Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,599)

Search Parameters:
Keywords = managed charging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
A State-of-Charge-Frequency Control Strategy for Grid-Forming Battery Energy Storage Systems in Black Start
by Yunuo Yuan and Yongheng Yang
Batteries 2025, 11(8), 296; https://doi.org/10.3390/batteries11080296 - 4 Aug 2025
Abstract
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In [...] Read more.
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In this context, a state-of-charge (SOC)-frequency control strategy for grid-forming BESSs is proposed to enhance their role in stabilizing grid frequency and improving overall system performance. In the system, the DC-link capacitor is regulated to maintain the angular frequency through a matching control scheme, emulating the characteristics of the rotor dynamics of a synchronous generator (SG). Thereby, the active power control is implemented in the control of the DC/DC converter to further regulate the grid frequency. More specifically, the relationship between the active power and the frequency is established through the SOC of the battery. In addition, owing to the inevitable presence of differential operators in the control loop, a high-gain observer (HGO) is employed, and the corresponding parameter design of the proposed method is elaborated. The proposed strategy simultaneously achieves frequency regulation and implicit energy management by autonomously balancing power output with available battery capacity, demonstrating a novel dual benefit for sustainable grid operation. To verify the effectiveness of the proposed control strategy, a 0.5-Hz frequency change and a 10% power change are carried out through simulations and also on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

21 pages, 3085 KiB  
Article
Poultry Manure-Derived Biochar Synthesis, Characterization, and Valorization in Agriculture: Effect of Pyrolysis Temperature and Metal-Salt Modification
by Samar Hadroug, Leila El-Bassi, Salah Jellali, Ahmed Amine Azzaz, Mejdi Jeguirim, Helmi Hamdi, James J. Leahy, Amine Aymen Assadi and Witold Kwapinski
Soil Syst. 2025, 9(3), 85; https://doi.org/10.3390/soilsystems9030085 (registering DOI) - 4 Aug 2025
Abstract
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were [...] Read more.
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were deeply characterized through the assessment of their particle size distribution, pH, electrical conductivity, pH at point-zero charge, mineral composition, morphological structure, and surface functionality and crystallinity, and then valorized as biofertilizer to grow spring barley at pot-scale for 40 days. Characterization results showed that Fe- and Mn-based nanoparticles were successfully loaded onto the surface of the post-modified biochars, which significantly enhanced their structural and surface chemical properties. Moreover, compared to the control treatment, both raw and post-modified biochars significantly improved the growth parameters of spring barley plants (shoot and root length, biomass weight, and nutrient content). The highest biomass production was obtained for the treatment with PM-B-400-Fe, owing to its enhanced physico-chemical properties and its higher ability in releasing nutrients and immobilizing heavy metals. These results highlight the potential use of Fe-modified poultry manure-derived biochar produced at low temperatures as a sustainable biofertilizer for soil enhancement and crop yield improvement, while addressing manure management issues. Full article
Show Figures

Figure 1

17 pages, 3816 KiB  
Article
Charging Station Siting and Capacity Determination Based on a Generalized Least-Cost Model of Traffic Distribution
by Mingzhao Ma, Feng Wang, Lirong Xiong, Yuhonghao Wang and Wenxin Li
Algorithms 2025, 18(8), 479; https://doi.org/10.3390/a18080479 - 4 Aug 2025
Abstract
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due [...] Read more.
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due to low traffic flow, resulting in a waste of resources. Areas with high traffic flow may have fewer charging stations, resulting in long queues and road congestion. The purpose of this study is to optimize the location of charging stations and the number of charging piles in the stations based on the distribution of traffic flow, and to construct a bi-level programming model by analyzing the distribution of traffic flow. The upper-level planning model is the user-balanced flow allocation model, which is solved to obtain the optimal traffic flow allocation of the road network, and the output of the upper-level planning model is used as the input of the lower-layer model. The lower-level planning model is a generalized minimum cost model with driving time, charging waiting time, charging time, and the cost of electricity consumed to reach the destination of the trip as objective functions. In this study, an empirical simulation is conducted on the road network of Hefei City, Anhui Province, utilizing three algorithms—GA, GWO, and PSO—for optimization and sensitivity analysis. The optimized results are compared with the existing charging station deployment scheme in the road network to demonstrate the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

