Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = maximum inter-story drift ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3996 KB  
Article
Deformation and Energy-Based Comparison of Outrigger Locations in RC and BRB-Core Tall Buildings Under Repetitive Earthquakes
by İlhan Emre İnam and Ahmet Anıl Dindar
Buildings 2025, 15(19), 3563; https://doi.org/10.3390/buildings15193563 - 2 Oct 2025
Viewed by 258
Abstract
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and [...] Read more.
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and direction of the study: (1) How does the structural performance change when outriggers are placed at various positions? (2) How do outrigger systems affect structural behavior under sequential earthquake scenarios? Nonlinear time history analyses were employed as the primary methodology to evaluate the seismic response of the two reinforced concrete buildings with 24 and 48 stories, respectively. Each building type was developed for two different core configurations: one with a reinforced concrete shear wall core and the other with a BRB core system. Each analysis model also includes outrigger systems constructed with BRBs positioned at different floor levels. Five sequential ground motion records were used to assess the effects of main- and aftershocks. The analysis results were evaluated not only based on displacement and force demands but also using a damage measure called the Park-Ang Damage Index. In addition, displacement-based metrics, particularly the maximum inter-story drift ratio (MISD), were also utilized to quantify lateral displacement demands under consecutive seismic loading. With the results obtained from this study, it is aimed to provide design-oriented insights into the most effective use of outrigger systems formed with BRB in high-rise RC buildings and their functions in increasing seismic resistance, especially in areas likely to experience consecutive seismic events. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3955 KB  
Article
Seismic Retrofitting of RC Frames Using Viscous Dampers: Numerical Simulation and Nonlinear Response Analysis
by Pengfei Ma and Shangke Yuan
Infrastructures 2025, 10(9), 235; https://doi.org/10.3390/infrastructures10090235 - 6 Sep 2025
Viewed by 607
Abstract
Reinforced concrete (RC) frame structures in high-seismicity regions often exhibit vulnerability under strong earthquakes, necessitating effective retrofitting solutions. This study evaluates viscous fluid dampers (VFDs) as a solution for seismic retrofitting of an existing four-story RC school building in China’s high-seismicity zone. Nonlinear [...] Read more.
Reinforced concrete (RC) frame structures in high-seismicity regions often exhibit vulnerability under strong earthquakes, necessitating effective retrofitting solutions. This study evaluates viscous fluid dampers (VFDs) as a solution for seismic retrofitting of an existing four-story RC school building in China’s high-seismicity zone. Nonlinear time-history analyses were conducted using ETABS under frequent earthquakes (FEs) and the maximum considered earthquake (MCE), comparing structural responses before and after retrofitting. The results demonstrate that VFDs reduced inter-story drift ratios by 10–40% (FEs) and 33–37% (MCE), ensuring compliance with code limits (1/50 under MCE). Base shear decreased by 34.6% (X-direction) and 32.3% (Y-direction), while dampers contributed 66.7% (X) and 40% (Y) of total energy dissipation under FEs, increasing to 74% (X) and 47% (Y) under the MCE. Additional damping ratios reached 3.3–3.7% (X) and 2.0–2.4% (Y), significantly mitigating plastic hinge formation. This study validates VFDs as a high-performance retrofitting solution for RC frames, offering superior energy dissipation compared to traditional methods. Full article
Show Figures

