Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,549)

Search Parameters:
Keywords = map construction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7537 KiB  
Article
Variable Step-Size FxLMS Algorithm Based on Cooperative Coupling of Double Nonlinear Functions
by Jialong Wang, Jian Liao, Lin He, Xiaopeng Tan and Zongbin Chen
Symmetry 2025, 17(8), 1222; https://doi.org/10.3390/sym17081222 (registering DOI) - 2 Aug 2025
Abstract
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm [...] Read more.
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm innovatively couples two types of nonlinear mechanisms (rational-fractional and exponential-function-based), constructing a refined error-step mapping relationship to achieve a balance between rapid convergence and low steady-state error. Simulation experiments were conducted considering the complex time-varying operating environment of a simulation-based hydraulic system. The results demonstrate that, when the system undergoes unstable random changes, the DNVSS-FxLMS algorithm converges at least twice as fast as traditional and existing variable step size algorithms, while reducing steady-state error by 2–5 dB. The proposed DNVSS-FxLMS algorithm exhibits significant advantages in convergence rate, steady-state error reduction, and tracking capability, providing a highly efficient and robust solution for real-time active control of hydraulic system pressure pulsation under complex operating conditions. Full article
Show Figures

Figure 1

17 pages, 3731 KiB  
Article
Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake
by Anil Kumar Misra, Kuldeep Dutta, Rakesh Kumar Ranjan, Nishchal Wanjari and Subash Dhakal
GeoHazards 2025, 6(3), 42; https://doi.org/10.3390/geohazards6030042 (registering DOI) - 1 Aug 2025
Abstract
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area [...] Read more.
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area of Sikkim’s Pakyong district, which is facing severe water seepage and instability. The problem, intensified by the 2011 seismic event and ongoing local construction, is examined through subsurface fracture mapping using Vertical Electrical Sounding (VES) and profiling techniques. A statistical factor method, applied to interpret VES data, helped identify fracture patterns beneath the lake. Results from two sites (VES-1 and VES-2) reveal significant variations in weathered and semi-weathered soil layers, indicating fractures at depths of 17–50 m (VES-1) and 20–55 m (VES-2). Higher fracture density near VES-1 suggests increased settlement risk and ground displacement compared to VES-2. Contrasting resistivity values emphasize the greater instability in this zone and the need for cautious construction practices. The findings highlight the role of seismic-induced fractures in ongoing water depletion and underscore the importance of continuous dewatering to stabilize the swampy terrain. Full article
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

13 pages, 1293 KiB  
Article
Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas
by Isidro Machado, Raquel López-Reig, Eduardo Giner, Antonio Fernández-Serra, Celia Requena, Beatriz Llombart, Francisco Giner, Julia Cruz, Victor Traves, Javier Lavernia, Antonio Llombart-Bosch and José Antonio López Guerrero
Cancers 2025, 17(15), 2551; https://doi.org/10.3390/cancers17152551 (registering DOI) - 1 Aug 2025
Abstract
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related [...] Read more.
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related prognostic model—termed the AS score—using data from two independent sarcoma cohorts. Methods: A prognostic model was developed using a previously characterized cohort of 25 angiosarcoma samples. Candidate genes were identified via the Maxstat algorithm (Maxstat v0.7-25 for R), combined with log-rank testing. The AS score was then computed by weighing normalized gene expression levels according to Cox regression coefficients. For external validation, transcriptomic data from TCGA Sarcoma cohort (n = 253) were analyzed. The Immunoscore—which reflects the tumor immune microenvironment—was inferred using the ESTIMATE package (v1.0.13) in R. All statistical analyses were performed in RStudio (v 4.0.3). Results: Four genes—IGF1R, MAP2K1, SERPINE1, and TCF12—were ultimately selected to construct the prognostic model. The resulting AS score enabled the classification of angiosarcoma cases into two prognostically distinct groups (p = 0.00012). Cases with high AS score values, which included both cutaneous and non-cutaneous forms, exhibited significantly poorer outcomes, whereas cases with low AS scores were predominantly cutaneous. A significant association was observed between the AS score and the Immunoscore (p = 0.025), with higher Immunoscore values found in high-AS score tumors. Validation using TCGA sarcoma cohort confirmed the prognostic value of both the AS score (p = 0.0066) and the Immunoscore (p = 0.0029), with a strong correlation between their continuous values (p = 2.9 × 10−8). Further survival analysis, integrating categorized scores into four groups, demonstrated robust prognostic significance (p = 0.00021). Notably, in tumors with a low Immunoscore, AS score stratification was not prognostic. In contrast, among cases with a high Immunoscore, the AS score effectively distinguished outcomes (p < 0.0001), identifying a subgroup with poor prognosis but potential sensitivity to immunotherapy. Conclusions: This combined classification using the AS score and Immunoscore has prognostic relevance in sarcoma, suggesting that angiosarcomas with an immunologically active microenvironment (high Immunoscore) and poor prognosis (high AS score) may be prime candidates for immunotherapy and this approach warrants prospective validation. Full article
(This article belongs to the Special Issue Genomics and Transcriptomics in Sarcoma)
Show Figures

