Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,173)

Search Parameters:
Keywords = marine-derived compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1467 KiB  
Review
Marine Derived Strategies Against Neurodegeneration
by Vasileios Toulis, Gemma Marfany and Serena Mirra
Mar. Drugs 2025, 23(8), 315; https://doi.org/10.3390/md23080315 - 31 Jul 2025
Viewed by 473
Abstract
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative [...] Read more.
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative disorders. We focus specifically on the retina and brain—two key components of the central nervous system—as primary targets for therapeutic interventions against neurodegeneration. Alzheimer’s disease and retinal degeneration diseases are used here as a representative model of neurodegenerative disorders, where complex molecular processes such as protein misfolding, oxidative stress, and neuroinflammation drive disease progression. We also examine gene therapy approaches inspired by marine biology, with particular attention to their application in retinal diseases, aimed at preserving or restoring photoreceptor function and vision. Full article
(This article belongs to the Special Issue Marine-Derived Novel Drugs in the Treatment of Alzheimer’s Disease)
Show Figures

Figure 1

41 pages, 2975 KiB  
Review
Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Review
by Ibraheem Borie M. Ibraheem, Reem Mohammed Alharbi, Neveen Abdel-Raouf, Nouf Mohammad Al-Enazi, Khawla Ibrahim Alsamhary and Hager Mohammed Ali
Pharmaceutics 2025, 17(8), 989; https://doi.org/10.3390/pharmaceutics17080989 (registering DOI) - 30 Jul 2025
Viewed by 267
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as a “superbug”, and its resistance mechanisms, including target modification, drug inactivation, efflux pumps, biofilm formation, and quorum sensing. The limitations of conventional antibiotics (e.g., β-lactams, vancomycin, macrolides) are discussed, alongside the promise of algal-derived compounds such as fatty acids, pigments, polysaccharides, terpenoids, and phenolic compounds. These metabolites exhibit potent anti-MRSA activity by disrupting cell division (via FtsZ inhibition), destabilizing membranes, and inhibiting protein synthesis and metabolic pathways, effectively countering multiple resistance mechanisms. Leveraging advances in algal biotechnology, this review highlights the untapped potential of marine algae to drive innovative, sustainable therapeutic strategies against antibiotic resistance. Full article
Show Figures

Figure 1

15 pages, 1527 KiB  
Article
Marine-Inspired Ovothiol Analogs Inhibit Membrane-Bound Gamma-Glutamyl-Transpeptidase and Modulate Reactive Oxygen Species and Glutathione Levels in Human Leukemic Cells
by Annalisa Zuccarotto, Maria Russo, Annamaria Di Giacomo, Alessandra Casale, Aleksandra Mitrić, Serena Leone, Gian Luigi Russo and Immacolata Castellano
Mar. Drugs 2025, 23(8), 308; https://doi.org/10.3390/md23080308 - 30 Jul 2025
Viewed by 232
Abstract
The enzyme γ-glutamyl transpeptidase (GGT), located on the surface of cellular membranes, hydrolyzes extracellular glutathione (GSH) to guarantee the recycling of cysteine and maintain intracellular redox homeostasis. High expression levels of GGT on tumor cells are associated with increased cell proliferation and resistance [...] Read more.
The enzyme γ-glutamyl transpeptidase (GGT), located on the surface of cellular membranes, hydrolyzes extracellular glutathione (GSH) to guarantee the recycling of cysteine and maintain intracellular redox homeostasis. High expression levels of GGT on tumor cells are associated with increased cell proliferation and resistance against chemotherapy. Therefore, GGT inhibitors have potential as adjuvants in treating GGT-positive tumors; however, most have been abandoned during clinical trials due to toxicity. Recent studies indicate marine-derived ovothiols as more potent non-competitive GGT inhibitors, inducing a mixed cell-death phenotype of apoptosis and autophagy in GGT-overexpressing cell lines, such as the chronic B leukemic cell HG-3, while displaying no toxicity towards non-proliferative cells. In this work, we characterize the activity of two synthetic ovothiol analogs, L-5-sulfanylhistidine and iso-ovothiol A, in GGT-positive cells, such as HG-3 and HL-60 cells derived from acute promyelocytic leukemia. The two compounds inhibit the activity of membrane-bound GGT, without altering cell vitality nor inducing cytotoxic autophagy in HG-3 cells. We provide evidence that a portion of L-5-sulfanylhistidine enters HG-3 cells and acts as a redox regulator, contributing to the increase in intracellular GSH. On the other hand, ovothiol A, which is mostly sequestered by external membrane-bound GGT, induces intracellular ROS increase and the consequent autophagic pathways. These findings provide the basis for developing ovothiol derivatives as adjuvants in treating GGT-positive tumors’ chemoresistance. Full article
(This article belongs to the Special Issue Marine-Derived Novel Antioxidants)
Show Figures

