Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,712)

Search Parameters:
Keywords = mass fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2909 KiB  
Article
Novel Fractional Approach to Concrete Creep Modeling for Bridge Engineering Applications
by Krzysztof Nowak, Artur Zbiciak, Piotr Woyciechowski, Damian Cichocki and Radosław Oleszek
Materials 2025, 18(15), 3720; https://doi.org/10.3390/ma18153720 (registering DOI) - 7 Aug 2025
Abstract
The article presents research on concrete creep in bridge structures, focusing on the influence of concrete mix composition and the use of advanced rheological models with fractional-order derivatives. Laboratory tests were performed on nine mixes varying in blast furnace slag content (0%, 25%, [...] Read more.
The article presents research on concrete creep in bridge structures, focusing on the influence of concrete mix composition and the use of advanced rheological models with fractional-order derivatives. Laboratory tests were performed on nine mixes varying in blast furnace slag content (0%, 25%, and 75% of cement mass) and air-entrainment. The results were used to calibrate fractal rheological models—Kelvin–Voigt and Huet–Sayegh—where the viscous element was replaced with a fractal element. These models showed high agreement with experimental data and improved the accuracy of creep prediction. Comparison with Eurocode 2 revealed discrepancies up to 64%, especially for slag-free concretes used in prestressed bridge structures. The findings highlight the important role of mineral additives in reducing creep strains and the need to consider individual mix characteristics in design calculations. In the context of modern bridge construction technologies, such as balanced cantilever or incremental launching, reliable modeling of early-age creep is particularly important. The proposed modeling approach may enhance the precision of long-term structural behavior analyses and contribute to improved safety and durability of concrete infrastructure. Full article
Show Figures

Graphical abstract

18 pages, 2583 KiB  
Article
B-Cell Lymphomas Secrete Novel Inhibitory Molecules That Disrupt HLA Class II-Mediated CD4+ T-Cell Recognition
by Jason M. God, Shereen Amria, Christine A. Cameron, Lixia Zhang, Jennifer R. Bethard and Azizul Haque
Cells 2025, 14(15), 1220; https://doi.org/10.3390/cells14151220 - 7 Aug 2025
Abstract
B-cell lymphomas, including Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and follicular lymphoma (FL), evade CD4+ T-cell immunity through novel HLA class II-associated immunosuppressive mechanisms. Despite expressing surface HLA-DR, these tumors fail to activate antigen-specific CD4+ T cells, independent of co-stimulation or [...] Read more.
B-cell lymphomas, including Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and follicular lymphoma (FL), evade CD4+ T-cell immunity through novel HLA class II-associated immunosuppressive mechanisms. Despite expressing surface HLA-DR, these tumors fail to activate antigen-specific CD4+ T cells, independent of co-stimulation or PD-L1 checkpoint inhibition. We identified lymphoma-secreted factors that broadly disrupt HLA class II-mediated antigen presentation in both malignant B cells and dendritic cells (DCs), silencing T-cell responses. This inhibition is allele-independent (affecting DR1, DR4, DR7) but spares HLA class I-mediated CD8+ T-cell recognition, indicating a targeted immune evasion strategy. Biochemical and mass spectrometry (MALDI-MS) analyses revealed unique low-molecular-weight peptides (693–790 Da) in BL cells, absent in normal B cells, which may mediate this suppression. Functional fractionation confirmed bioactive inhibitory fractions in lymphoma lysates, further implicating tumor-intrinsic molecules in immune escape. These findings highlight a previously unrecognized axis of B-cell lymphoma immune evasion, where secreted factors disable HLA class II function across antigen-presenting cells. Therapeutically, neutralizing these immunosuppressive molecules could restore CD4+ T-cell surveillance and enhance immunotherapies in B-cell malignancies. This work underscores the importance of HLA class II dysfunction in lymphoma progression and identifies candidate targets for reversing immune suppression. Full article
(This article belongs to the Special Issue Cellular Pathology: Emerging Discoveries and Perspectives in the USA)
Show Figures