Figure 1

24 pages, 10190 KiB  
Article
MSMT-RTDETR: A Multi-Scale Model for Detecting Maize Tassels in UAV Images with Complex Field Backgrounds
by Zhenbin Zhu, Zhankai Gao, Jiajun Zhuang, Dongchen Huang, Guogang Huang, Hansheng Wang, Jiawei Pei, Jingjing Zheng and Changyu Liu
Agriculture 2025, 15(15), 1653; https://doi.org/10.3390/agriculture15151653 - 31 Jul 2025
Abstract
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision [...] Read more.
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision detection of maize tassels, including maize tassel multi-scale variations caused by varietal differences and growth stage variations, intra-class occlusion, and background interference. To achieve accurate maize tassel detection in UAV images under complex field backgrounds, this study proposes an MSMT-RTDETR detection model. The Faster-RPE Block is first designed to enhance multi-scale feature extraction while reducing model Params and FLOPs. To improve detection performance for multi-scale targets in complex field backgrounds, a Dynamic Cross-Scale Feature Fusion Module (Dy-CCFM) is constructed by upgrading the CCFM through dynamic sampling strategies and multi-branch architecture. Furthermore, the MPCC3 module is built via re-parameterization methods, and further strengthens cross-channel information extraction capability and model stability to deal with intra-class occlusion. Experimental results on the MTDC-UAV dataset demonstrate that the MSMT-RTDETR significantly outperforms the baseline in detecting maize tassels under complex field backgrounds, where a precision of 84.2% was achieved. Compared with Deformable DETR and YOLOv10m, improvements of 2.8% and 2.0% were achieved, respectively, in the mAP50 for UAV images. This study proposes an innovative solution for accurate maize tassel detection, establishing a reliable technical foundation for maize yield estimation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 (registering DOI) - 31 Jul 2025
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

25 pages, 21958 KiB  
Article
ESL-YOLO: Edge-Aware Side-Scan Sonar Object Detection with Adaptive Quality Assessment
by Zhanshuo Zhang, Changgeng Shuai, Chengren Yuan, Buyun Li, Jianguo Ma and Xiaodong Shang
J. Mar. Sci. Eng. 2025, 13(8), 1477; https://doi.org/10.3390/jmse13081477 - 31 Jul 2025
Viewed by 12
Abstract
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge [...] Read more.
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge Fusion Module (EFM) is designed, which integrates the Sobel operator into depthwise separable convolution. Through a dual-branch structure, it realizes effective fusion of edge features and spatial features, significantly enhancing the ability to recognize targets with blurred boundaries. Secondly, a Self-Calibrated Dual Attention (SCDA) Module is constructed. By means of feature cross-calibration and multi-scale channel attention fusion mechanisms, it achieves adaptive fusion of shallow details and deep-rooted semantic content, improving the detection accuracy for small-sized targets and targets with elaborate shapes. Finally, a Location Quality Estimator (LQE) is introduced, which quantifies localization quality using the statistical characteristics of bounding box distribution, effectively reducing false detections and missed detections. Experiments on the SIMD dataset show that the mAP@0.5 of ESL-YOLO reaches 84.65%. The precision and recall rate reach 87.67% and 75.63%, respectively. Generalization experiments on additional sonar datasets further validate the effectiveness of the proposed method across different data distributions and target types, providing an effective technical solution for side-scan sonar image target detection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 4217 KiB  
Article
Contact Load Measurement and Validation for Tapered Rollers in Wind Turbine Main Bearing
by Zhenggang Guo, Jingqi Yu, Wanxiu Hao and Yuming Niu
Sensors 2025, 25(15), 4726; https://doi.org/10.3390/s25154726 (registering DOI) - 31 Jul 2025
Viewed by 37
Abstract
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain [...] Read more.
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain measurement, bore-to-measurement-point sensitivity analysis was optimized. Multiple structurally optimized sensor brackets were designed to enhance strain measurement sensitivity, and their performance was comparatively evaluated via simulation. To mitigate sensitivity fluctuations caused by roller rotation phase variations, a strain–phase–load calculation method incorporating real-time phase compensation was developed and verified through simulation analysis. A dedicated roller contact load testing system was constructed and experimental validation was conducted. Results demonstrate 95% accuracy in contact load acquisition. This method accurately obtains roller contact loads in wind turbine main bearings, proving crucial for studying bearing mechanical behavior, predicting fatigue life, optimizing structural design, and enhancing reliability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