Figure 1

15 pages, 5980 KB  
Article
Seismic Performance of Cladding-Panel-Equipped Frames with Novel Friction-Energy-Dissipating Joints
by Xi-Long Chen, Xian Gao, Li Xu, Jian-Wen Zhao and Lian-Qiong Zheng
Buildings 2025, 15(15), 2618; https://doi.org/10.3390/buildings15152618 - 24 Jul 2025
Viewed by 387
Abstract
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three [...] Read more.
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three frame systems. These included a benchmark bare frame and two cladding-panel-equipped frame structures configured with energy-dissipating joints using different specifications of high-strength bolts (M14 and M20, respectively). The low-cycle reversed loading results demonstrate that the friction energy dissipation of the novel joints significantly improved the seismic performance of the frame structures. Compared to the bare frame, the frames equipped with cladding panels using M14 bolts demonstrated 10.9% higher peak lateral load capacity, 17.6% greater lateral stiffness, and 45.6% increased cumulative energy dissipation, while those with M20 bolts showed more substantial improvements of 22.8% in peak load capacity, 32.0% in lateral stiffness, and 64.2% in cumulative energy dissipation. The elastoplastic time-history analysis results indicate that under seismic excitation, the maximum inter-story drift ratios of the panel-equipped frames with M14 and M20 bolts were reduced by 42.7% and 53%, respectively, compared to the bare frame. Simultaneously, the equivalent plastic strain in the primary structural members significantly decreased. Finally, based on the mechanical equilibrium conditions, a calculation formula was derived to quantify the contribution of joint friction to the horizontal load-carrying capacity of the frame. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 5572 KB  
Article
Machine Learning-Based Methods for the Seismic Damage Classification of RC Buildings
by Sung Hei Luk
Buildings 2025, 15(14), 2395; https://doi.org/10.3390/buildings15142395 - 8 Jul 2025
Viewed by 1109
Abstract
This paper aims to investigate the feasibility of machine learning methods for the vulnerability assessment of buildings and structures. Traditionally, the seismic performance of buildings and structures is determined through a non-linear time–history analysis, which is an accurate but time-consuming process. As an [...] Read more.
This paper aims to investigate the feasibility of machine learning methods for the vulnerability assessment of buildings and structures. Traditionally, the seismic performance of buildings and structures is determined through a non-linear time–history analysis, which is an accurate but time-consuming process. As an alternative, structural responses of buildings under earthquakes can be obtained using well-trained machine learning models. In the current study, machine learning models for the damage classification of RC buildings are developed using the datasets generated from numerous incremental dynamic analyses. A variety of earthquake and structural parameters are considered as input parameters, while damage levels based on the maximum inter-story drift ratio are selected as the output. The performance and effectiveness of several machine learning algorithms, including ensemble methods and artificial neural networks, are investigated. The importance of different input parameters is studied. The results reveal that well-prepared machine learning models are also capable of predicting damage levels with an adequate level of accuracy and minimal computational effort. In this study, the XGBoost method generally outperforms the other algorithms, with the highest accuracy and generalizability. Simplified prediction models are also developed for preliminary estimation using the selected input parameters for practical usage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 5158 KB  
Article
Seismic Demand Prediction in Laminated Bamboo Frame Structures: A Comparative Study of Intensity Measures for Performance-Based Design
by Yantai Zhang, Jingpu Zhang, Yujie Gu, Jinglong Zhang and Kaiqi Zheng
Buildings 2025, 15(12), 2039; https://doi.org/10.3390/buildings15122039 - 13 Jun 2025
Viewed by 740
Abstract
Engineered laminated bamboo frame structures have seen notable advancements in China, driven by their potential in sustainable construction. However, accurately predicting their seismic performance remains a pivotal challenge. Structural and non-structural damage caused by earthquakes can severely compromise building operability, lead to substantial [...] Read more.
Engineered laminated bamboo frame structures have seen notable advancements in China, driven by their potential in sustainable construction. However, accurately predicting their seismic performance remains a pivotal challenge. Structural and non-structural damage caused by earthquakes can severely compromise building operability, lead to substantial economic losses, and disrupt safe evacuation processes, collectively exacerbating disaster impacts. To address this, three laminated bamboo frame models (3-, 4-, and 5-story) were developed, integrating energy-dissipating T-shaped steel plate beam–column connections. Two engineering demand parameters—peak inter-story drift ratio (PIDR) and peak floor acceleration (PFA)—were selected to quantify seismic responses under near-field and far-field ground motions. The study systematically evaluates suitable intensity measures for these parameters, emphasizing efficiency and sufficiency criteria. Regarding efficiency, the applicable intensity measures for PFA differ from those for PIDR. The measures for PFA tend to focus more on acceleration amplitude-related measures such as peak ground accelerations (PGA), sustained maximum acceleration (SMA), effective design acceleration (EDA), and A95 (the acceleration at 95% Arias intensity), while the measures for PIDR are primarily based on spectral acceleration-related measures such as Sa(T1) (spectral acceleration at fundamental period), etc. Concerning sufficiency, significant differences exist in the applicable measures for PFA and PIDR, and they are greatly influenced by ground motion characteristics. Full article
Show Figures