Figure 1

11 pages, 256 KiB  
Article
The Impact of Diabetes on Exercise Tolerance in Patients After Cardiovascular Events
by Beata Czechowska, Jacek Chrzczanowicz, Rafał Gawor, Aleksandra Zarzycka, Tomasz Kostka and Joanna Kostka
J. Clin. Med. 2025, 14(15), 5561; https://doi.org/10.3390/jcm14155561 - 7 Aug 2025
Abstract
Background: Diabetes mellitus (DM) is a significant factor affecting prognosis and functional capacity in patients after cardiovascular events. This study aimed to assess the impact of coexisting diabetes on exercise tolerance and hemodynamic parameters in patients qualified for cardiac rehabilitation. Methods: [...] Read more.
Background: Diabetes mellitus (DM) is a significant factor affecting prognosis and functional capacity in patients after cardiovascular events. This study aimed to assess the impact of coexisting diabetes on exercise tolerance and hemodynamic parameters in patients qualified for cardiac rehabilitation. Methods: A total of 452 patients (86 women, 366 men; mean age 63.21 ± 7.16 years) who had experienced cardiovascular incidents, including 226 individuals with coexisting DM (DM group) and 226 age- (±1 year) and sex-matched individuals without DM (non-DM group), were included in the analysis. All participants underwent an exercise test using a bicycle ergometer. Clinical data, comorbidities, medication use, left ventricular ejection fraction, and exercise test parameters were evaluated. Results: Patients with DM displayed a higher number of comorbidities (4.29 ± 1.26 vs. 3.19 ± 1.30; p < 0.001), greater medication use (8.71 ± 2.16 vs. 7.83 ± 2.05; p < 0.001), higher body mass (86.93 ± 13.35 kg vs. 80.92 ± 15.25 kg; p < 0.001), and a lower left ventricular ejection fraction (48.78 ± 8.99% vs. 50.01 ± 8.40%; p = 0.002) compared to those in the non-DM group. Diabetic patients also exhibited lower exercise capacity, expressed as peak power per kilogram of body mass (1.05 ± 0.27 W/kg vs. 1.16 ± 0.31 W/kg; p < 0.001). No significant differences were observed regarding absolute peak power or maximum heart rate. Conclusions: In patients after cardiovascular incidents, the presence of diabetes is associated with reduced relative exercise capacity and lower ejection fraction. Full article
(This article belongs to the Section Cardiovascular Medicine)
22 pages, 6168 KiB  
Article
Valorization of Sugarcane Bagasse in Thailand: An Economic Analysis of Ethanol and Co-Product Recovery via Organosolv Fractionation
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Nathiya Kreetachat, Santi Chuetor, Surachai Wongcharee, Kowit Suwannahong, Methawee Nukunudompanich and Torpong Kreetachat
Sustainability 2025, 17(15), 7145; https://doi.org/10.3390/su17157145 - 7 Aug 2025
Abstract
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the [...] Read more.
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the derivation of detailed mass and energy balances, which served as the foundational input for downstream cost modeling. Economic performance metrics, including the total annualized cost and minimum ethanol selling price, were systematically quantified for each scenario. Among the evaluated configurations, the formic acid-catalyzed organosolv system exhibited superior techno-economic attributes, achieving the lowest unit production costs of 1.14 USD/L for ethanol and 1.84 USD/kg for lignin, corresponding to an estimated ethanol selling price of approximately 1.14 USD/L. This favorable outcome was attained with only moderate capital intensity, indicating a well-balanced trade-off between operational efficiency and investment burden. Conversely, the sodium methoxide-based process configuration imposed the highest economic burden, with a TAC of 15.27 million USD/year, culminating in a markedly elevated MESP of 5.49 USD/kg (approximately 4.33 USD/L). The sulfuric acid-driven system demonstrated effective delignification performance. Sensitivity analysis revealed that reagent procurement costs exert the greatest impact on TAC variation, highlighting chemical expenditure as the key economic driver. These findings emphasize the critical role of solvent choice, catalytic performance, and process integration in improving the cost-efficiency of lignocellulosic ethanol production. Among the examined options, the formic acid-based organosolv process stands out as the most economically viable for large-scale implementation within Thailand’s bioeconomy. Full article
Show Figures

