Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (423)

Search Parameters:
Keywords = many-to-one point correspondence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 543 KiB  
Communication
Assessment of Tumor Relative Biological Effectiveness in Low-LET Proton Irradiation
by Ying-Chun Lin, Jiamin Mo and Yuan-Hao Lee
Biomedicines 2025, 13(8), 1823; https://doi.org/10.3390/biomedicines13081823 - 25 Jul 2025
Viewed by 205
Abstract
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative [...] Read more.
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative biological effectiveness) on many human cell lines, the incomplete cell killing due to low LET can result in tumor recurrence. Hence, this study aimed to assess the RBE on different cancer cell lines along low-LET proton SOBP. Methods: The clonogenicity of A549 and Panc-1 cells after irradiation was evaluated for investigating cell radiosensitivity in response to different types of radiation. The isoeffect doses of 6-MV photon and low-LET proton beams that resulted in equivalent cell surviving fractions at proton dose of 2 or 4 Gy were compared. Results: Ratios of α/β of A549 and Panc-1 cells from photon irradiation are 51.69 and −0.7747, respectively; RBE (2 Gy proton SOBP) on A549 and Panc-1 cells are 0.7403 ± 0.3324 and 1.0986 ± 0.3984, respectively. In addition, the change in RBE with proton LET was in a cell-specific and dose-dependent manner (LET-RBE linear correlations: A549 cells [r = 0.4673, p = 0.2430] vs. Panc-1 cells at 4 Gy [r = 0.7085, p = 0.0492]; Panc-1 cells at 2 Gy [r = −0.4123, p = 0.3100] vs. 4 Gy [r = 0.7085, p = 0.0492]). Conclusions: Compared with A549 cells, Panc-1 cells present greater resistance to low-LET proton beams. In addition, currently employed generic RBE value at 1.1 for proton therapy neglected the variation in cell-/tumor-specific radiobiological responses toward different dose levels of proton beams. Full article
(This article belongs to the Special Issue New Insights in Radiotherapy: Bridging Radiobiology and Oncology)
Show Figures

Figure 1

15 pages, 1516 KiB  
Article
B-Cell Epitope Mapping of the Treponema pallidum Tp0435 Immunodominant Lipoprotein for Peptide-Based Syphilis Diagnostics
by Jessica L. Keane, Mahashweta Bose, Barbara J. Molini, Kelika A. Konda, Silver K. Vargas, Michael Reyes Diaz, Carlos F. Caceres, Jeffrey D. Klausner, Rebecca S. Treger and Lorenzo Giacani
Diagnostics 2025, 15(11), 1443; https://doi.org/10.3390/diagnostics15111443 - 5 Jun 2025
Viewed by 733
Abstract
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of [...] Read more.
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of syphilis pathogenesis, immunology, and T. pallidum biology could result in novel measures to curtail syphilis spread, including new therapeutics, a preventive vaccine, and, most importantly, improved diagnostics. Methods: Using overlapping synthetic peptides spanning the length of the T. pallidum Tp0435 mature lipoprotein, an abundant antigen known to induce an immunodominant humoral response during both natural and experimental infection, we evaluated which Tp0435 linear epitopes are most significantly recognized by antibodies from an infected host. Specifically, we used sera from 63 patients with syphilis at different stages, sera from non-syphilis patients (n = 40), and sera longitudinally collected from 10 rabbits infected with either the Nichols or SS14 isolates of T. pallidum, which represent the model strains for the two known circulating clades of this pathogen, to further evaluate the use of this animal model for syphilis studies. Recognized amino acid sequences were then mapped to the experimentally determined Tp0435 structure. Results: Reactive epitopes in both serum groups mapped predominantly to the α-helix preceding Tp0435 soluble β-barrel and the loops of the barrel. Conclusions: In the current effort to improve current syphilis diagnostics, the peptides corresponding to these immunodominant epitopes could help develop epitope-based assays such as peptide-based ELISAs and lateral flow point-of-care tests to improve the performance of treponemal tests and expedite diagnosis in low-income settings, where the infection is still a significant concern for public health and access to facilities with laboratories equipped to perform complex procedures might be challenging. Full article
(This article belongs to the Special Issue Dermatology and Venereology: Diagnosis and Management)
Show Figures

