomposition (VMD) optimized by the particle swarm optimization (PSO) algorithm, named PSO-VMD. The method selects the envelope entropy of the last intrinsic mode function (IMF) in the VMD as the fitness function of the PSO and 1/10 of the maximum value of the correlation coefficient between the IMFs and the standard signal as the threshold of the correlation coefficient. In the processing of simulated and experimental second harmonic signals, a series of standards, including the same correlation coefficient threshold and standard signal, are used to adaptively achieve noise reduction processing. After processing a simulated signal using PSO-VMD, the signal-to-noise ratio (SNR) was improved by 4.03877 dB and the correlation coefficient (R2) between the gas concentration and the second harmonic maximum was improved from 0.97743 to 0.99782. In the processing of an experimental signal, the correlation coefficient (R2) was 0.99733. The mean value and standard deviation of the second harmonic signal of multiple cycles processed by PSO-VMD were improved compared to the unprocessed experimental signal. This demonstrated that the method has the advantage of being reliable and stable. Full article
(This article belongs to the Special Issue Applications of Laser Spectroscopy)
Show Figures

Figure 1

12 pages, 3684 KiB  
Article
A Novel Denoising Method for Partial Discharge Signal Based on Improved Variational Mode Decomposition
by Jingjie Yang, Ke Yan, Zhuo Wang and Xiang Zheng
Energies 2022, 15(21), 8167; https://doi.org/10.3390/en15218167 - 2 Nov 2022
Cited by 19 | Viewed by 2553
Abstract
Partial discharge (PD) online monitoring is a common technique for high-voltage equipment diagnosis. However, due to field interference, the monitored PD signal contains a lot of noise. Therefore, this paper proposes a novel method by integrating the flower pollination algorithm, variational mode decomposition, [...] Read more.
Partial discharge (PD) online monitoring is a common technique for high-voltage equipment diagnosis. However, due to field interference, the monitored PD signal contains a lot of noise. Therefore, this paper proposes a novel method by integrating the flower pollination algorithm, variational mode decomposition, and Savitzky–Golay filter (FPA-VMD-SG) to effectively suppress white noise and narrowband noise in the PD signal. Firstly, based on the mean envelope entropy (MEE), the decomposition number and quadratic penalty term of the VMD were optimized by the FPA. The PD signal containing noise was broken down into intrinsic mode functions (IMFs) by optimized parameters. Secondly, the IMFs were classified as the signal component, the noise dominant component, and the noise component according to the kurtosis value. Thirdly, the noise dominant component was denoised using the SG filter, and the denoised signal was mixed with the signal component to reconstruct a new signal. Finally, threshold denoising was used to eliminate residual white noise. To verify the performance of the FPA-VMD-SG method, compared with empirical mode decomposition with wavelet transform (EMD-WT) and adaptive singular value decomposition (ASVD), the denoising results of simulated and real PD signals indicated that the FPA-VMD-SG method had excellent performance. Full article
Show Figures

Figure 1

21 pages, 6102 KiB  
Article
Ultra-Short-Term Wind Speed Forecasting Using the Hybrid Model of Subseries Reconstruction and Broad Learning System
by Ming Pang, Lei Zhang, Yajun Zhang, Ao Zhou, Jianming Dou and Zhepeng Deng
Energies 2022, 15(12), 4492; https://doi.org/10.3390/en15124492 - 20 Jun 2022
Cited by 1 | Viewed by 1875
Abstract
The traditional decomposition–combination wind speed forecasting model has high complexity and a long calculation time. As a result, an ultra-short-term wind speed hybrid forecasting model based on a broad learning system (BLS) that combines improved variational mode decomposition (EPSO-VMD, EVMD) and subseries reconstruction [...] Read more.
The traditional decomposition–combination wind speed forecasting model has high complexity and a long calculation time. As a result, an ultra-short-term wind speed hybrid forecasting model based on a broad learning system (BLS) that combines improved variational mode decomposition (EPSO-VMD, EVMD) and subseries reconstruction (SR) is proposed in this work. The values of K and α in the EVMD are determined by minimum mean envelope entropy (MMEE) and enhanced particle swarm optimization (EPSO), and EVMD is used to decompose the original wind speed data. SR is applied to recombine the subseries obtained by EVMD to improve the forecasting efficiency. The sample entropy (SE) is used to quantify the subseries’ complexity, and they are then adaptively divided into high-entropy and low-entropy subseries. Adjacent high-entropy subseries of approximate entropy values are merged to obtain a new group of reconstructed high-entropy subseries, while the low-entropy subseries merge into a new subseries as well. Then, the forecasting results of the reconstructed high- and low-entropy subseries are calculated via the BLS and ARIMA models. Numerical simulation results show that the proposed method is more effective than traditional methods. Full article
Show Figures