Figure 1

15 pages, 2487 KiB  
Article
Feasibility of Sodium and Amide Proton Transfer-Weighted Magnetic Resonance Imaging Methods in Mild Steatotic Liver Disease
by Diana M. Lindquist, Mary Kate Manhard, Joel Levoy and Jonathan R. Dillman
Tomography 2025, 11(8), 89; https://doi.org/10.3390/tomography11080089 - 6 Aug 2025
Abstract
Background/Objectives: Fat and inflammation confound current magnetic resonance imaging (MRI) methods for assessing fibrosis in liver disease. Sodium or amide proton transfer-weighted MRI methods may be more specific for assessing liver fibrosis. The purpose of this study was to determine the feasibility [...] Read more.
Background/Objectives: Fat and inflammation confound current magnetic resonance imaging (MRI) methods for assessing fibrosis in liver disease. Sodium or amide proton transfer-weighted MRI methods may be more specific for assessing liver fibrosis. The purpose of this study was to determine the feasibility of sodium and amide proton transfer-weighted MRI in individuals with liver disease and to determine if either method correlated with clinical markers of fibrosis. Methods: T1 and T2 relaxation maps, proton density fat fraction maps, liver shear stiffness maps, amide proton transfer-weighted (APTw) images, and sodium images were acquired at 3T. Image data were extracted from regions of interest placed in the liver. ANOVA tests were run with disease status, age, and body mass index as independent factors; significance was set to p < 0.05. Post-hoc t-tests were run when the ANOVA showed significance. Results: A total of 36 participants were enrolled, 34 of whom were included in the final APTw analysis and 24 in the sodium analysis. Estimated liver tissue sodium concentration differentiated participants with liver disease from those without, whereas amide proton transfer-weighted MRI did not. Estimated liver tissue sodium concentration negatively correlated with the Fibrosis-4 score, but amide proton transfer-weighted MRI did not correlate with any clinical marker of disease. Conclusions: Amide proton-weighted imaging was not different between groups. Estimated liver tissue sodium concentrations did differ between groups but did not provide additional information over conventional methods. Full article
(This article belongs to the Section Abdominal Imaging)
Show Figures

Figure 1

18 pages, 4635 KiB  
Article
Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma
by Fatema Hashemi, Silvia Cachaco, Rocio Prisby, Weidong Zhou, Gregory Petruncio, Elsa Ronzier, Remi Veneziano, Barbara Birkaya, Alessandra Luchini and Luisa Gregori
Pathogens 2025, 14(8), 778; https://doi.org/10.3390/pathogens14080778 - 6 Aug 2025
Abstract
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate [...] Read more.
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate buffer solution (PBS) and human plasma (1 mL each) with 10 or 100 colony forming units (cfu) of either Escherichia coli or Staphylococcus epidermidis, exposed the suspensions to affinity networks and assessed the extent of bacterial reduction using agar plate cultures as the assay output. Nineteen synthetic dyes were tested. Among these, Alcian Blue exhibited the best performance with both bacterial strains in both PBS and plasma. Next, bacterial suspensions of approximately 1 and 2 cfu/mL in 10 and 50 mL, respectively, were treated with Alcian Blue affinity networks in three sequential capture steps. This procedure resulted in complete bacterial depletion, as demonstrated by the lack of bacterial growth in the remaining fraction. The viability of the captured bacteria was confirmed by plating the post-treatment affinity networks on agar. Alcian Blue affinity networks captured and sequestered a few plasma proteins identified by liquid chromatography tandem mass spectrometry. These findings support the potential applicability of nylon affinity networks to enhance transfusion safety, although additional investigations are needed. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