Graphical abstract

40 pages, 3124 KiB  
Review
Structural Diversity and Bioactivities of Marine Fungal Terpenoids (2020–2024)
by Minghua Jiang, Senhua Chen, Zhibin Zhang, Yiwen Xiao, Du Zhu and Lan Liu
Mar. Drugs 2025, 23(8), 300; https://doi.org/10.3390/md23080300 - 27 Jul 2025
Viewed by 444
Abstract
Marine-derived fungi have proven to be a rich source of structurally diverse terpenoids with significant pharmacological potential. This systematic review of 119 studies (2020–2024) identifies 512 novel terpenoids, accounting for 87% of the total discoveries to 2020, from five major classes (monoterpenes, sesquiterpenes, [...] Read more.
Marine-derived fungi have proven to be a rich source of structurally diverse terpenoids with significant pharmacological potential. This systematic review of 119 studies (2020–2024) identifies 512 novel terpenoids, accounting for 87% of the total discoveries to 2020, from five major classes (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, and triterpenes) isolated from 104 fungal strains across 33 genera. Sesquiterpenoids and diterpenoids constitute the predominant chemical classes, with Trichoderma, Aspergillus, Eutypella, and Penicillium being the most productive genera. These fungi were primarily sourced from distinct marine niches, including deep sea sediments, algal associations, mangrove ecosystems, and invertebrate symbioses. Notably, 57% of the 266 tested compounds exhibited diverse biological activities, encompassing anti-inflammatory, antibacterial, antimicroalgal, antifungal, cytotoxic effects, etc. The chemical diversity and biological activities of these marine fungal terpenoids underscore their value as promising lead compounds for pharmaceutical development. Full article
Show Figures

Figure 1

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 347
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

12 pages, 1671 KiB  
Article
Antimicrobial and Antibiofilm Activity of Marine Streptomyces sp. NBUD24-Derived Anthraquinones Against MRSA
by Yuxin Yang, Zhiyan Zhou, Guobao Huang, Shuhua Yang, Ruoyu Mao, Lijian Ding and Xiao Wang
Mar. Drugs 2025, 23(8), 298; https://doi.org/10.3390/md23080298 - 25 Jul 2025
Viewed by 339
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, with methicillin-resistant Staphylococcus aureus (MRSA) representing one of the most clinically significant multidrug-resistant pathogens. In this study, three structurally unique anthracycline derivatives—keto-ester (1), 4-deoxy-ε-pyrromycinone (2), and misamycin (3 [...] Read more.
Antimicrobial resistance (AMR) has emerged as a global health crisis, with methicillin-resistant Staphylococcus aureus (MRSA) representing one of the most clinically significant multidrug-resistant pathogens. In this study, three structurally unique anthracycline derivatives—keto-ester (1), 4-deoxy-ε-pyrromycinone (2), and misamycin (3)—were first isolated and characterized from the fermentation broth of the marine-derived Streptomyces tauricus NBUD24. These compounds exhibited notable antibacterial efficacy against MRSA, with minimum inhibitory concentrations (MICs) ranging from 16 to 32 µg/mL. Cytotoxicity assays confirmed their safety profile at therapeutic concentrations. The biofilm formation assay demonstrated that 4-deoxy-ε-pyrromycinone inhibited biofilm formation of MRSA ATCC43300, with an inhibition rate of 64.4%. Investigations of antibacterial mechanisms revealed that these compounds exert antibacterial effects primarily through disruption of bacterial cell wall integrity and destruction of DNA structure. These findings underscore the potential of marine-derived microbial metabolites as promising scaffolds for developing next-generation antimicrobial candidates to combat drug-resistant infections. Full article
Show Figures