Figure 1

18 pages, 19694 KB  
Article
Seismic Response Analysis of Multi-Floored Grain Warehouses with Composite Structures Under Varying Grain-Loading Conditions
by Zidan Li, Yonggang Ding, Jinquan Zhao, Chengzhou Guo, Zhenhua Xu, Guoqi Ren, Qikeng Xu, Qingjun Xian and Rongyu Yang
Appl. Sci. 2025, 15(11), 5970; https://doi.org/10.3390/app15115970 - 26 May 2025
Viewed by 418
Abstract
Multi-floored grain warehouses are widely used in China due to their efficient space utilization and high storage capacity. This study evaluates the seismic performance of such structures using a Composite Structure of Steel and Concrete (CSSC) system under various grain-loading conditions. A finite [...] Read more.
Multi-floored grain warehouses are widely used in China due to their efficient space utilization and high storage capacity. This study evaluates the seismic performance of such structures using a Composite Structure of Steel and Concrete (CSSC) system under various grain-loading conditions. A finite element model was developed in OpenSees based on actual loading scenarios, with both pushover and time history analyses conducted. Results show that the EEF condition (E = Empty, F = Full; top–middle–bottom = Empty–Empty–Full) leads to a 35.14% increase in peak base shear compared to the FEE condition (grain on the top floor only). Capacity spectrum analysis indicates that EEF provides higher initial stiffness and lower displacement across all performance points. Time history results reveal that configurations with lighter upper mass (EFF, EEE) are more prone to top-floor acceleration amplification, while FFF and FFE demonstrate more stable responses due to balanced mass distribution. The maximum inter-story drift consistently occurs at the second floor, with FFF and FFE showing the most significant deformation. All drift ratios meet code limits, confirming the safety and applicability of the CSSC system under various storage scenarios. Full article
Show Figures

Figure 1

20 pages, 5087 KB  
Article
Modified Energy-Based Design Method of the Precast Partially Steel-Reinforced Concrete Beam–CFST Column Eccentrically Braced Frame
by Fugui Hou, Weiguang Chong, Yu Lin, Xijun He and Guanglei Zhang
Buildings 2025, 15(11), 1797; https://doi.org/10.3390/buildings15111797 - 24 May 2025
Viewed by 583
Abstract
The eccentrically braced frame (EBF) is a typical structural system used in high-rise buildings. Current related design methods focus on the concrete and steel structures rather than on the complex composite structure. In addition, they tend to overlook the contribution of the energy-dissipation [...] Read more.
The eccentrically braced frame (EBF) is a typical structural system used in high-rise buildings. Current related design methods focus on the concrete and steel structures rather than on the complex composite structure. In addition, they tend to overlook the contribution of the energy-dissipation unit and its corresponding additional influence on the structure. In this study, a precast composite EBF structure is selected as a case study, including the partially steel-reinforced concrete (PSRC) beam and the concrete-filled steel tubular (CFST) column. A modified energy-based design method is proposed to leverage the excellent seismic performance of the precast composite EBF structure. The multi-stage energy-dissipation mechanism and the additional influence of the eccentric braces are systematically considered through the energy distribution coefficient and the layout of dampers. A case study of a 12-floor, three-bay precast composite EBF structure is conducted using a series of nonlinear time-history analyses. Critical seismic responses, including the maximum inter-story drift ratio, residual inter-story drift ratio, and peak acceleration, are systematically analyzed to evaluate the effectiveness of the proposed design theory. The distribution coefficient is recommended to range from 0.70 to 0.80 to balance the energy-dissipation contribution between the frame and the eccentric braces. In terms of the damper layout, the energy-dissipation contribution of the eccentric brace should differ among the lower, middle, and upper floors. Full article
(This article belongs to the Special Issue Advances in Novel Precast Concrete Structures)
Show Figures