Figure 1

30 pages, 14732 KiB  
Article
Research on Fault Feature Extraction Method Based on Parameter Optimized Variational Mode Decomposition and Robust Independent Component Analysis
by Jingzong Yang, Chengjiang Zhou and Xuefeng Li
Coatings 2022, 12(3), 419; https://doi.org/10.3390/coatings12030419 - 21 Mar 2022
Cited by 19 | Viewed by 3496
Abstract
The variational mode decomposition mode (VMD) has a reliable mathematical derivation and can decompose signals adaptively. At present, it has been widely used in mechanical fault diagnosis, financial analysis and prediction, geological signal analysis, and other fields. However, VMD has the problems of [...] Read more.
The variational mode decomposition mode (VMD) has a reliable mathematical derivation and can decompose signals adaptively. At present, it has been widely used in mechanical fault diagnosis, financial analysis and prediction, geological signal analysis, and other fields. However, VMD has the problems of insufficient decomposition and modal aliasing due to the unclear selection method of modal component k and penalty factor α. Therefore, it is difficult to ensure the accuracy of fault feature extraction and fault diagnosis. To effectively extract fault feature information from bearing vibration signals, a fault feature extraction method based on VMD optimized with information entropy, and robust independent component analysis (RobustICA) was proposed. Firstly, the modal component k and penalty factor α in VMD were optimized by the principle of minimum information entropy to improve the effect of signal decomposition. Secondly, the optimal parameters weresubstituted into VMD, and several intrinsic mode functions (IMFs) wereobtained by signal decomposition. Secondly, the kurtosis and cross-correlation coefficient criteria were comprehensively used to evaluate the advantages and disadvantages of each IMF.And then, the optimal IMFs were selected to construct the observation signal channel to realize the signal-to-noise separation based on RobustICA. Finally, the envelope demodulation analysis of the denoised signal was carried out to extract the fault characteristic frequency. Through the analysis of bearing simulation signal and actual data, it shows that this method can extract the weak characteristics of rolling bearing fault signal and realize the accurate identification of fault. Meanwhile, in the bearing simulation signal experiment, the results of kurtosis value, cross-correlation coefficient, root mean square error, and mean absolute error are 6.162, 0.681, 0.740, and 0.583, respectively. Compared with other traditional methods, better index evaluation value is obtained. Full article
Show Figures

Figure 1

15 pages, 1666 KiB  
Article
Electromyography-Based Respiratory Onset Detection in COPD Patients on Non-Invasive Mechanical Ventilation
by Leonardo Sarlabous, Luis Estrada, Ana Cerezo-Hernández, Sietske V. D. Leest, Abel Torres, Raimon Jané, Marieke Duiverman and Ainara Garde
Entropy 2019, 21(3), 258; https://doi.org/10.3390/e21030258 - 7 Mar 2019
Cited by 10 | Viewed by 8883
Abstract
To optimize long-term nocturnal non-invasive ventilation in patients with chronic obstructive pulmonary disease, surface diaphragm electromyography (EMGdi) might be helpful to detect patient-ventilator asynchrony. However, visual analysis is labor-intensive and EMGdi is heavily corrupted by electrocardiographic (ECG) activity. Therefore, we developed an automatic [...] Read more.
To optimize long-term nocturnal non-invasive ventilation in patients with chronic obstructive pulmonary disease, surface diaphragm electromyography (EMGdi) might be helpful to detect patient-ventilator asynchrony. However, visual analysis is labor-intensive and EMGdi is heavily corrupted by electrocardiographic (ECG) activity. Therefore, we developed an automatic method to detect inspiratory onset from EMGdi envelope using fixed sample entropy (fSE) and a dynamic threshold based on kernel density estimation (KDE). Moreover, we combined fSE with adaptive filtering techniques to reduce ECG interference and improve onset detection. The performance of EMGdi envelopes extracted by applying fSE and fSE with adaptive filtering was compared to the root mean square (RMS)-based envelope provided by the EMG acquisition device. Automatic onset detection accuracy, using these three envelopes, was evaluated through the root mean square error (RMSE) between the automatic and mean visual onsets (made by two observers). The fSE-based method provided lower RMSE, which was reduced from 298 ms to 264 ms when combined with adaptive filtering, compared to 301 ms provided by the RMS-based method. The RMSE was negatively correlated with the proposed EMGdi quality indices. Following further validation, fSE with KDE, combined with adaptive filtering when dealing with low quality EMGdi, indicates promise for detecting the neural onset of respiratory drive. Full article
(This article belongs to the Special Issue The 20th Anniversary of Entropy - Approximate and Sample Entropy)
Show Figures