Figure 1

22 pages, 11051 KiB  
Article
Exploring the Anti-Alzheimer’s Disease Potential of Aspergillus terreus C23-3 Through Genomic Insights, Metabolomic Analysis, and Molecular Docking
by Zeyuan Ma, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
J. Fungi 2025, 11(8), 546; https://doi.org/10.3390/jof11080546 - 23 Jul 2025
Viewed by 444
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a strain isolated from the coral Pavona cactus in Xuwen County, China, which showed a richer metabolite fingerprint among the three deposited A. terreus strains. AntiSMASH analysis based on complete genome sequencing predicted 68 biosynthetic gene clusters (BGCs) with 7 BGCs synthesizing compounds reported to have anti-AD potential, including benzodiazepines, benzaldehydes, butenolides, and lovastatin. Liquid chromatography coupled with mass spectrometry (LC-MS)-based combinational metabolomic annotation verified most of the compounds predicted by BGCs with the acetylcholinesterase (AChE) inhibitor territrem B characterized from its fermentation extract. Subsequently, molecular docking showed that these compounds, especially aspulvione B1, possessed strong interactions with AD-related targets including AChE, cyclin-dependent kinase 5-p25 complex (CDK5/p25), glycogen synthase kinase-3β (GSK-3β), and monoamine oxidase-B (MAO-B). In conclusion, the genomic–metabolomic analyses and molecular docking indicated that C23-3 is a high-value source strain for anti-AD natural compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

23 pages, 1012 KiB  
Review
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Gels 2025, 11(8), 569; https://doi.org/10.3390/gels11080569 - 23 Jul 2025
Viewed by 412
Abstract
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins [...] Read more.
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins that exhibit unique gelling, emulsifying, and stabilizing properties. This study focuses on microalgal species with demonstrated potential to produce viscoelastic, shear-thinning gels, making them suitable for applications in food stabilization, texture modification, and nutraceutical delivery. Recent advances in biotechnology and cultivation methods have improved access to high-value strains, which exhibit promising physicochemical properties for the development of novel food textures, structured formulations, and sustainable food packaging materials. Furthermore, these microalgae-derived gels offer additional health benefits, such as antioxidant and prebiotic activities, aligning with current trends toward functional foods containing prebiotic materials. Key challenges in large-scale production, including low EPS productivity, high processing costs, and lack of regulatory frameworks, are critically discussed. Despite these barriers, advances in cultivation technologies and biorefinery approaches offer new avenues for commercial application. Overall, microalgal gels hold significant promise as sustainable, multifunctional ingredients for clean-label food formulations. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Graphical abstract

20 pages, 2014 KiB  
Article
Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2
by Jorge R. Virués-Segovia, Salvador Muñoz-Mira, Nuria Cabrera-Gómez, Marta Pacheco, María Gómez-Marín, Javier Moraga, Rosa Durán-Patrón and Josefina Aleu
J. Mar. Sci. Eng. 2025, 13(8), 1386; https://doi.org/10.3390/jmse13081386 - 22 Jul 2025
Viewed by 293
Abstract
Indane and phenylpropyl derivatives are interesting precursors for the synthesis of bioactive compounds, including those with antifungal or anti-inflammatory properties. In light of the increasing interest in the biocatalytic potential of marine-derived fungi, a study was conducted in which the substrates indene ( [...] Read more.
Indane and phenylpropyl derivatives are interesting precursors for the synthesis of bioactive compounds, including those with antifungal or anti-inflammatory properties. In light of the increasing interest in the biocatalytic potential of marine-derived fungi, a study was conducted in which the substrates indene (1), indanone (2), 5-chloroindanone (2a), 1-phenylpropyl acetate (3), and 1-(4′-chlorophenyl)propyl acetate (3a) were biotransformed by the marine sediment-derived fungal strains Purpureocillium lilacinum BC17-2 and Emericellopsis maritima BC17. Fermentations led to the isolation of sixteen derivatives, which exhibited noteworthy stereoselectivities. The absolute configurations of the optically active indane and phenylpropyl derivatives isolated were determined through electronic circular dichroism and optical rotation dispersion computational calculations. Furthermore, given the known biocatalytic potential of the phytopathogenic fungus Botrytis cinerea to modify the structures of certain antifungal phenylpropyl derivatives, substrates 3 and 3a were also subjected to biotransformation by the strain B. cinerea UCA992. The antifungal activities of the biotransformation products (R)-5, (S)-6, syn-(1S,2R)-7, anti-(1R,2R)-7, (R)-8, (R)-9, threo-(1R,2R)-11, and erythro-(1R,2S)-11 were evaluated against B. cinerea UCA992 using a resazurin-based microdilution method. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