Figure 1

15 pages, 5400 KB  
Article
Rapid Damage Assessment and Bayesian-Based Debris Prediction for Building Clusters Against Earthquakes
by Xiaowei Zheng, Yaozu Hou, Jie Cheng, Shuai Xu and Wenming Wang
Buildings 2025, 15(9), 1481; https://doi.org/10.3390/buildings15091481 - 27 Apr 2025
Cited by 3 | Viewed by 626
Abstract
In the whole service life of building clusters, they will encounter multiple hazards, including the disaster chain of earthquakes and building debris. The falling debris may block the post-earthquake roads and even severely affect the evacuation, emergency, and recovery operations. It is of [...] Read more.
In the whole service life of building clusters, they will encounter multiple hazards, including the disaster chain of earthquakes and building debris. The falling debris may block the post-earthquake roads and even severely affect the evacuation, emergency, and recovery operations. It is of great significance to develop a surrogate model for predicting seismic responses of building clusters as well as a prediction model of post-earthquake debris. This paper presents a general methodology for developing a surrogate model for rapid seismic responses calculation of building clusters and probabilistic prediction model of debris width. Firstly, the building cluster is divided into several types of representative buildings according to the building function. Secondly, the finite element (FE) method and discrete element (DE) method are, respectively, used to generate the data pool of structural floor responses and debris width. Finally, with the structural response data of maximum floor displacement, a surrogate model for rapidly calculating seismic responses of structures is developed based on the XGBoost algorithm, achieving R2 > 0.99 for floor displacements and R2 = 0.989 for maximum inter-story drift ratio (MIDR) predictions. In addition, an unbiased probabilistic prediction model for debris width of blockage is established with Bayesian updating rule, reducing the standard deviation of model error by 60% (from σ = 10.2 to σ = 4.1). The presented models are applied to evaluate the seismic damage of the campus building complex in China University of Mining and Technology, and then to estimate the range of post-earthquake falling debris. The results indicate that the surrogate model reduces computational time by over 90% compared to traditional nonlinear time-history analysis. The application in this paper is helpful for the development of disaster prevention and mitigation policies as well as the post-earthquake rescue and evacuation strategies for urban building complexes. Full article
Show Figures

Figure 1

43 pages, 31984 KB  
Article
Advanced Seismic Analysis of a 44-Story Reinforced Concrete Building: A Comparison of Code-Based and Performance Based Design Approaches
by Mistreselasie Abate, Ana Catarina Jorge Evangelista and Vivian W. Y. Tam
Infrastructures 2025, 10(4), 93; https://doi.org/10.3390/infrastructures10040093 - 9 Apr 2025
Viewed by 2914
Abstract
Conventional seismic design regulations, even when rigorously adapted to local conditions, often fail to ensure the resilience of reinforced concrete buildings. Code-based prescriptive methods rely on simplified assumptions that do not fully capture the complex nonlinear behavior of structures during strong earthquakes, potentially [...] Read more.
Conventional seismic design regulations, even when rigorously adapted to local conditions, often fail to ensure the resilience of reinforced concrete buildings. Code-based prescriptive methods rely on simplified assumptions that do not fully capture the complex nonlinear behavior of structures during strong earthquakes, potentially underestimating seismic demands and structural vulnerabilities. This study evaluates the seismic performance of a 44-story reinforced concrete building designed per the EN-2015 code, currently adopted in Ethiopia. The building was analyzed using Response Spectrum Analysis (RSA), Linear Dynamic Time History Analysis (LDTHA), and Classical Modal Analysis in ETABS v19, with 11 ground motions from the PEER database. Ground motion scaling was performed using SeismoMatch and ETABS. Results indicate that LDTHA predicts 25.68% higher maximum story displacement, 26.49% greater inter-story drift ratios, 15.35% higher story shear, and 27.5% greater overturning moments compared to RSA. The fundamental time period for the first mode was found to be 3.956 s in Classical Modal Analysis, 3.806 s in RSA, and 3.883 s in LDTHA. These discrepancies highlight the limitations of code-based design and underscore the necessity of performance-based seismic design for achieving safer, more resilient structures in high-seismic regions. Full article
Show Figures