Figure 1

21 pages, 2277 KiB  
Article
Real-Time Robust Voice Activity Detection Using the Upper Envelope Weighted Entropy Measure and the Dual-Rate Adaptive Nonlinear Filter
by Wei Qing Ong, Alan Wee Chiat Tan, V. Vijayakumar Vengadasalam, Cheah Heng Tan and Thean Hai Ooi
Entropy 2017, 19(11), 487; https://doi.org/10.3390/e19110487 - 28 Oct 2017
Cited by 11 | Viewed by 8015
Abstract
Voice activity detection (VAD) is a vital process in voice communication systems to avoid unnecessary coding and transmission of noise. Most of the existing VAD algorithms continue to suffer high false alarm rates and low sensitivity when the signal-to-noise ratio (SNR) is low, [...] Read more.
Voice activity detection (VAD) is a vital process in voice communication systems to avoid unnecessary coding and transmission of noise. Most of the existing VAD algorithms continue to suffer high false alarm rates and low sensitivity when the signal-to-noise ratio (SNR) is low, at 0 dB and below. Others are developed to operate in offline mode or are impractical for implementation in actual devices due to high computational complexity. This paper proposes the upper envelope weighted entropy (UEWE) measure as a means to enable high separation of speech and non-speech segments in voice communication. The asymmetric nonlinear filter (ANF) is employed in UEWE to extract the adaptive weight factor that is subsequently used to compensate the noise effect. In addition, this paper also introduces a dual-rate adaptive nonlinear filter (DANF) with high adaptivity to rapid time-varying noise for computation of the decision threshold. Performance comparison with standard and recent VADs shows that the proposed algorithm is superior especially in real-time practical applications. Full article
(This article belongs to the Special Issue Entropy in Signal Analysis)
Show Figures

Figure 1

14 pages, 2487 KiB  
Article
A Comparative Study of Empirical Mode Decomposition-Based Filtering for Impact Signal
by Liwei Zhan and Chengwei Li
Entropy 2017, 19(1), 13; https://doi.org/10.3390/e19010013 - 29 Dec 2016
Cited by 26 | Viewed by 7703
Abstract
The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) has been used to propose a new method for filtering time series originating from nonlinear systems. The filtering method is based on fuzzy entropy and a new waveform. A new waveform is defined [...] Read more.
The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) has been used to propose a new method for filtering time series originating from nonlinear systems. The filtering method is based on fuzzy entropy and a new waveform. A new waveform is defined wherein Intrinsic Mode Functions (IMFs)—which are obtained by CEEMDAN algorithm—are firstly sorted in ascending order (the sorted IMFs is symmetric about center point, because at any point, the mean value of the envelope line defined by the local maxima and the local minima is zero), and the energy of the sorted IMFs are calculated, respectively. Finally, the new waveform with axial symmetry can be obtained. The complexity of the new waveform can be quantified by fuzzy entropy. The relevant modes (noisy signal modes and useful signal modes) can be identified by the difference between the fuzzy entropy of the new waveform and the next adjacent new waveform. To evaluate the filter performance, CEEMDAN and sample entropy, Ensemble Empirical Mode Decomposition (EEMD) and fuzzy entropy, and EEMD and sample entropy were used to filter the synthesizing signals with various levels of input signal-to-noise ratio (SNRin). In particular, this approach is successful in filtering impact signal. The results of the filtering are evaluated by a de-trended fluctuation analysis (DFA) algorithm, revised mean square error (RMSE), and revised signal-to-noise ratio (RSNR), respectively. The filtering results of simulated and impact signal show that the filtering method based on CEEMDAN and fuzzy entropy outperforms other signal filtering methods. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

Back to TopTop