Figure 1

21 pages, 14599 KiB  
Article
Cobot Kinematic Model for Industrial Applications
by Giorgio Figliolini, Chiara Lanni and Luciano Tomassi
Inventions 2025, 10(3), 37; https://doi.org/10.3390/inventions10030037 - 22 May 2025
Cited by 1 | Viewed by 544
Abstract
In this paper, a specific parametric and open-source algorithm for the direct and inverse kinematics of the UR5e Cobot is formulated by using the (n, o, a, p) transformation matrix, along with the inverse matrices, and then implemented [...] Read more.
In this paper, a specific parametric and open-source algorithm for the direct and inverse kinematics of the UR5e Cobot is formulated by using the (n, o, a, p) transformation matrix, along with the inverse matrices, and then implemented in Matlab for numerical validation purposes. Thus, a specific robotized cell that includes novel mechatronic devices has been designed and built at LARM (Lab. of Robotics and Mechatronics) in Cassino in order to experimentally validate the proposed algorithm. In particular, many experimental points to carry out the whole automatic cycle have been detected by using the corresponding teach-pendant tool and joint positions for different UR5e Cobot poses. In addition, this consistent experimental campaign has allowed to evaluate the percentage accuracy of the robot, which can be useful for the practical applications. Therefore, the proposed kinematic model, along with the parametric and open-source algorithm, of the UR5e Cobot can be useful to simulate different applications in several robotized cells with a good reliability with respect to the real program of the robot. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

22 pages, 15733 KiB  
Article
Monitoring Fast-Growing Megacities in Emerging Countries Through the PS-InSAR Technique: The Case of Addis Ababa, Ethiopia
by Eyasu Alemu and Mario Floris
Land 2025, 14(5), 1020; https://doi.org/10.3390/land14051020 - 8 May 2025
Viewed by 574
Abstract
In the past three decades, the city of Addis Ababa, a capital city of Africa, has grown significantly in population, facilities, and infrastructure. The area involved in the recent urbanization is prone to slow natural subsidence phenomena that can be accelerated due to [...] Read more.
In the past three decades, the city of Addis Ababa, a capital city of Africa, has grown significantly in population, facilities, and infrastructure. The area involved in the recent urbanization is prone to slow natural subsidence phenomena that can be accelerated due to anthropogenic factors such as groundwater overexploitation and loading of unconsolidated soils. The main aim of this study is to identify and monitor the areas most affected by subsidence in a context, such as that of many areas of emerging countries, characterized by the lack of geological and technical data. In these contexts, advanced remote sensing techniques can support the assessment of spatial and temporal patterns of ground instability phenomena, providing critical information on potential conditioning and triggering factors. In the case of subsidence, these factors may have a natural or anthropogenic origin or result from a combination of both. The increasing availability of SAR data acquired by the Sentinel-1 mission around the world and the refinement of processing techniques that have taken place in recent years allow one to identify and monitor the critical conditions deriving from the impressive recent expansion of megacities such as Addis Ababa. In this work, the Sentinel-1 SAR images from Oct 2014 to Jan 2021 were processed through the PS-InSAR technique, which allows us to estimate the deformations of the Earth’s surface with high precision, especially in urbanized areas. The obtained deformation velocity maps and displacement time series have been validated using accurate second-order geodetic control points and compared with the recent urbanization of the territory. The results demonstrate the presence of areas affected by a vertical rate of displacement of up to 21 mm/year and a maximum displacement of about 13.50 cm. These areas correspond to sectors that are most predisposed to subsidence phenomena due to the presence of recent alluvial deposits and have suffered greater anthropic pressure through the construction of new buildings and the exploitation of groundwater. Satellite interferometry techniques are confirmed to be a reliable tool for monitoring potentially dangerous geological processes, and in the case examined in this work, they represent the only way to verify the urbanized areas exposed to the risk of damage with great effectiveness and low cost, providing local authorities with crucial information on the priorities of intervention. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