24 pages, 1821 KiB  
Review
An Overview on LCA Integration in BIM: Tools, Applications, and Future Trends
by Cecilia Bolognesi, Deida Bassorizzi, Simone Balin and Vasili Manfredi
Digital 2025, 5(3), 31; https://doi.org/10.3390/digital5030031 (registering DOI) - 31 Jul 2025
Viewed by 37
Abstract
The integration of Life Cycle Assessment (LCA) into Building Information Modeling (BIM) processes is becoming increasingly important for enhancing the environmental performance of construction projects. This scoping review examines how LCA methods and environmental data are currently integrated into BIM workflows, focusing on [...] Read more.
The integration of Life Cycle Assessment (LCA) into Building Information Modeling (BIM) processes is becoming increasingly important for enhancing the environmental performance of construction projects. This scoping review examines how LCA methods and environmental data are currently integrated into BIM workflows, focusing on automation, data standardization, and visualization strategies. We selected 43 peer-reviewed studies (January 2010–May 2025) via structured searches in five major academic databases. The review identifies five main types of BIM–LCA integration workflows; the most common approach involves exporting quantity data from BIM models to external LCA tools. More recent studies explore the use of artificial intelligence for improving automation and accuracy in data mapping between BIM objects and LCA databases. Key challenges include inconsistent levels of data granularity, a lack of harmonized EPD formats, and limited interoperability between BIM and LCA software environments. Visualization methods such as color-coded 3D models are used to support early-stage decision-making, although uncertainty representation remains limited. To address these issues, future research should focus on standardizing EPD data structures, enriching BIM objects with validated environmental information, and developing explainable AI solutions for automated classification and matching. These advancements would improve the reliability and usability of LCA in BIM-based design, contributing to more informed decisions in sustainable construction. Full article
(This article belongs to the Special Issue Advances in Data Management)
Show Figures