Figure 1

21 pages, 5390 KB  
Article
Seismic Vulnerability Evaluation of Metro Station Complex Structures in TOD Mode Based on IDA Method
by Wenbo Li, Jiawang Jin, Jiakun Hu, Fuqiang Feng and Junhai An
Buildings 2025, 15(5), 699; https://doi.org/10.3390/buildings15050699 - 23 Feb 2025
Cited by 1 | Viewed by 747
Abstract
In order to further study the dynamic response and damage status of the subway station structure and promote the development of the TOD (transit-oriented development) mode structure system, this paper proposes a calibration method for the seismic performance index limit of the subway [...] Read more.
In order to further study the dynamic response and damage status of the subway station structure and promote the development of the TOD (transit-oriented development) mode structure system, this paper proposes a calibration method for the seismic performance index limit of the subway station complex structure in TOD mode. Taking a practical project in the Beijing city sub-center station integrated transport hub as the research background, the nonlinear analysis model of soil–structure interaction under different site types is established. Firstly, the limit value of the interstory drift ratio is determined by the pushover loading method of the inverted triangular distributed load for the three-dimensional numerical model. Secondly, different types of seismic waves are selected to analyze the seismic vulnerability of the simplified two-dimensional numerical model, and the exceedance probability of different damage states of the structure is quantitatively analyzed. By analyzing the pushover curve, the maximum interstory drift ratio limits corresponding to the five damage states of the subway station complex structure are 0.14%, 0.32%, 0.66%, and 1.12%, respectively. Under different site types and different types of seismic waves, the seismic response law of subway station structures in TOD mode is different. Using different types of ground motion as the input, the mean and discreteness of different IDA curve clusters are quite different. The near-field pulse-type ground motion has a greater impact on the ground motion of the structural system under the Class II site, and the far-field long-period ground motion has a greater impact on the structure under the Class III site. Damage decreases with the increase in the equivalent shear wave velocity of the site, that is, the harder the site’s soil is, the less susceptible the structural system is to damage by underground motion. The established seismic vulnerability curve and seismic damage probability table can effectively evaluate the seismic performance of subway station complex structure in TOD mode. The research results can provide a valuable reference for the seismic performance evaluation of similar underground structures. Full article
Show Figures

Figure 1

15 pages, 4567 KB  
Article
Collapse Fragility Analysis of RC Frame Structures Considering Capacity Uncertainty
by Tailin Zeng and Yang Li
Buildings 2025, 15(5), 694; https://doi.org/10.3390/buildings15050694 - 23 Feb 2025
Cited by 1 | Viewed by 1810
Abstract
To analyze the impact of capacity uncertainty on the seismic collapse fragility of reinforced concrete (RC) frame structures, a fragility analysis framework based on seismic reliability methods is proposed. First, incremental dynamic analysis (IDA) curves are plotted by IDA under a group of [...] Read more.
To analyze the impact of capacity uncertainty on the seismic collapse fragility of reinforced concrete (RC) frame structures, a fragility analysis framework based on seismic reliability methods is proposed. First, incremental dynamic analysis (IDA) curves are plotted by IDA under a group of natural seismic waves. Subsequently, collapse points are identified based on recommendations from relevant standards, yielding the probability distribution of the maximum inter-story drift ratios (MIDRs) at collapse points. Then, the distribution of the MIDRs under various intensity measures (IMs) of artificial seismic waves is calculated by using the fractional exponential moments-based maximum entropy method (FEM-MEM). Next, the structural failure probability is determined based on the combined performance index (CPI), and a seismic collapse fragility curve is plotted using the four-parameter shifted generalized lognormal distribution (SGLD) model. The results indicate that the collapse probability is lower considering the capacity uncertainty. Compared to deterministic MIDR limits of 1/25 and 1/50, the median values of the structure’s collapse resistance increased by 13.2% and 87.3%, respectively. Additionally, the failure probability obtained by considering the capacity uncertainty is lower than the results based on deterministic limits alone. These findings highlight the importance of considering capacity uncertainty in seismic risk assessments of RC frame structures. Full article
Show Figures