16 pages, 2646 KiB  
Article
AChE Inhibition Capability of Nanogels Derived from Natural Molecules: Tannic Acid and Lysine for Alzheimer’s Disease
by Mehtap Sahiner, Selin S. Suner and Nurettin Sahiner
Pharmaceutics 2025, 17(4), 502; https://doi.org/10.3390/pharmaceutics17040502 - 10 Apr 2025
Viewed by 557
Abstract
Background/Objectives: Tannic acid (TA), a known natural polyphenolic acid with many bioactivities including antioxidants, antibacterial, and antiviral, can be combined with a natural essential amino acid L-lysine (LYS) in nanogel formulations to produce p(TA-co-LYS) (p(TA-co-LYS)) nanogels. Methods: A 1:1 mole ratio of [...] Read more.
Background/Objectives: Tannic acid (TA), a known natural polyphenolic acid with many bioactivities including antioxidants, antibacterial, and antiviral, can be combined with a natural essential amino acid L-lysine (LYS) in nanogel formulations to produce p(TA-co-LYS) (p(TA-co-LYS)) nanogels. Methods: A 1:1 mole ratio of TA:LYS was used to prepare corresponding spherical nanogels employing formaldehyde as a linker via the Mannich reaction. Results: The attained p(TA-co-LYS) particles were in 283 ± 57 nm size ranges (via SEM analysis) and possessed smooth surfaces. The zeta potential measurements of p(TA-co-LYS) nanogels suspension at different solution pHs revealed the isoelectric point (IEP) of pH 4.9, suggesting that the particles are negatively charged at the physiological pH range (e.g., at 7.4). In addition to the antioxidant efficacy of nanogels confirmed by three different tests, p(TA-co-LYS) particles showed significant Fe(II) ion chelating capacity at 350 µg/mL concentrations compared to bare TA, which is 21%, whereas the LYS molecule had a chelating capacity of 100% at the same concentrations. Moreover, it was found that p(TA-co-LYS) nanogels inhibited the Acetylcholinesterase enzyme (AChE) at a concentration-dependent profile, e.g., at 333 µg/mL concentration of p(TA-co-LYS), 57.2% of the enzyme AChE activity was inhibited. Furthermore, the minimum inhibition concentrations of p(TA-co-LYS) nanogels of Gram-negative Escherichia coli (ATCC 8739) and Gram-positive Staphylococcus aureus (ATCC 6538) were determined as 12.5 mg/mL. Conclusions: As cytotoxicity studies of p(TA-co-LYS) nanogels on L929 fibroblast cells also ascertained that these particles can be safely used in many biomedical applications, including antioxidant materials, drug delivery devices, and enzyme inhibitors. Full article
(This article belongs to the Special Issue Recent Advances in Inhibitors for Targeted Therapies)
Show Figures