23 pages, 7234 KiB  
Article
Cold Exposure Exacerbates Cardiac Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction in Male and Female C57Bl/6J Mice
by Sara-Ève Thibodeau, Marie-Lune Legros, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Sarra Beji, Marie Arsenault, Alexandre Caron and Jacques Couet
Biomedicines 2025, 13(8), 1900; https://doi.org/10.3390/biomedicines13081900 - 4 Aug 2025
Viewed by 147
Abstract
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with [...] Read more.
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with preserved ejection fraction (HFpEF) (Angiotensin II + High-fat diet for 28 days; MHS), we investigated how housing temperature modulates cardiac remodelling and function in male and female C57Bl/6J mice. Methods: Using the MHS mouse model, we investigated cardiac remodelling and function in 8-week-old C57BL/6J mice of both sexes housed at 10 °C, 22 °C, and 30 °C for four weeks. Control mice were analyzed in parallel. Before the MHS, the animals were allowed to acclimate for a week before the MHS started. Results: Mice housed at 10 °C consumed more food and had increased fat mass compared to those at 22 °C or 30 °C. This was accompanied by increased heart weight, stroke volume, heart rate, and cardiac output. Mice housed at 22 °C and 30 °C were similar for these cardiac parameters. Following MHS, mice at 10 °C and 22 °C developed marked cardiac hypertrophy, whereas thermoneutral housing attenuated this response and reduced left atrial enlargement. Cold-exposed females showed more diastolic dysfunction after MHS (increased E’ wave, E/E’, and isovolumetric relaxation time) than those at 22 °C or 30 °C. Ejection fraction and cardiac output declined significantly at 10 °C after MHS but were preserved at 22 °C and 30 °C in females. Conclusions: Cold housing exacerbates cardiac dysfunction in mice subjected to HFpEF-inducing stress, with pronounced effects in females. In contrast, thermoneutrality limits the cardiac hypertrophic response. Full article
Show Figures

Figure 1

22 pages, 6611 KiB  
Article
Study on Flow and Heat Transfer Characteristics of Reheating Furnaces Under Oxygen-Enriched Conditions
by Maolong Zhao, Xuanxuan Li and Xianzhong Hu
Processes 2025, 13(8), 2454; https://doi.org/10.3390/pr13082454 - 3 Aug 2025
Viewed by 196
Abstract
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow [...] Read more.
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow and heat transfer characteristics were investigated under both oxygen-enriched combustion and MILD oxy-fuel combustion. The results indicate that MILD oxy-fuel combustion promotes flue gas entrainment via high-velocity oxygen jets, leading to a substantial improvement in the uniformity of the furnace temperature field. The effect is most obvious at O2% = 31%. MILD oxy-fuel combustion significantly reduces NOx emissions, achieving levels that are one to two orders of magnitude lower than those under oxygen-enriched combustion. Under MILD conditions, the oxygen mass fraction in flue gas remains below 0.001 when O2% ≤ 81%, indicating effective dilution. In contrast, oxygen-enriched combustion leads to a sharp rise in flame temperature with an increasing oxygen concentration, resulting in a significant increase in NOx emissions. Elevating the oxygen concentration enhances both thermal efficiency and the energy-saving rate for both combustion modes; however, the rate of improvement diminishes when O2% exceeds 51%. Based on these findings, MILD oxy-fuel combustion using mixed gas or natural gas is recommended for reheating furnaces operating at O2% = 51–71%, while coke oven gas is not. Full article
Show Figures