Figure 1

20 pages, 8878 KiB  
Article
Identification Method for Resistance Coefficients in Heating Networks Based on an Improved Differential Evolution Algorithm
by Enze Zhou, Yaning Liu, Minjia Du, Junli Yu and Wenxiao Xu
Buildings 2025, 15(15), 2701; https://doi.org/10.3390/buildings15152701 (registering DOI) - 31 Jul 2025
Viewed by 41
Abstract
The intelligent upgrade of heating systems faces the challenge of accurately identifying high-dimensional pipe-network resistance coefficients; difficulties in accomplishing this can lead to hydraulic imbalance and redundant energy consumption. To address the limitations of traditional Differential Evolution (DE) algorithms under high-dimensional operating conditions, [...] Read more.
The intelligent upgrade of heating systems faces the challenge of accurately identifying high-dimensional pipe-network resistance coefficients; difficulties in accomplishing this can lead to hydraulic imbalance and redundant energy consumption. To address the limitations of traditional Differential Evolution (DE) algorithms under high-dimensional operating conditions, this paper proposes an Improved Differential Evolution Algorithm (SDEIA) incorporating chaotic mapping, adaptive mutation and crossover strategies, and an immune mechanism. Furthermore, a multi-constrained identification model is constructed based on Kirchhoff’s laws. Validation with actual engineering data demonstrates that the proposed method achieves a lower average relative error in resistance coefficients and exhibits a more concentrated error distribution. SDEIA provides a high-precision tool for multi-heat-source networking and dynamic regulation in heating systems, facilitating low-carbon and intelligent upgrades. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 7166 KiB  
Article
Deriving Early Citrus Fruit Yield Estimation by Combining Multiple Growing Period Data and Improved YOLOv8 Modeling
by Menglin Zhai, Juanli Jing, Shiqing Dou, Jiancheng Du, Rongbin Wang, Jichi Yan, Yaqin Song and Zhengmin Mei
Sensors 2025, 25(15), 4718; https://doi.org/10.3390/s25154718 (registering DOI) - 31 Jul 2025
Viewed by 45
Abstract
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield [...] Read more.
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield estimation. Currently, most crop yield estimation studies based on the YOLO model are only conducted during a single stage of maturity. Combining multi-growth period data for crop analysis is of great significance for crop growth detection and early yield estimation. In this study, a new network model, YOLOv8-RL, was proposed using citrus multigrowth period characteristics as a data source. A citrus yield estimation model was constructed and validated by combining network identification counts with manual field counts. Compared with YOLOv8, the number of parameters of the improved network is reduced by 50.7%, the number of floating-point operations is decreased by 49.4%, and the size of the model is only 3.2 MB. In the test set, the average recognition rate of citrus flowers, green fruits, and orange fruits was 95.6%, the mAP@.5 was 94.6%, the FPS value was 123.1, and the inference time was only 2.3 milliseconds. This provides a reference for the design of lightweight networks and offers the possibility of deployment on embedded devices with limited computational resources. The two estimation models constructed on the basis of the new network had coefficients of determination R2 values of 0.91992 and 0.95639, respectively, with a prediction error rate of 6.96% for citrus green fruits and an average error rate of 3.71% for orange fruits. Compared with network counting, the yield estimation model had a low error rate and high accuracy, which provided a theoretical basis and technical support for the early prediction of fruit yield in complex environments. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

21 pages, 1928 KiB  
Article
A CNN-Transformer Hybrid Framework for Multi-Label Predator–Prey Detection in Agricultural Fields
by Yifan Lyu, Feiyu Lu, Xuaner Wang, Yakui Wang, Zihuan Wang, Yawen Zhu, Zhewei Wang and Min Dong
Sensors 2025, 25(15), 4719; https://doi.org/10.3390/s25154719 (registering DOI) - 31 Jul 2025
Viewed by 56
Abstract
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning [...] Read more.
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning framework that integrates convolutional neural networks (CNNs) and Transformer architectures for multi-label recognition of predator–pest combinations. The model leverages a novel co-occurrence attention mechanism to capture semantic relationships between insect categories and employs a pairwise label matching loss to enhance ecological pairing accuracy. Evaluated on a field-constructed dataset of 5,037 images across eight categories, the model achieved an F1-score of 86.5%, mAP50 of 85.1%, and demonstrated strong generalization to unseen predator–pest pairs with an average F1-score of 79.6%. These results outperform several strong baselines, including ResNet-50, YOLOv8, and Vision Transformer. This work contributes a robust, interpretable approach for multi-object ecological detection and offers practical potential for deployment in smart farming systems, UAV-based monitoring, and precision pest management. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

18 pages, 1115 KiB  
Article
A Structured Causal Framework for Operational Risk Quantification: Bridging Subjective and Objective Uncertainty in Advanced Risk Models
by Guy Burstein and Inon Zuckerman
Mathematics 2025, 13(15), 2467; https://doi.org/10.3390/math13152467 - 31 Jul 2025
Viewed by 52
Abstract
Evaluating risk in complex systems relies heavily on human auditors whose subjective assessments can be compromised by knowledge gaps and varying interpretations. This subjectivity often results in inconsistent risk evaluations, even among auditors examining identical systems, owing to differing pattern recognition processes. In [...] Read more.
Evaluating risk in complex systems relies heavily on human auditors whose subjective assessments can be compromised by knowledge gaps and varying interpretations. This subjectivity often results in inconsistent risk evaluations, even among auditors examining identical systems, owing to differing pattern recognition processes. In this study, we propose a causality model that can improve the comprehension of risk levels by breaking down the risk factors and creating a layout of risk events and consequences in the system. To do so, the initial step is to define the risk event blocks, each comprising two distinct components: the agent and transfer mechanism. Next, we construct a causal map that outlines all risk event blocks and their logical connections, leading to the final consequential risk. Finally, we assess the overall risk based on the cause-and-effect structure. We conducted real-world illustrative examples comparing risk-level assessments with traditional experience-based auditor judgments to evaluate our proposed model. This new methodology offers several key benefits: it clarifies complex risk factors, reduces reliance on subjective judgment, and helps bridge the gap between subjective and objective uncertainty. The illustrative examples demonstrate the potential value of the model by revealing discrepancies in risk levels compared to traditional assessments. Full article
(This article belongs to the Special Issue Advances in Risk Models and Actuarial Science)
Show Figures