23 pages, 949 KiB  
Article
Anticancer Effect of Nature-Inspired Indolizine-Based Pentathiepines in 2D and 3D Cellular Model
by Roberto Tallarita, Federica Randisi, Lukas Manuel Jacobsen, Emanuela Marras, Mattia Riva, Giulia Modoni, Johannes Fimmen, Siva Sankar Murthy Bandaru, Carola Schulzke and Marzia Bruna Gariboldi
Cancers 2025, 17(14), 2393; https://doi.org/10.3390/cancers17142393 - 19 Jul 2025
Viewed by 431
Abstract
Background: 1,2,3,4,5-pentathiepines (PTEs) are compounds originally identified in marine ascidians and are currently under investigation for their promising pharmacological properties, particularly as potential antineoplastic agents. Objectives: In this study, we investigated the antineoplastic properties of a series of ten indolizine-based PTEs, comprising eight [...] Read more.
Background: 1,2,3,4,5-pentathiepines (PTEs) are compounds originally identified in marine ascidians and are currently under investigation for their promising pharmacological properties, particularly as potential antineoplastic agents. Objectives: In this study, we investigated the antineoplastic properties of a series of ten indolizine-based PTEs, comprising eight previously reported compounds and two newly synthesized derivatives. Methods: These compounds were evaluated against a panel of human cancer cell lines of diverse tissue origins, as well as, for the first time, on non-cancerous CR9 fibroblasts to assess their cytotoxic selectivity. In addition, their effects were tested on 3D spheroid models, providing preliminary insights into their potential in vivo efficacy. Initial screening focused on cell viability, followed by a more detailed characterization of the most active compounds in terms of their ability to induce apoptosis, necrosis, cell cycle arrest, and reactive oxygen species (ROS) generation. The anti-migratory activity of PTEs and a newly adapted assay to confirm sulfur species release in the cells were also performed for the first time. Results and Conclusions: Our findings reveal that four PTEs bearing hydrophilic, hydrogen-bonding functional groups, particularly the two inspired by natural analogs, exhibited the most potent anticancer activity. Full article
(This article belongs to the Special Issue Novel Therapeutic Approaches for Cancer Treatment)
Show Figures

Figure 1

17 pages, 3046 KiB  
Article
Therapeutic Use of Parerythrobacter sp. M20A3S10, a Marine Bacterium, Targeting Influenza Viruses and Flaviviruses
by Kyeong-Seo Moon, Ji-Young Chung, Hyeon Jeong Moon, Gun Lee, Chung-Do Lee, Su-Bin Jung, Hyo-Jin Kim, Jun-Gyu Park, Yeong-Bin Baek and Sang-Ik Park
Animals 2025, 15(14), 2125; https://doi.org/10.3390/ani15142125 - 18 Jul 2025
Viewed by 268
Abstract
Emerging RNA viruses such as influenza A virus (IAV), Zika virus (ZIKV), and dengue virus (DENV) continue to pose major challenges to animal and public health due to their high mutation rates, wide host ranges, and immune evasion strategies. In this study, we [...] Read more.
Emerging RNA viruses such as influenza A virus (IAV), Zika virus (ZIKV), and dengue virus (DENV) continue to pose major challenges to animal and public health due to their high mutation rates, wide host ranges, and immune evasion strategies. In this study, we evaluated the in vitro antiviral activity of a marine bacterial extract derived from Parerythrobacter sp. M20A3S10 against IAV (H1N1; H3N2), influenza B virus (IBV), ZIKV, and DENV2. The extract demonstrated broad-spectrum antiviral effects with favorable selectivity indices across multiple host-derived epithelial cell lines. Notably, post-infection treatment significantly suppressed viral replication, suggesting a host-modulating or replication-inhibiting mechanism. While the extract’s active components have yet to be identified, bacteria from the Erythrobacteraceae family are known producers of bioactive metabolites with potential antiviral properties. These findings provide preliminary insight into the potential of marine-derived bacterial compounds in veterinary antiviral development and highlight the need for further characterization and in vivo validation. This work contributes to the understanding of virus–host interactions and the exploration of novel therapeutic strategies targeting the pathogenesis and immune modulation of veterinary RNA viruses. Full article
(This article belongs to the Special Issue Pathogenesis, Immunology and Epidemiology of Veterinary Viruses)
Show Figures