Figure 1

23 pages, 10682 KiB  
Article
An Improved Variable Step-Size Maximum Power Point Tracking Control Strategy with the Mutual Inductance Identification for Series–Series Wireless Power Transfer Systems
by Wenmei Hao, Cai Sun and Yi Hao
Symmetry 2025, 17(4), 564; https://doi.org/10.3390/sym17040564 - 8 Apr 2025
Viewed by 399
Abstract
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for [...] Read more.
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for the coupling mechanism. However, the characteristics of their voltage source also put forward higher requirements for the control strategy. Improving the dynamic response performance of an SS compensation WPT system without any communication between the primary and secondary sides is the key issue. This paper proposes an improved variable step-size maximum power point tracking control strategy with the mutual inductance identification. Compared with the conventional P&O control, it can achieve a faster response and more accurate tracking, which are very important to the WPT for rail transit. A method of the mutual inductance identification based on the weight of parameter sensitivity is proposed. Based on the results of the identified mutual inductance, to make the system transfer the maximum power, the duty ratio of the receiver is adjusted to approach the corresponding equivalent load. To deal with the change of the mutual inductance, a condition of terminating the searching process of the maximum power point and re-identifying the mutual inductance is proposed. A simulation and experimental platform is built for verification. The results show that the proposed control strategy can quickly respond to the variation of the mutual inductance and load and achieve accurate maximum power point location, which improves the performance of the SS compensation WPT system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 10571 KiB  
Article
Evaluation of Network Design and Solutions of Fisheye Camera Calibration for 3D Reconstruction
by Sina Rezaei and Hossein Arefi
Sensors 2025, 25(6), 1789; https://doi.org/10.3390/s25061789 - 13 Mar 2025
Cited by 2 | Viewed by 1294
Abstract
The evolution of photogrammetry has been significantly influenced by advancements in camera technology, particularly the emergence of spherical cameras. These devices offer extensive photographic coverage and are increasingly utilised in many photogrammetry applications due to their significant user-friendly configuration, especially in their low-cost [...] Read more.
The evolution of photogrammetry has been significantly influenced by advancements in camera technology, particularly the emergence of spherical cameras. These devices offer extensive photographic coverage and are increasingly utilised in many photogrammetry applications due to their significant user-friendly configuration, especially in their low-cost versions. Despite their advantages, these cameras are subject to high image distortion. This necessitates specialised calibration solutions related to fisheye images, which represent the primary geometry of the raw files. This paper evaluates fisheye calibration processes for the effective utilisation of low-cost spherical cameras, for the purpose of 3D reconstruction and the verification of geometric stability. Calibration optical parameters include focal length, pixel positions, and distortion coefficients. Emphasis was placed on the evaluation of solutions for camera calibration, calibration network design, and the assessment of software or toolboxes that support the correspondent geometry and calibration for processing. The efficiency in accuracy, correctness, computational time, and stability parameters was assessed with the influence of calibration parameters based on the accuracy of the 3D reconstruction. The assessment was conducted using a previous case study of graffiti on an underpass in Wiesbaden, Germany. The robust calibration solution is a two-step calibration process, including a pre-calibration stage and the consideration of the best possible network design. Fisheye undistortion was performed using OpenCV, and finally, calibration parameters were optimized with self-calibration through bundle adjustment to achieve both calibration parameters and 3D reconstruction using Agisoft Metashape software. In comparison to 3D calibration, self-calibration, and a pre-calibration strategy, the two-step calibration process has demonstrated an average improvement of 2826 points in the 3D sparse point cloud and a 0.22 m decrease in the re-projection error value derived from the front lens images of two individual spherical cameras. The accuracy and correctness of the 3D point cloud and the statistical analysis of parameters in the two-step calibration solution are presented as a result of the quality assessment of this paper and in comparison with the 3D point cloud produced by a laser scanner. Full article
Show Figures