Figure 1

22 pages, 4093 KiB  
Article
A Deep Learning-Driven Black-Box Benchmark Generation Method via Exploratory Landscape Analysis
by Haoming Liang, Fuqing Zhao, Tianpeng Xu and Jianlin Zhang
Appl. Sci. 2025, 15(15), 8454; https://doi.org/10.3390/app15158454 - 30 Jul 2025
Viewed by 161
Abstract
In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of [...] Read more.
In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of the problem space. Exploratory landscape analysis (ELA) offers a systematic framework for characterizing objective functions, based on quantitative landscape features. This study proposes a method for generating benchmark functions tailored to single-objective continuous optimization problems with boundary constraints using predefined ELA feature vectors to guide their construction. The process begins with the creation of random decision variables and corresponding objective values, which are iteratively adjusted using the covariance matrix adaptation evolution strategy (CMA-ES) to ensure alignment with a target ELA feature vector within a specified tolerance. Once the feature criteria are met, the resulting topological map point is used to train a neural network to produce a surrogate function that retains the desired landscape characteristics. To validate the proposed approach, functions from the well-known Black Box Optimization Benchmark (BBOB) suite are replicated, and novel functions are generated with unique ELA feature combinations not found in the original suite. The experiment results demonstrate that the synthesized landscapes closely resemble their BBOB counterparts and preserve the consistency of the algorithm rankings, thereby supporting the effectiveness of the proposed approach. Full article
Show Figures

Figure 1

23 pages, 7371 KiB  
Article
A Novel Method for Estimating Building Height from Baidu Panoramic Street View Images
by Shibo Ge, Jiping Liu, Xianghong Che, Yong Wang and Haosheng Huang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 297; https://doi.org/10.3390/ijgi14080297 - 30 Jul 2025
Viewed by 150
Abstract
Building height information plays an important role in many urban-related applications, such as urban planning, disaster management, and environmental studies. With the rapid development of real scene maps, street view images are becoming a new data source for building height estimation, considering their [...] Read more.
Building height information plays an important role in many urban-related applications, such as urban planning, disaster management, and environmental studies. With the rapid development of real scene maps, street view images are becoming a new data source for building height estimation, considering their easy collection and low cost. However, existing studies on building height estimation primarily utilize remote sensing images, with little exploration of height estimation from street-view images. In this study, we proposed a deep learning-based method for estimating the height of a single building in Baidu panoramic street view imagery. Firstly, the Segment Anything Model was used to extract the region of interest image and location features of individual buildings from the panorama. Subsequently, a cross-view matching algorithm was proposed by combining Baidu panorama and building footprint data with height information to generate building height samples. Finally, a Two-Branch feature fusion model (TBFF) was constructed to combine building location features and visual features, enabling accurate height estimation for individual buildings. The experimental results showed that the TBFF model had the best performance, with an RMSE of 5.69 m, MAE of 3.97 m, and MAPE of 0.11. Compared with two state-of-the-art methods, the TBFF model exhibited robustness and higher accuracy. The Random Forest model had an RMSE of 11.83 m, MAE of 4.76 m, and MAPE of 0.32, and the Pano2Geo model had an RMSE of 10.51 m, MAE of 6.52 m, and MAPE of 0.22. The ablation analysis demonstrated that fusing building location and visual features can improve the accuracy of height estimation by 14.98% to 69.99%. Moreover, the accuracy of the proposed method meets the LOD1 level 3D modeling requirements defined by the OGC (height error ≤ 5 m), which can provide data support for urban research. Full article
Show Figures

Figure 1

Back to TopTop