Figure 1

40 pages, 2915 KiB  
Review
Marine-Derived Compounds: A New Horizon in Cancer, Renal, and Metabolic Disease Therapeutics
by Jinwei Zhang
Mar. Drugs 2025, 23(7), 283; https://doi.org/10.3390/md23070283 - 9 Jul 2025
Viewed by 896
Abstract
Marine-derived compounds represent a rich source of structurally diverse molecules with therapeutic potential for cancer, renal disorders, metabolic-associated fatty liver disease (MAFLD), and atherosclerosis. This review systematically evaluates recent advances, highlighting compounds such as Microcolin H, Benzosceptrin C, S14, HN-001, Equisetin, glycosides (e.g., [...] Read more.
Marine-derived compounds represent a rich source of structurally diverse molecules with therapeutic potential for cancer, renal disorders, metabolic-associated fatty liver disease (MAFLD), and atherosclerosis. This review systematically evaluates recent advances, highlighting compounds such as Microcolin H, Benzosceptrin C, S14, HN-001, Equisetin, glycosides (e.g., cucumarioside A2-2), ilimaquinone, and Aplidin (plitidepsin). Key mechanisms include autophagy modulation, immune checkpoint inhibition, anti-inflammatory effects, and mitochondrial homeostasis. Novel findings reveal glycosides’ dual role in cytotoxicity and immunomodulation, ilimaquinone’s induction of the DNA damage response, and Aplidin’s disruption of protein synthesis via eEF1A2 binding. Pharmacokinetic challenges and structure–activity relationships are critically analyzed, emphasizing nanodelivery systems and synthetic analog development. This review bridges mechanistic insights with translational potential, offering a cohesive framework for future drug development. Full article
Show Figures

Figure 1

14 pages, 2696 KiB  
Article
Recycling Sargassum spp. Biomass for Sustainable Biocontrol in Agriculture: A Circular Approach
by Mislén Gómez-Matos, Dariellys Martínez-Balmori, Yamilet Coll-García, Yamilé Baró-Robaina and Yaneris Mirabal-Gallardo
Sustainability 2025, 17(13), 6107; https://doi.org/10.3390/su17136107 - 3 Jul 2025
Viewed by 377
Abstract
The increasing frequency of Sargassum spp. blooms represents a global environmental challenge, impacting coastal ecosystems and requiring sustainable management strategies. This study evaluates the potential of Sargassum spp. extract as an encapsulating material for biological pest control, contributing to marine waste valorization. Pelagic [...] Read more.
The increasing frequency of Sargassum spp. blooms represents a global environmental challenge, impacting coastal ecosystems and requiring sustainable management strategies. This study evaluates the potential of Sargassum spp. extract as an encapsulating material for biological pest control, contributing to marine waste valorization. Pelagic Sargassum spp. collected from the Havana coast was processed to obtain an alginate-rich extract, which was used to encapsulate Beauveria bassiana conidia via ionic gelation. FTIR confirmed characteristic carboxylate absorption bands, indicating structural similarities with commercial alginate, while TGA demonstrated comparable thermal behavior. Beads exhibited consistent dimensions (0.5–3 mm) with irregular post-drying shapes. Encapsulation efficiency yielded a conidial concentration of 1.43 × 108 conidia per mL, ensuring retention within the matrix. Long-term viability was confirmed as conidia remained viable and able to grow after six months, potentially benefiting from extract-derived compounds. These findings highlight the potential of repurposing Sargassum spp. for sustainable agricultural applications, advancing environmentally friendly pest management while addressing the ecological burden of excessive Sargassum accumulation. Full article
Show Figures