Figure 1

21 pages, 5678 KB  
Article
Practical Repair Cost Assessment of Steel Office Buildings with Diverse Beam-to-Column Connection Types in Japan
by Kazuki Takaya, Jialiang Jin and Takuya Nagae
Buildings 2024, 14(12), 3913; https://doi.org/10.3390/buildings14123913 - 6 Dec 2024
Viewed by 1088
Abstract
This study investigates the seismic performance of beam-to-column connections in Japanese steel office buildings and evaluates their impact on repair costs as part of practical seismic loss assessment. Repair cost analysis is conducted following FEMA P-58 guidelines, utilizing a probabilistic seismic performance approach. [...] Read more.
This study investigates the seismic performance of beam-to-column connections in Japanese steel office buildings and evaluates their impact on repair costs as part of practical seismic loss assessment. Repair cost analysis is conducted following FEMA P-58 guidelines, utilizing a probabilistic seismic performance approach. Additionally, this study incorporates the damage and loss of non-structural components, accounting for uncertainties arising from various factors. By applying story loss functions and the Capacity Spectrum Method within the assessment framework of this study, the applicability of these methods in Japanese design practices is validated. A numerical model of a typical steel building is established based on prior experimental data, and a series of numerical analyses are conducted to quantitatively assess variations in building response distribution and fragility resulting from different beam-to-column connection types. Analysis results indicate that, within the range up to maximum strength, differences in connection performance contribute more to variations in fragility than to building response. Component fragility is particularly influenced by connection type and dimensions that affect inter-story drift ratios. This approach highlights the potential cost differences driven by structural specifications and emphasizes the importance of connection-specific fragility in accurately estimating seismic repair costs in practical design. Furthermore, improvements in structural performance have limited effects in reducing non-structural damage, underscoring the necessity of directly enhancing non-structural component performance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 6378 KB  
Article
Seismic Response of Prestressed Self-Centering Moment-Resisting Frames
by Xueyuan Yan, Shen Shi, Huimin Mao and Zhongnan Lin
Buildings 2024, 14(12), 3811; https://doi.org/10.3390/buildings14123811 - 28 Nov 2024
Viewed by 993
Abstract
This paper aims to examine the seismic response of prestressed self-centering moment-resisting frames (PSC-MRFs) based on concrete-filled double steel tubular (CFDST) columns and RC beams. The beam of this novel connection is divided into two parts, connected by bolts and tendons, and the [...] Read more.
This paper aims to examine the seismic response of prestressed self-centering moment-resisting frames (PSC-MRFs) based on concrete-filled double steel tubular (CFDST) columns and RC beams. The beam of this novel connection is divided into two parts, connected by bolts and tendons, and the beam includes a gap opening feature, which could be regarded as a normal single beam in the field. Cyclic loading analysis was performed on one-story frames with different initial parameters arranged in adjacent bays. Nonlinear dynamic analysis was conducted on a six-story frame under two seismic hazard levels. The cyclic loading analysis showed favorable self-centering performance of the frame even when the hysteretic energy dissipation ratio reached 0.808. Seismic analysis results showed that compared with the in situ reinforced concrete frame, PSC-MRFs generally had similar maximum inter-story drifts under fortification earthquakes, but the residual inter-story drifts were reduced by 33%; under rare earthquakes, the maximum inter-story drifts and residual inter-story drifts of PSC-MRFs were reduced by 22% and more than 90%, respectively. In the adjacent bays on the same story of PSC-MRFs, connections with smaller imminent moments of gap opening opened earlier under earthquake, and the maximum opening angle was larger. The general seismic performance and self-centering of PSC-MRFs was significantly more advantageous than that of in situ reinforced concrete frames. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