Figure 1

19 pages, 8641 KiB  
Article
Human Clustering Based on Graph Embedding and Space Functions of Trajectory Stay Points on Campus
by Ke Xie, Tao Wang, Pan Zhong, Zihao Zhao and Zixiang Wang
Appl. Sci. 2025, 15(6), 3090; https://doi.org/10.3390/app15063090 - 12 Mar 2025
Viewed by 985
Abstract
Spatial big data about human mobility have been employed intensively in understanding human spatial activity patterns, which is a central topic in many applications. Available research on spatial clustering patterns of human activities has been investigated mainly based on similarities of locations and [...] Read more.
Spatial big data about human mobility have been employed intensively in understanding human spatial activity patterns, which is a central topic in many applications. Available research on spatial clustering patterns of human activities has been investigated mainly based on similarities of locations and temporal attributes of spatial trajectories. These methods are not effective in revealing human groups who move among spaces at different locations but with the same functions. Function, as one semantic attribute of spaces, is a major driver of most human movements. This work investigates human clustering based on space functions of trajectory stay points in human mobility data using graph embedding. Firstly, typical functions of spaces are categorized into 35 types in our research area, which is a university campus. Human trajectories based on Wi-Fi networks were collected as test data. Then, human networks are built among human individuals. Each individual is taken as a node in the network, and an edge is built between two nodes if the corresponding individuals stay in spaces of the same type of function longer than a specific time duration. The graph embedding algorithm is used to calculate feature vector representations of nodes in the network, which can capture complex relationships among nodes through biased random walks. K-means clustering is applied to classify the feature vectors, which reveals potential behavioral pattern similarities of individuals concerning the functions of their staying spaces. The elbow method and silhouette score of clusters are used to determine an appropriate number of clusters. Three scenarios were designed based on three specific time durations, and random walk-biased parameters were fine-tuned to improve the clustering performance. Results reveal typical clusters and correlation between clusters and typical space functions. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

25 pages, 6330 KiB  
Article
Post-Filtering of Noisy Images Compressed by HEIF
by Sergii Kryvenko, Volodymyr Rebrov, Vladimir Lukin, Vladimir Golovko, Anatoliy Sachenko, Andrii Shelestov and Benoit Vozel
Appl. Sci. 2025, 15(6), 2939; https://doi.org/10.3390/app15062939 - 8 Mar 2025
Viewed by 808
Abstract
Modern imaging systems produce a great volume of image data. In many practical situations, it is necessary to compress them for faster transferring or more efficient storage. Then, a compression has to be applied. If images are noisy, lossless compression is almost useless, [...] Read more.
Modern imaging systems produce a great volume of image data. In many practical situations, it is necessary to compress them for faster transferring or more efficient storage. Then, a compression has to be applied. If images are noisy, lossless compression is almost useless, and lossy compression is characterized by a specific noise filtering effect that depends on the image, noise, and coder properties. Here, we considered a modern HEIF coder applied to grayscale (component) images of different complexity corrupted by additive white Gaussian noise. It has recently been shown that an optimal operation point (OOP) might exist in this case. Note that the OOP is a value of quality factor where the compressed image quality (according to a used quality metric) is the closest to the corresponding noise-free image. The lossy compression of noisy images leads to both noise reduction and distortions introduced into the information component, thus, a compromise should be found between the compressed image quality and compression ratio attained. The OOP is one possible compromise, if it exists, for a given noisy image. However, it has also recently been demonstrated that the compressed image quality can be significantly improved if post-filtering is applied under the condition that the quality factor is slightly larger than the one corresponding to the OOP. Therefore, we considered the efficiency of post-filtering where a block-matching 3-dimensional (BM3D) filter was applied. It was shown that the positive effect of such post-filtering could reach a few dB in terms of the PSNR and PSNR-HVS-M metrics. The largest benefits took place for simple structure images and a high intensity of noise. It was also demonstrated that the filter parameters have to be adapted to the properties of residual noise that become more non-Gaussian if the compression ratio increases. Practical recommendations on the use of compression parameters and post-filtering are given. Full article
Show Figures