Figure 1

16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 262
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 651 KiB  
Article
The Impact of Comorbidities on Pulmonary Function Measured by Spirometry in Patients After Percutaneous Cryoballoon Pulmonary Vein Isolation Due to Atrial Fibrillation
by Monika Różycka-Kosmalska, Marcin Kosmalski, Michał Panek, Alicja Majos, Izabela Szymczak-Pajor, Agnieszka Śliwińska, Jacek Kasznicki, Jerzy Krzysztof Wranicz and Krzysztof Kaczmarek
J. Clin. Med. 2025, 14(15), 5431; https://doi.org/10.3390/jcm14155431 - 1 Aug 2025
Viewed by 238
Abstract
Background/Objectives: Pulmonary vein isolation (PVI) via cryoballoon ablation (CBA) is a recommended therapeutic strategy for patients with symptomatic paroxysmal and persistent atrial fibrillation (AF) who are refractory to antiarrhythmic drugs. Although PVI has demonstrated efficacy in reducing AF recurrence and improving patients’ quality [...] Read more.
Background/Objectives: Pulmonary vein isolation (PVI) via cryoballoon ablation (CBA) is a recommended therapeutic strategy for patients with symptomatic paroxysmal and persistent atrial fibrillation (AF) who are refractory to antiarrhythmic drugs. Although PVI has demonstrated efficacy in reducing AF recurrence and improving patients’ quality of life, its impact on respiratory function is not well understood, particularly in patients with comorbid conditions. The aim of the study was to search for functional predictors of the respiratory system in the process of evaluating the efficiency of clinical assessment of CBA in patients with AF. Methods: We conducted a prospective study on 42 patients with symptomatic AF who underwent CBA, assessing their respiratory function through spirometry before and 30 days after the procedure. Exclusion criteria included pre-existing lung disease and cardiac insufficiency. The impact of variables such as body mass index (BMI), coronary artery disease (CAD) and heart failure (HF) on spirometry parameters was analyzed using statistical tests. Results: No significant changes were observed in overall post-PVI spirometry parameters for the full cohort. However, post hoc analyses revealed a significant decline in ΔMEF75 in patients with CAD and BMI ≥ 30 kg/m2, whereas ΔFEV1/FVCex was significantly increased in patients with HF, as well as in patients with ejection fraction (EF) < 50%. Conclusions: CBA for AF does not universally affect respiratory function in the short term, but specific subgroups, including patients with CAD and a higher BMI, may require post-procedure respiratory monitoring. In addition, PVI may improve lung function in patients with HF and reduced EF. Full article
(This article belongs to the Special Issue Clinical Aspects of Cardiac Arrhythmias and Arrhythmogenic Disorders)
Show Figures

Figure 1

19 pages, 1780 KiB  
Article
Steady Radial Diverging Flow of a Particle-Laden Fluid with Particle Migration
by C. Q. Ru
Fluids 2025, 10(8), 200; https://doi.org/10.3390/fluids10080200 - 1 Aug 2025
Viewed by 102
Abstract
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the [...] Read more.
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the fluid depends on their inlet velocity ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with respect to the fluid leads to particle migration and the non-uniform distribution of particles. An explicit expression is obtained for the steady particle distribution eventually attained due to particle migration. Our results demonstrated and confirmed that, for both light particles (gas bubbles) and heavy particles, depending on the particle-to-fluid mass density ratio, the volume fraction of particles attains its maximum or minimum value near the entrance of the radial flow and after then monotonically decreases or increases with the radial coordinate and converges to an asymptotic value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help quantify the steady particle distribution in the decelerating radial flow of a particle-fluid suspension. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

17 pages, 9519 KiB  
Article
Lead Recovery from Flue Dust by Using Ultrasonic-Enhanced Hydrogen Peroxide Water Washing
by Tian Wang, Yuxi Xie, Phan Duc Lenh, Thiquynhxuan Le and Libo Zhang
Recycling 2025, 10(4), 150; https://doi.org/10.3390/recycling10040150 - 1 Aug 2025
Viewed by 188
Abstract
An ultrasonic-enhanced hydrogen peroxide water-washing process was developed to recover lead from raw flue dust (RFD) under neutral conditions. At optimal parameters (40 °C, 30 min, 4 mL H2O2, liquid-to-solid ratio 2:1, 240 W ultrasound), the Pb mass fraction [...] Read more.
An ultrasonic-enhanced hydrogen peroxide water-washing process was developed to recover lead from raw flue dust (RFD) under neutral conditions. At optimal parameters (40 °C, 30 min, 4 mL H2O2, liquid-to-solid ratio 2:1, 240 W ultrasound), the Pb mass fraction in the solid residue increased from 41.68% in the RFD to 68.11%, accompanied by a Pb recovery rate of 97.1%. These values are significantly higher than those obtained under identical conditions without ultrasound (64.07% and 95.93%, respectively). Ultrasound promotes de-agglomeration and generates •OH radicals that accelerate the oxidation of PbSO3 to insoluble PbSO4 while concurrently removing impurity cadmium. This research offers a green and efficient alternative to traditional lead recovery methods, fostering sustainable development in the metallurgical industry. Full article
Show Figures