Figure 1

49 pages, 5285 KiB  
Review
Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges
by Muhammad Azhari, Novi Merliani, Marlia Singgih, Masayoshi Arai and Elin Julianti
Mar. Drugs 2025, 23(7), 279; https://doi.org/10.3390/md23070279 - 3 Jul 2025
Viewed by 716
Abstract
Tuberculosis (TB) poses a persistent global health threat exacerbated by the emergence of drug-resistant strains; hence, there is a continuous quest for novel antimicrobial agents. Despite efforts to develop effective therapies, existing treatments require a relatively long duration of therapy to eradicate the [...] Read more.
Tuberculosis (TB) poses a persistent global health threat exacerbated by the emergence of drug-resistant strains; hence, there is a continuous quest for novel antimicrobial agents. Despite efforts to develop effective therapies, existing treatments require a relatively long duration of therapy to eradicate the pathogen due to its virulence factors, pathogenesis patterns, and ability to enter dormant states. This can lead to a higher risk of treatment failure due to poor patient adherence to the complex regimen. As a result, considerable research is necessary to identify alternative antituberculosis agents. The marine environment, particularly marine-derived fungi, has recently gained interest due to its potential as an abundant source of bioactive natural products. This review covers 19 genera of marine-derived fungi and 139 metabolites, 131 of which exhibit antimycobacterial activity. The integrated dataset pinpoints the fungal genera and chemical classes that most frequently yield potent antimycobacterial hits while simultaneously exposing critical gaps, such as the minimal evaluation of compounds against dormant bacilli and the presence of underexplored ecological niches and fungal genera. Several compounds exhibit potent activity through uncommon mechanisms, including the inhibition of mycobacterial protein tyrosine phosphatases (MptpB/MptpA), protein kinase PknG, ATP synthase and the disruption of mycobacterial DNA via G-quadruplex stabilization. Structure–activity relationship (SAR) trends are highlighted for the most potent agents, illuminating how specific functional groups underpin target engagement and potency. This review also briefly proposes a dereplication strategy and approaches for toxicity mitigation in the exploration of marine-derived fungi’s natural products. Through this analysis, we offer insights into the potency and challenges of marine-derived fungi’s natural products as hit compounds or scaffolds for further antimycobacterial research. Full article
Show Figures

Figure 1

14 pages, 1767 KiB  
Article
Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with Callyspongia crassa Sponge of the Red Sea
by Amal N. Alahmari, Shahira A. Hassoubah, Bothaina A. Alaidaroos, Ahmed M. Al-Hejin, Noor M. Bataweel, Reem M. Farsi, Khloud M. Algothmi, Naheda M. Alshammari and Amal T. K. Ashour
Microorganisms 2025, 13(7), 1552; https://doi.org/10.3390/microorganisms13071552 - 2 Jul 2025
Viewed by 386
Abstract
The Red Sea is rich in symbiotic microorganisms that have been identified as sources of bioactive compounds with antimicrobial, antifungal, and antioxidant properties. In this study, we aimed to explore the potential of marine sponge-associated bacteria as sources of antibacterial compounds, emphasizing their [...] Read more.
The Red Sea is rich in symbiotic microorganisms that have been identified as sources of bioactive compounds with antimicrobial, antifungal, and antioxidant properties. In this study, we aimed to explore the potential of marine sponge-associated bacteria as sources of antibacterial compounds, emphasizing their significance in combating antibiotic resistance (AMR). The crude extracts of Micrococcus, Bacillus, and Staphylococcus saprophyticus exhibited significant antibacterial activity, with inhibition zones measuring 12 mm and 14 mm against Escherichia coli, Staphylococcus aureus, Candida albicans, and other infectious strains. The DPPH assay showed that the bacterial isolates AN3 and AN6 exhibited notable antioxidant activity at a concentration of 100 mg/mL. To characterize the chemical constituents responsible for the observed bioactivity, a GC–MS analysis was performed on ethyl acetate extracts of the potent strains. The analysis identified a range of antimicrobial compounds, including straight-chain alkanes (e.g., Tetradecane), cyclic structures (e.g., Cyclopropane derivatives), and phenolic compounds, all of which are known to disrupt microbial membranes or interfere with metabolic pathways. The bioprospecting and large-scale production of these compounds are challenging. In conclusion, this study underscores the potential for marine bacteria associated with sponges from the Red Sea to be a source of bioactive compounds with therapeutic relevance. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

Back to TopTop