Figure 1

23 pages, 3893 KiB  
Article
Multistable Synaptic Plasticity Induces Memory Effects and Cohabitation of Chimera and Bump States in Leaky Integrate-and-Fire Networks
by Astero Provata, Yannis Almirantis and Wentian Li
Entropy 2025, 27(3), 257; https://doi.org/10.3390/e27030257 - 28 Feb 2025
Cited by 1 | Viewed by 715
Abstract
Chimera states and bump states are collective synchronization phenomena observed independently (in different parameter regions) in networks of coupled nonlinear oscillators. And while chimera states are characterized by coexistence of coherent and incoherent domains, bump states consist of alternating active and inactive domains. [...] Read more.
Chimera states and bump states are collective synchronization phenomena observed independently (in different parameter regions) in networks of coupled nonlinear oscillators. And while chimera states are characterized by coexistence of coherent and incoherent domains, bump states consist of alternating active and inactive domains. The idea of multistable plasticity in the network connections originates from brain dynamics where the strength of the synapses (axons) connecting the network nodes (neurons) may change dynamically in time; when reaching the steady state the network connections may be found in one of many possible values depending on various factors, such as local connectivity, influence of neighboring cells etc. The sign of the link weights is also a significant factor in the network dynamics: positive weights are characterized as excitatory connections and negative ones as inhibitory. In the present study we consider the simplest case of bistable plasticity, where the link dynamics has only two fixed points. During the system/network integration, the link weights change and as a consequence the network organizes in excitatory or inhibitory domains characterized by different synaptic strengths. We specifically explore the influence of bistable plasticity on collective synchronization states and we numerically demonstrate that the dynamics of the linking may, under special conditions, give rise to co-existence of bump-like and chimera-like states simultaneously in the network. In the case of bump and chimera co-existence, confinement effects appear: the different domains stay localized and do not travel around the network. Memory effects are also reported in the sense that the final spatial arrangement of the coupling strengths reflects some of the local properties of the initial link distribution. For the quantification of the system’s spatial and temporal features, the global and local entropy functions are employed as measures of the network organization, while the average firing rates account for the network evolution and dynamics. In particular, the spatial minima of the local entropy designate the transition points between domains of different synaptic weights in the hybrid states, while the number of minima corresponds to the number of different domains. In addition, the entropy deviations signify the presence of chimera-like or bump-like states in the network. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

20 pages, 650 KiB  
Article
Decoherence, Locality, and Why dBB Is Actually MWI
by Per Arve
Quantum Rep. 2025, 7(1), 6; https://doi.org/10.3390/quantum7010006 - 31 Jan 2025
Viewed by 1565
Abstract
In the de Broglie Bohm pilot-wave theory and the many-worlds interpretation, unitary development of the quantum state is universally valid. They differ in that de Broglie and Bohm assumed that there are point particles with positions that evolve in time and that our [...] Read more.
In the de Broglie Bohm pilot-wave theory and the many-worlds interpretation, unitary development of the quantum state is universally valid. They differ in that de Broglie and Bohm assumed that there are point particles with positions that evolve in time and that our observations are observations of the particles. The many-worlds interpretation is based on the fact that the quantum state can explain our observations. Both interpretations rely on the decoherence mechanism to explain the disappearance of interference effects at a measurement. From this fact, it is argued that for the pilot-wave theory to work, circumstances must be such that the many-worlds interpretation is a viable alternative. However, if this is the case, the de Broglie–Bohm particles become irrelevant to any observer. They are truly hidden. The violation of locality and the corresponding violation of Lorenz invariance are good reasons to believe that dBB particles do not exist. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025)
Show Figures

Figure 1

21 pages, 983 KiB  
Article
Discrete Cartesian Coordinate Transformations: Using Algebraic Extension Methods
by Aruzhan Kadyrzhan, Dinara Matrassulova, Yelizaveta Vitulyova and Ibragim Suleimenov
Appl. Sci. 2025, 15(3), 1464; https://doi.org/10.3390/app15031464 - 31 Jan 2025
Cited by 1 | Viewed by 1127
Abstract
It is shown that it is reasonable to use Galois fields, including those obtained by algebraic extensions, to describe the position of a point in a discrete Cartesian coordinate system in many cases. This approach is applicable to any problem in which the [...] Read more.
It is shown that it is reasonable to use Galois fields, including those obtained by algebraic extensions, to describe the position of a point in a discrete Cartesian coordinate system in many cases. This approach is applicable to any problem in which the number of elements (e.g., pixels) into which the considered fragment of the plane is dissected is finite. In particular, it is obviously applicable to the processing of the vast majority of digital images actually encountered in practice. The representation of coordinates using Galois fields of the form GF(p2) is a discrete analog of the representation of coordinates in the plane through a complex variable. It is shown that two different types of algebraic extensions can be used simultaneously to represent transformations of discrete Cartesian coordinates described through Galois fields. One corresponds to the classical scheme, which uses irreducible algebraic equations. The second type proposed in this report involves the use of a formal additional solution of some equation, which has a usual solution. The correctness of this approach is justified through the representation of the elements obtained by the algebraic expansion of the second type by matrices defined over the basic Galois field. It is shown that the proposed approach is the basis for the development of new methods of information protection, designed to control groups of UAVs in the zone of direct radio visibility. The algebraic basis of such methods is the solution of systems of equations written in terms of finite algebraic structures. Full article
Show Figures

Figure 1

21 pages, 11416 KiB  
Article
Research into the Possibilities of Improving the Adhesion Properties of a Locomotive
by Vadym Ishchuk, Kateryna Kravchenko, Miroslav Blatnický, Alyona Lovska and Ján Dižo
Machines 2025, 13(1), 44; https://doi.org/10.3390/machines13010044 - 10 Jan 2025
Viewed by 809
Abstract
Locomotives are important vehicles, which serve for towing wagons, i.e., trains. Many factors influence the safe and cost-effective operation of locomotives and trains in general. One of these factors is adhesion at the wheel/rail contact. The adhesion determines how much power the locomotive [...] Read more.
Locomotives are important vehicles, which serve for towing wagons, i.e., trains. Many factors influence the safe and cost-effective operation of locomotives and trains in general. One of these factors is adhesion at the wheel/rail contact. The adhesion determines how much power the locomotive can deliver and how the braking system will ensure that the train stops. The main way to improve adhesion is to use sand at the wheel/rail contact point. The aim of this study is to improve the efficiency of the sand system of the locomotive. For this purpose, a new sand system nozzle mounting design was proposed. The newly proposed sanding system is equipped with a nozzle mounted to the axlebox unlike the original one, which uses the nozzle attached to the bogie frame. To compare the proposed and existing design, simulation calculations were performed in Simpack software 2024.3. For the simulation computation of the locomotive bogie, two types of railway tracks were chosen. A straight track section with two angular frequencies and three amplitudes of track irregularities was created, and a real track section corresponding to several kilometers of track was modeled in the Simpack software. During the simulations, it was determined that the proposed nozzle mounting design has a smaller amplitude of motion, compared to the existing one; therefore, there is a more accurate and efficient operation of the sand system. This in turn has a favorable effect on the adhesion of the wheel with the rail. It was found out that the newly designed sanding system has a significant positive economic effect regarding saving sand. There is no sand loss during sandblasting compared with the original sanding system. This directly relates to saving costs during locomotive operation. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