21 pages, 4943 KB  
Article
Three-Dimensional Numerical Analysis of Seismic Response of Steel Frame–Core Wall Structure with Basement Considering Soil–Structure Interaction Effects
by Fujian Yang, Haonan Zhao, Tianchang Ma, Yi Bao, Kai Cao and Xiaoshuang Li
Buildings 2024, 14(11), 3522; https://doi.org/10.3390/buildings14113522 - 4 Nov 2024
Cited by 2 | Viewed by 1823
Abstract
In recent years, numerous studies highlighted the crucial role of the soil–structure interaction (SSI) in the seismic performance of basement structures. However, there remains a limited understanding of how this interaction affects buildings with basement structures under varying site conditions. Based on the [...] Read more.
In recent years, numerous studies highlighted the crucial role of the soil–structure interaction (SSI) in the seismic performance of basement structures. However, there remains a limited understanding of how this interaction affects buildings with basement structures under varying site conditions. Based on the three-dimensional (3D) numerical analysis method, the influence of the SSI on the seismic response of high-rise steel frame–core wall (SFCW) structures situated on shallow-box foundations were investigated in this study. To further investigate the effects of the SSI and site conditions, three types of soil profiles—soft, medium, and hard—were considered, along with a fixed-foundation model. The results were compared in terms of the maximum lateral displacement, inter-story drift ratio (IDR), acceleration amplification coefficient, and tensile damage for the SFCW structure under different site conditions, with both fixed-base and shallow-box foundation configurations. The findings highlight that the site conditions significantly affected the seismic performance of the SFCW structure, particularly in the soft soil, which increased the lateral deflection and inter-story drift. Moreover, compared with non-pulse-like ground motion, pulse-like ground motion resulted in a higher acceleration amplification coefficient and greater structural response in the SFCW structure. The RC core wall–basement slab junction was a critical region of stress concentration that exhibited a high sensitivity to the site conditions. Additionally, the maximum IDRs showed a more significant variation at incidence angles between 20 and 30 degrees, with a more pronounced effect at a seismic input intensity of 0.3 g than at 0.2 g. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

20 pages, 5530 KB  
Article
Influence of Ground Motion Non-Gaussianity on Seismic Performance of Buildings
by Xingliang Ma and Zhen Liu
Buildings 2024, 14(8), 2364; https://doi.org/10.3390/buildings14082364 - 31 Jul 2024
Cited by 3 | Viewed by 1155
Abstract
The non-Gaussian feature of seismic ground motion has been reported in some works. However, there remains a lack of research on the influence of the ground motion non-Gaussianity on the seismic performance of buildings, which motivates this study. By employing a non-Gaussian non-stationary [...] Read more.
The non-Gaussian feature of seismic ground motion has been reported in some works. However, there remains a lack of research on the influence of the ground motion non-Gaussianity on the seismic performance of buildings, which motivates this study. By employing a non-Gaussian non-stationary random process simulation method previously proposed by the authors, 40,000 ground motion acceleration signals are efficiently generated, including 20,000 Gaussian and 20,000 non-Gaussian records. As computational examples, a four-story frame building and a three-tower super-tall building are selected. The generated acceleration signals serve as external excitations for the two buildings, allowing for a comparison of the differences in seismic structural responses caused by the Gaussian and non-Gaussian earthquake groups. Probability analysis is performed using top-layer displacement and maximum inter-story drift ratio as damage indicators. The results show that the structural responses induced by both Gaussian and non-Gaussian earthquake groups have identical first- and second-order moments but different higher-order moments. The responses from non-Gaussian earthquakes display distinct non-Gaussian traits, with their distribution of extreme values exhibiting a longer tail compared to the Gaussian counterparts. This leads to a notably larger value of non-Gaussian responses under high crossing probabilities, with an amplification that can surpass 18%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop