Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = mandelic acid (MA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1889 KiB  
Review
Biosynthesis Strategies and Application Progress of Mandelic Acid Based on Biomechanical Properties
by Jingxin Yin, Yi An and Haijun Gao
Microorganisms 2025, 13(8), 1722; https://doi.org/10.3390/microorganisms13081722 - 23 Jul 2025
Viewed by 509
Abstract
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development [...] Read more.
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development due to issues such as complex processes, poor stereoselectivity, numerous byproducts, and serious environmental pollution. MA synthesis strategies based on biocatalytic technology have become a research hotspot due to their high efficiency, environmental friendliness, and excellent stereoselectivity. Significant progress has been made in enzyme engineering modifications, metabolic pathway design, and process optimization. Importantly, biomechanical research provides a transformative perspective for this field. By analyzing the mechanical response characteristics of microbial cells in bioreactors, biomechanics facilitates the regulation of relevant environmental factors during the fermentation process, thereby improving synthesis efficiency. Molecular dynamics simulations are also employed to uncover stability differences in enzyme–substrate complexes, providing a structural mechanics basis for the rational design of highly catalytically active enzyme variants. These biomechanic-driven approaches lay the foundation for the future development of intelligent, responsive biosynthesis systems. The deep integration of biomechanics and synthetic biology is reshaping the process paradigm of green MA manufacturing. This review will provide a comprehensive summary of the applications of MA and recent advances in its biosynthesis, with a particular focus on the pivotal role of biomechanical characteristics. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

14 pages, 1234 KiB  
Article
Metabolic Engineering of Escherichia coli for De Novo Biosynthesis of Mandelic Acid
by Chang Liu, Xuefeng Xiao, Wanbin Xing, Rina Na, Yunuo Song, Guoqiang Cao and Pengchao Wang
Fermentation 2025, 11(6), 331; https://doi.org/10.3390/fermentation11060331 - 9 Jun 2025
Viewed by 904
Abstract
Mandelic acid (MA) is a valuable α-hydroxy acid with applications in pharmaceuticals, cosmetics, and fine chemicals. While chemical synthesis is well established, concerns over toxicity and sustainability have driven interest in microbial production. Here, we engineered Escherichia coli for de novo MA biosynthesis [...] Read more.
Mandelic acid (MA) is a valuable α-hydroxy acid with applications in pharmaceuticals, cosmetics, and fine chemicals. While chemical synthesis is well established, concerns over toxicity and sustainability have driven interest in microbial production. Here, we engineered Escherichia coli for de novo MA biosynthesis by integrating enzyme screening, metabolic flux optimization, and pathway regulation. We first screened and identified an efficient hydroxymandelate synthase (HMAS) homolog from Actinosynnema mirum for MA synthesis, and subsequently enhanced the shikimate pathway along with the supply of the precursors erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP). Additionally, CRISPR interference (CRISPRi) was employed to repress competing pathways and redirect flux toward MA production. High-cell-density cultivation (HCDC) in a 5 L bioreactor demonstrated the strain’s industrial potential, achieving an MA titer of 9.58 g/L, the highest reported for microbial production. This study provides a systematic metabolic engineering approach for efficient MA biosynthesis from glucose, offering a foundation for sustainable large-scale production, demonstrating not only genetic-level optimizations, but also effective process scaling through high-cell-density cultivation, highlighting the power of pathway engineering in microbial cell factories. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

20 pages, 5663 KiB  
Article
Cross-Linked Metathesis Polynorbornenes Based on Nadimides Bearing Hydrocarbon Substituents: Synthesis and Physicochemical Properties
by Kirill S. Sadovnikov, Ivan V. Nazarov, Vsevolod A. Zhigarev, Anastasia A. Danshina, Igor S. Makarov and Maxim V. Bermeshev
Polymers 2024, 16(18), 2671; https://doi.org/10.3390/polym16182671 - 22 Sep 2024
Cited by 2 | Viewed by 1481
Abstract
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked [...] Read more.
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked polymers in more than 90% yields. The metathesis copolymerization of the bis(nadimides) and a monofunctional norbornene derivative containing the β-pinene fragment also resulted in insoluble cross-linked polymers in nearly quantitative yields. The structures and purity of the synthesized polymers were confirmed via IR spectroscopy and CP/MAS NMR spectroscopy. Conditions for the fabrication of mechanically strong solution-cast thin films based on copolymers synthesized from the comonomers mentioned above were determined by varying the content of the cross-linking agent. It was shown that the films made in this way are stable in a range of organic solvents and could be useful as semipermeable or membrane materials for use in liquid organic media. The permeability of the polymer films in question to 1-phenylethanol and mandelic acid was studied. The results obtained are discussed along with the data from the DSC, TGA, and powder X-ray diffraction studies of the properties of the synthesized metathesis homo- and copolymers. Full article
(This article belongs to the Special Issue Preparation and Application of Functional Polymer Materials)
Show Figures

Figure 1

26 pages, 2041 KiB  
Article
Gas and Liquid Chromatography Mass Spectrometry as a Tool for Elucidating Volatile Organic Compounds (VOCs) and Metabolites in Maternal Milk: A Perspective on Infants’ Health Risk Assessment
by Evangelia N. Tzanetou, Electra Manea-Karga, Eirini Baira, Theodora Boutsikou, Zoi Iliodromiti, Nicoletta Iacovidou, Kyriaki Machera and Konstantinos M. Kasiotis
Chemosensors 2024, 12(3), 30; https://doi.org/10.3390/chemosensors12030030 - 21 Feb 2024
Cited by 2 | Viewed by 2681
Abstract
Maternal milk is pivotal for infants’ nutrition. It also portrays the chemical burden to which the mother has been exposed. One of the chemical families that is prevalent and related to potential toxic effects are volatile organic compounds (VOCs). In the present study, [...] Read more.
Maternal milk is pivotal for infants’ nutrition. It also portrays the chemical burden to which the mother has been exposed. One of the chemical families that is prevalent and related to potential toxic effects are volatile organic compounds (VOCs). In the present study, motivated by the scarcity of works dealing with concomitant VOC and metabolite determination in maternal milk, two new gas/liquid chromatography tandem mass spectrometry (GC-MS/MS, LC-MS/MS) methods for the simultaneous measurement of 25 VOCs and 9 of their metabolites, respectively, in maternal milk were developed and applied to 20 maternal milk samples collected from mothers in Greece. In parallel, a headspace solid-phase microextraction (HS-SPME)–GC-MS method was employed for the untargeted screening of chemicals. Low detection rates for benzene, toluene, styrene and p,m-xylenes, and three of their metabolites, namely N-acetyl-S-(benzyl)-L-cysteine (BMA, metabolite of toluene), 3-methylhippuric (3-MHA, metabolite of xylenes) and mandelic acid (MA as DL and R isomers, metabolites of styrene and ethylbenzene), were evidenced in concentrations varying from <lower limit of quantification (LLOQ) to 0.79 ng mL−1. HS-SPME–GC-MS disclosed the presence of common maternal milk constituents such as fatty acids. Nevertheless, bisphenol-A, bisphenol derivatives and phthalates were also detected. The infants’ health risk assessment demonstrated a low risk and negligible carcinogenic risk, yet the detection of these compounds should not be underestimated. Full article
Show Figures

Figure 1

22 pages, 6061 KiB  
Article
Synthesis and Characterization of a New Molecularly Imprinted Polymer for Selective Extraction of Mandelic Acid Metabolite from Human Urine as a Biomarker of Environmental and Occupational Exposures to Styrene
by Murad. M. Qronfla, Bassem Jamoussi and Radhouane Chakroun
Polymers 2023, 15(10), 2398; https://doi.org/10.3390/polym15102398 - 21 May 2023
Cited by 7 | Viewed by 2549
Abstract
4-Vinylpyridine molecularly imprinted polymer (4-VPMIP) microparticles for mandelic acid (MA) metabolite as a major biomarker of exposure to styrene (S) were synthesized by bulk polymerization with a noncovalent approach. A common mole ratio of 1:4:20 (i.e., metabolite template: functional monomer: cross-linking agent, respectively) [...] Read more.
4-Vinylpyridine molecularly imprinted polymer (4-VPMIP) microparticles for mandelic acid (MA) metabolite as a major biomarker of exposure to styrene (S) were synthesized by bulk polymerization with a noncovalent approach. A common mole ratio of 1:4:20 (i.e., metabolite template: functional monomer: cross-linking agent, respectively) was applied to allow the selective solid-phase extraction of MA in a urine sample followed by high-performance liquid chromatography–diode array detection (HPLC-DAD). In this research, the 4-VPMIP components were carefully selected: MA was used as a template (T), 4-Vinylpyridine (4-VP) as a functional monomer (FM), ethylene glycol dimethacrylate (EGDMA) as a cross-linker (XL), and azobisisobutyronitrile (AIBN) as an initiator (I) and acetonitrile (ACN) as a porogenic solvent. Non-imprinted polymer (NIP) which serves as a “control” was also synthesized simultaneously under the same condition without the addition of MA molecules. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to characterize the imprinted and nonimprinted polymer to explain the structural and morphological characteristics of the 4-VPMIP and surface NIP. The results obtained from SEM depicted that the polymers were irregularly shaped microparticles. Moreover, MIPs surfaces had cavities and were rougher than NIP. In addition, all particle sizes were less than 40 µm in diameter. The IR spectra of 4-VPMIPs before washing MA were a little different from NIP, while 4-VPMIP after elution had a spectrum that was almost identical to the NIP spectrum. The adsorption kinetics, isotherms, competitive adsorption, and reusability of 4-VPMIP were investigated. 4-VPMIP showed good recognition selectivity as well as enrichment and separation abilities for MA in the extract of human urine with satisfactory recoveries. The results obtained in this research imply that 4-VPMIP might be used as a sorbent for MA solid-phase extraction (MISPE), for the exclusive extraction of MA in human urine. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

13 pages, 6253 KiB  
Article
Morphology Modulation in Self-Assembly of Chiral 2-Hydroxy-2-Phenylacetic Acids in Polymeric Diluents
by Baiq Firyal Salsabila Safitri and Eamor M. Woo
Crystals 2022, 12(6), 807; https://doi.org/10.3390/cryst12060807 - 7 Jun 2022
Cited by 1 | Viewed by 2161
Abstract
This study focused on the chirality effects that control the lamellar bending sense in self-assembled crystals of chiral 2-hydroxy-2-phenylacetic acids. 2-Hydroxy-2-phenylacetic acid or mandelic acid (MA) was crystallized in the presence of poly(4-vinyl phenol) (PVPh), and its crystalline structures and morphologies were assessed [...] Read more.
This study focused on the chirality effects that control the lamellar bending sense in self-assembled crystals of chiral 2-hydroxy-2-phenylacetic acids. 2-Hydroxy-2-phenylacetic acid or mandelic acid (MA) was crystallized in the presence of poly(4-vinyl phenol) (PVPh), and its crystalline structures and morphologies were assessed using polarized optical microscopy (POM) and scanning electron microscopy (SEM). MA of two opposite chiral forms (S- and R-) was crystallized with PVPh as the morphology modulator; with adjustment of the PVPh content, the morphology of MA crystals transforms from ring-banded spherulites to highly dendritic spherulites. For MA/PVPh (50/50 wt./wt.) blend and neat MA at same Tc, the dendritic spherulites are packed with single crystals where the lamellae bend at a specific direction varying with Tc and chirality. Contrary to conventional thought, the bending senses of the MA lamellae in the dendritic spherulites are not solely governed by the MA molecular chirality (S or R), but also by Tc. Only at high Tc (>65 °C) is the lamellar bending direction in dendritic spherulites of (S)-MA or (R)-MA blended with PVPh dictated by the chirality, i.e., displaying counterclockwise and clockwise bending direction for (S)-MA/PVPh and (R)-MA/PVPh, respectively. Nevertheless, at low Tc (45 °C), the bending sense of dendritic spherulites displays an opposite direction from those at the higher Tc, which is to say that the chirality alone does not control the lamellar bending direction. Full article
(This article belongs to the Special Issue Feature Papers in Macromolecular Crystals)
Show Figures

Figure 1

6 pages, 1311 KiB  
Proceeding Paper
Multicomponent Crystalline Solid Forms of Pyridinecarboxamides and DL-2-Hydroxy-2-phenylacetic Acid
by Alfonso Castiñeiras, Isabel García-Santos and Rocío Torres-Iglesias
Chem. Proc. 2022, 8(1), 22; https://doi.org/10.3390/ecsoc-25-11729 - 14 Nov 2021
Viewed by 1424
Abstract
We have prepared co-crystals of racemic DL-2-Hydroxy-2-phenylacetic acid (DL-Mandelic acid, DL-H2ma) with achiral 2-Pyridinecarboxamide (picolinamide, pic), 3-Pyridinecarboxamide (nicotinamide, nam), and 4-Pyridinecarboxamide (isonicotinamide, inam); they have been characterized by elemental analysis, single crystal and powder X-ray, IR spectroscopy [...] Read more.
We have prepared co-crystals of racemic DL-2-Hydroxy-2-phenylacetic acid (DL-Mandelic acid, DL-H2ma) with achiral 2-Pyridinecarboxamide (picolinamide, pic), 3-Pyridinecarboxamide (nicotinamide, nam), and 4-Pyridinecarboxamide (isonicotinamide, inam); they have been characterized by elemental analysis, single crystal and powder X-ray, IR spectroscopy and 1H and 13C NMR. The crystal packing is stabilized primarily by hydrogen bonding and, in some cases, through π–π stacking interactions. The analysis of crystal structures reveals the existence of the characteristic heterosynthons with the binding motif R22(8) (primary amide-carboxilic acid) between pyridinecarboxamide molecules and the acid. Other synthons involve hydrogen bonds such as (carboxyl)O-H···N(pyridine) and (hydroxyl)O-H···N(pyridine). Full article
Show Figures

Figure 1

12 pages, 1827 KiB  
Article
Resolution of Halogenated Mandelic Acids through Enantiospecific Co-Crystallization with Levetiracetam
by Jie Wang and Yangfeng Peng
Molecules 2021, 26(18), 5536; https://doi.org/10.3390/molecules26185536 - 12 Sep 2021
Cited by 10 | Viewed by 2997
Abstract
The resolution of halogenated mandelic acids using levetiracetam (LEV) as a resolving agent via forming enantiospecific co-crystal was presented. Five halogenated mandelic acids, 2-chloromandelic acid (2-ClMA), 3-chloromandelic acid (3-ClMA), 4-chloromandelic acid (4-ClMA), 4-bromomandelic acid (4-BrMA), and 4-fluoromandelic acid (4-FMA), were selected as racemic [...] Read more.
The resolution of halogenated mandelic acids using levetiracetam (LEV) as a resolving agent via forming enantiospecific co-crystal was presented. Five halogenated mandelic acids, 2-chloromandelic acid (2-ClMA), 3-chloromandelic acid (3-ClMA), 4-chloromandelic acid (4-ClMA), 4-bromomandelic acid (4-BrMA), and 4-fluoromandelic acid (4-FMA), were selected as racemic compounds. The effects of the equilibrium time, molar ratio of the resolving agent to racemate, amount of solvent, and crystallization temperature on resolution performance were investigated. Under the optimal conditions, the resolution efficiency reached up to 94% and the enantiomeric excess (%e.e.) of (R)-3-chloromandelic acid was 63%e.e. All five halogenated mandelic acids of interest in this study can be successfully separated by LEV via forming enantiospecific co-crystal, but the resolution performance is significantly different. The results showed that LEV selectively co-crystallized with S enantiomers of 2-ClMA, 3-ClMA, 4-ClMA, and 4-BrMA, while it co-crystallized with R enantiomers of 4-FMA. This indicates that the position and type of substituents of racemic compounds not only affect the co-crystal configuration, but also greatly affect the efficiency of co-crystal resolution. Full article
Show Figures

Graphical abstract

11 pages, 7423 KiB  
Communication
Construction and Application of Graphene Oxide-Bovine Serum Albumin Modified Extended Gate Field Effect Transistor Chiral Sensor
by Le Li, Xiaofei Ma, Yin Xiao and Yong Wang
Sensors 2021, 21(11), 3921; https://doi.org/10.3390/s21113921 - 7 Jun 2021
Cited by 12 | Viewed by 3445
Abstract
Chirality is an essential natural attribute of organisms. Chiral molecules exhibit differences in biochemical processes, pharmacodynamics, and toxicological properties, and their enantioselective recognition plays an important role in explaining life science processes and guiding drug design. Herein, we developed an ultra-sensitive enantiomer recognition [...] Read more.
Chirality is an essential natural attribute of organisms. Chiral molecules exhibit differences in biochemical processes, pharmacodynamics, and toxicological properties, and their enantioselective recognition plays an important role in explaining life science processes and guiding drug design. Herein, we developed an ultra-sensitive enantiomer recognition platform based on an extended-gate metal-oxide semiconductor field-effect-transistor (Nafion–GO@BSA–EG-MOSFET) that achieved effective chiral resolution of ultra-sensitive Lysine (Lys) and α-Methylbenzylamine (α-Met) enantiodiscrimination at the femtomole level. Bovine serum albumin (BSA) was immobilized on the surface of graphene oxide (GO) through amide bond coupling to prepare the GO@BSA complex. GO@BSA was drop-cast on deposited Au surfaces with a Nafion solution to afford the extended-gate sensing unit. Effective recognition of chiral enantiomers of mandelic acid (MA), tartaric acid (TA), tryptophan (Trp), Lys and α-Met was realized. Moreover, the introduction of GO reduced non-specific adsorption, and the chiral resolution concentration of α-Met reached the level of picomole in a 5-fold diluted fetal bovine serum (FBS). Finally, the chiral recognition mechanism of the as-fabricated sensor was proposed. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

22 pages, 7115 KiB  
Article
Weak Interactions in Cocrystals of Isoniazid with Glycolic and Mandelic Acids
by Raquel Álvarez-Vidaurre, Alfonso Castiñeiras, Antonio Frontera, Isabel García-Santos, Diego M. Gil, Josefa M. González-Pérez, Juan Niclós-Gutiérrez and Rocío Torres-Iglesias
Crystals 2021, 11(4), 328; https://doi.org/10.3390/cryst11040328 - 25 Mar 2021
Cited by 11 | Viewed by 4018
Abstract
This work deals with the preparation of pyridine-3-carbohydrazide (isoniazid, inh) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or d,l-mandelic acid (H2ma) resulted in the formation of cocrystals or salts of composition (inh)·(H2ga) ( [...] Read more.
This work deals with the preparation of pyridine-3-carbohydrazide (isoniazid, inh) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or d,l-mandelic acid (H2ma) resulted in the formation of cocrystals or salts of composition (inh)·(H2ga) (1) and [Hinh]+[Hma]·(H2ma) (2) when reacted with isoniazid. An N′-(propan-2-ylidene)isonicotinic hydrazide hemihydrate, (pinh)·1/2(H2O) (3), was also prepared by condensation of isoniazid with acetone in the presence of glycolic acid. These prepared compounds were well characterized by elemental analysis, and spectroscopic methods, and their three-dimensional molecular structure was determined by single crystal X-ray crystallography. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and its derivatives. The remaining hydrogen-bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems. Finally, Hirshfeld surface analysis and Density-functional theory (DFT) calculations (including NCIplot and QTAIM analyses) have been performed to further characterize and rationalize the non-covalent interactions. Full article
(This article belongs to the Special Issue σ- and π-Hole Interactions (Volume II))
Show Figures

Figure 1

7 pages, 472 KiB  
Proceeding Paper
Interactions between Isoniazid and α-Hydroxycarboxylic Acids
by Raquel Álvarez-Vidaurre, Alfonso Castiñeiras, Isabel García-Santos and Rocío Torres-Iglesias
Chem. Proc. 2021, 3(1), 73; https://doi.org/10.3390/ecsoc-24-08355 - 14 Nov 2020
Cited by 2 | Viewed by 1827
Abstract
The present study refers to the preparation of isonicotinic acid hydrazide (isoniazid (INH)) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or dl-mandelic acid (H2ma) resulted in the formation of cocrystals, or salts of composition, as [...] Read more.
The present study refers to the preparation of isonicotinic acid hydrazide (isoniazid (INH)) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or dl-mandelic acid (H2ma) resulted in the formation of cocrystals, or salts of composition, as isoniazid−glycolic acid cocrystal (INH)·(H2ga) (1) and isoniazid−dl-mandelic acid salt cocrystal [HINH]+[Hma]·(H2ma) (2), when reacted with isoniazid. An N’-(propan-2-ylidene)isonicotinic hydrazide hemihydrate, (pINH)·1/2(H2O) (3), was also prepared by condensation of isoniazid with acetone in the presence of glycolic acid. The prepared compounds were well characterized by elemental analysis and spectroscopic methods, and their three-dimensional molecular structure was determined by single-crystal X-ray crystallography. Hydrogen bonds involving carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and its derivatives. The remaining hydrogen-bonding sites on the isoniazid backbone vary on the basis of the steric influences of the derivative group. These are contrasted in each of the molecular systems. Full article
Show Figures

Figure 1

14 pages, 4936 KiB  
Article
Crystal Structural Analysis of DL-Mandelate Salt of Carvedilol and Its Correlation with Physicochemical Properties
by Nanami Hata, Takayuki Furuishi, Majid I. Tamboli, Momiji Ishizaki, Daiki Umeda, Kaori Fukuzawa and Etsuo Yonemochi
Crystals 2020, 10(1), 53; https://doi.org/10.3390/cryst10010053 - 20 Jan 2020
Cited by 4 | Viewed by 4608
Abstract
A 1:1 salt of carvedilol (CVD), an anti-hypertensive drug, with DL-mandelic acid (DL-MA) was crystallized from ethanol and the structure was characterized by X-ray single-crystal diffraction, revealing salt formation by transfer of an acidic proton from the COOH group of MA to the [...] Read more.
A 1:1 salt of carvedilol (CVD), an anti-hypertensive drug, with DL-mandelic acid (DL-MA) was crystallized from ethanol and the structure was characterized by X-ray single-crystal diffraction, revealing salt formation by transfer of an acidic proton from the COOH group of MA to the aliphatic (acyclic) secondary amino NH group of CVD. The crystal structure is triclinic, with a P-1 space group and unit cell parameters a = 9.8416(5) Å, b = 11.4689(5) Å, c = 14.0746(7) Å, α = 108.595(8), β = 95.182(7), γ = 107.323(8), V = 1406.95(15) Å3, and Z = 2. The asymmetric unit contained one protonated CVD and one MA anion, linked via an N+–H∙∙∙O¯ strong hydrogen bond and a ratio of 1:1. As previously reported, the thermal, spectroscopic, and powder X-ray diffraction properties of the salt of CVD with DL-MA (CVD_DL-MA) differed from CVD alone. The intrinsic dissolution rate of CVD_DL-MA was about 10.7 times faster than CVD alone in a pH 6.8 buffer. Full article
(This article belongs to the Special Issue Pharmaceutical Crystals and Its Application)
Show Figures

Graphical abstract

Back to TopTop