Figure 1

18 pages, 6409 KiB  
Article
MICP-Treated Coral Aggregate and Its Application in Marine Concrete
by Rui Xu, Baiyu Li, Xiaokang Liu, Ben Peng, Guanghua Lu, Changsheng Yue and Lei Zhang
Materials 2025, 18(15), 3619; https://doi.org/10.3390/ma18153619 - 1 Aug 2025
Viewed by 226
Abstract
In marine engineering applications, substituting conventional crushed stone coarse aggregates with coral aggregates offers dual advantages: reduced terrestrial quarrying operations and minimized construction material transportation costs. However, the inherent characteristics of coral aggregates—low bulk density, high porosity, and elevated water absorption capacity—adversely influence [...] Read more.
In marine engineering applications, substituting conventional crushed stone coarse aggregates with coral aggregates offers dual advantages: reduced terrestrial quarrying operations and minimized construction material transportation costs. However, the inherent characteristics of coral aggregates—low bulk density, high porosity, and elevated water absorption capacity—adversely influence concrete workability and mechanical performance. To address these limitations, this investigation employed microbial-induced carbonate precipitation (MICP) for aggregate modification. The experimental design systematically evaluated the impacts of substrate concentration (1 mol/L) and mineralization period (14 days) on three critical parameters, mass gain percentage, water absorption reduction, and apparent density enhancement, across distinct particle size fractions (4.75–9.5 mm, 9.5–20 mm) and density classifications. Subsequent application trials assessed the performance of MICP-treated aggregates in marine concrete formulations. Results indicated that under a substrate concentration of 1 mol/L and mineralization period of 14 days, lightweight coral aggregates and coral aggregates within the 4.75–9.5 mm size fraction exhibited favorable modification effects. Specifically, their mass gain rates reached 11.75% and 11.22%, respectively, while their water absorption rates decreased by 32.22% and 34.75%, respectively. Apparent density increased from initial values of 1764 kg/m3 and 1930 kg/m3 to 2050 kg/m3 and 2207 kg/m3. Concrete mixtures incorporating modified aggregates exhibited enhanced workability and strength improvement at all curing ages. The 28-day compressive strengths reached 62.1 MPa (11.69% increment), 46.2 MPa (6.94% increment), and 60.1 MPa (14.91% increment) for the 4.75–9.5 mm, 9.5–20 mm, and continuous grading groups, respectively, compared to untreated counterparts. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 365
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

14 pages, 863 KiB  
Article
The Effect of the Extraction Temperature on the Colligative, Hydrodynamic and Rheological Properties of Psyllium Husk Mucilage Raw Solutions
by Anna Ptaszek, Marta Liszka-Skoczylas and Urszula Goik
Molecules 2025, 30(15), 3219; https://doi.org/10.3390/molecules30153219 - 31 Jul 2025
Viewed by 185
Abstract
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following [...] Read more.
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following temperatures: 40 °C (AX40), 60 °C (AX60), 80 °C (AX80), and 100 °C (AX100). These were characterised in terms of their hydrodynamic, osmotic, and rheological properties, as well as the average molecular mass of the polysaccharide fractions. An increase in extraction temperature resulted in an increase in weight-average molecular mass, from 2190 kDa (AX40) to 3320 kDa (AX100). The values of the osmotic average molecular mass were higher than those obtained from GPC, and decreased with increasing extraction temperature. The dominance of biopolymer–biopolymer interactions was evident in the shape of the autocorrelation function, which did not disappear as the extraction temperature and concentration increased. Furthermore, the values of the second virial coefficient were negative, which is indicative of the tendency of biopolymer chains to aggregate. The rheological properties of the extracts changed from being described by a power-law model (AX40 and AX60) to being described by the full non-linear De Kee model (AX80 and AX100). Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

Back to TopTop