18 pages, 4340 KiB  
Article
GFA-Net: Geometry-Focused Attention Network for Six Degrees of Freedom Object Pose Estimation
by Shuai Lin, Junhui Yu, Peng Su, Weitao Xue, Yang Qin, Lina Fu, Jing Wen and Hong Huang
Sensors 2025, 25(1), 168; https://doi.org/10.3390/s25010168 - 31 Dec 2024
Viewed by 915
Abstract
Six degrees of freedom (6-DoF) object pose estimation is essential for robotic grasping and autonomous driving. While estimating pose from a single RGB image is highly desirable for real-world applications, it presents significant challenges. Many approaches incorporate supplementary information, such as depth data, [...] Read more.
Six degrees of freedom (6-DoF) object pose estimation is essential for robotic grasping and autonomous driving. While estimating pose from a single RGB image is highly desirable for real-world applications, it presents significant challenges. Many approaches incorporate supplementary information, such as depth data, to derive valuable geometric characteristics. However, the challenge of deep neural networks inadequately extracting features from object regions in RGB images remains. To overcome these limitations, we introduce the Geometry-Focused Attention Network (GFA-Net), a novel framework designed for more comprehensive feature extraction by analyzing critical geometric and textural object characteristics. GFA-Net leverages Point-wise Feature Attention (PFA) to capture subtle pose differences, guiding the network to localize object regions and identify point-wise discrepancies as pose shifts. In addition, a Geometry Feature Aggregation Module (GFAM) integrates multi-scale geometric feature maps to distill crucial geometric features. Then, the resulting dense 2D–3D correspondences are passed to a Perspective-n-Point (PnP) module for 6-DoF pose computation. Experimental results on the LINEMOD and Occlusion LINEMOD datasets indicate that our proposed method is highly competitive with state-of-the-art approaches, achieving 96.54% and 49.35% accuracy, respectively, utilizing the ADD-S metric with a 0.10d threshold. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

18 pages, 1616 KiB  
Article
Effect of Brewers’ Spent Grain Addition to a Fermented Form on Dough Rheological Properties from Different Triticale Flour Cultivars
by Aliona Ghendov-Mosanu, Sorina Ropciuc, Adriana Dabija, Olesea Saitan, Olga Boestean, Sergiu Paiu, Iurie Rumeus, Svetlana Leatamborg, Galina Lupascu and Georgiana Gabriela Codină
Foods 2025, 14(1), 41; https://doi.org/10.3390/foods14010041 - 27 Dec 2024
Cited by 1 | Viewed by 1151
Abstract
Triticale grains and brewers’ spent grain (BSG) can be new sources to develop food products. From a socio-economical point of view, this fact is important since triticale is easily adapted to the climatic changes and BSG is a low-cost material which may lead [...] Read more.
Triticale grains and brewers’ spent grain (BSG) can be new sources to develop food products. From a socio-economical point of view, this fact is important since triticale is easily adapted to the climatic changes and BSG is a low-cost material which may lead to a “zero-waste” desiderate. In this study, dough rheological properties obtained from different triticale cultivars (Ingen 33, Ingen 35, Ingen 54, and Ingen 93) cultivated in the Republic of Moldova and BSG in a fermented form (BSF) in an addition level of 10% and 17.5% were analyzed. For this purpose, different rheological devices, such as Mixolab, Alveograph, HAAKE MARS 40 Rheometer, Falling Number, and Rheofermentometer, were used. Also, the pH value of the dough samples with different levels of BSF addition during fermentation was determined. According to the data obtained, BSF addition decreased water absorption values; torques values corresponding to stages 1–5 of the Mixolab curve; and dynamic rheological elastic, viscous, and complex modules. For the 17.5% BSF addition to triticale flour, the best rheological results were obtained for the Ingen 33 and Ingen 54 varieties. In addition, the BSF addition decreased the baking strength and tenacity of the Alveograph curve. The pH values of the dough samples during fermentation significantly decreased (p < 0.05) with the increased amount of BSF incorporated into the dough recipe. The highest pH decreased values were obtained for Ingen 35 with a 17.5% BSF addition, which varied between 5.58 and 5.48. During fermentation, all data recorded by the Rheofermentometer device were improved. The dough samples presented a high retention coefficient, which varied between 99.1 and 99.5%. The falling number decreased with the increasing level of BSF in triticale flour, indicating an increase in α-amylase activity in the mixed flours. The principal component analysis data showed a strong association between triticale flour varieties without a BSF addition and those with a high amount of BSF incorporated into the dough recipe. The results obtained indicate the fact that many mixes between BSF and different triticale varieties may lead to bakery products of a good quality. Full article
Show Figures

Figure 1

Back to TopTop