25 pages, 1183 KiB  
Article
A Novel Data-Driven Multi-Branch LSTM Architecture with Attention Mechanisms for Forecasting Electric Vehicle Adoption
by Md Mizanur Rahaman, Md Rashedul Islam, Mia Md Tofayel Gonee Manik, Md Munna Aziz, Inshad Rahman Noman, Mohammad Muzahidur Rahman Bhuiyan, Kanchon Kumar Bishnu and Joy Chakra Bortty
World Electr. Veh. J. 2025, 16(8), 432; https://doi.org/10.3390/wevj16080432 - 1 Aug 2025
Viewed by 107
Abstract
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short-Term Memory (LSTM) branches—one for past EV sales, one for [...] Read more.
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short-Term Memory (LSTM) branches—one for past EV sales, one for infrastructure and policy signals, and one for economic trends. An attention mechanism first highlights the most important weeks in each branch, then decides which branch matters most at any point in time. Trained end-to-end on publicly available data, the model beats traditional statistical methods and newer deep learning baselines while remaining small enough to run efficiently. An ablation study shows that every branch and both attention steps improve accuracy, and that adding policy and economic data helps more than relying on EV history alone. Because the network is modular and its attention weights are easy to interpret, it can be extended to produce confidence intervals, include physical constraints, or forecast adoption of other clean-energy technologies. Full article
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 180
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 - 1 Aug 2025
Viewed by 156
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

19 pages, 10949 KiB  
Article
Segmentation Control in Dynamic Wireless Charging for Electric Vehicles
by Tran Duc Hiep, Nguyen Huu Minh, Tran Trong Minh, Nguyen Thi Diep and Nguyen Kien Trung
Electronics 2025, 14(15), 3086; https://doi.org/10.3390/electronics14153086 - 1 Aug 2025
Viewed by 145
Abstract
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power [...] Read more.
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power and the need for precise switching control of the transmitting segments. This paper proposes a position-sensorless control method for managing transmitting lines in a dynamic wireless charging system. The proposed approach uses a segmented charging lane structure combined with two receiving coils and LCC compensation circuits on both the transmitting and receiving sides. Based on theoretical analysis, the study determines the optimal switching positions and signals to reduce the current fluctuation. To validate the proposed method, a dynamic wireless charging system prototype with a power rating of 3kW was designed, constructed, and tested in a laboratory environment. The results demonstrate that the proposed position-sensorless control method effectively mitigates power fluctuations and enhances the stability and efficiency of the wireless charging process. Full article
Show Figures

Figure 1

16 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Viewed by 227
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 107
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Viewed by 120
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

20 pages, 2321 KiB  
Article
Electric Vehicle Energy Management Under Unknown Disturbances from Undefined Power Demand: Online Co-State Estimation via Reinforcement Learning
by C. Treesatayapun, A. J. Munoz-Vazquez, S. K. Korkua, B. Srikarun and C. Pochaiya
Energies 2025, 18(15), 4062; https://doi.org/10.3390/en18154062 - 31 Jul 2025
Viewed by 251
Abstract
This paper presents a data-driven energy management scheme for fuel cell and battery electric vehicles, formulated as a constrained optimal control problem. The proposed method employs a co-state network trained using real-time measurements to estimate the control law without requiring prior knowledge of [...] Read more.
This paper presents a data-driven energy management scheme for fuel cell and battery electric vehicles, formulated as a constrained optimal control problem. The proposed method employs a co-state network trained using real-time measurements to estimate the control law without requiring prior knowledge of the system model or a complete dataset across the full operating domain. In contrast to conventional reinforcement learning approaches, this method avoids the issue of high dimensionality and does not depend on extensive offline training. Robustness is demonstrated by treating uncertain and time-varying elements, including power consumption from air conditioning systems, variations in road slope, and passenger-related demands, as unknown disturbances. The desired state of charge is defined as a reference trajectory, and the control input is computed while ensuring compliance with all operational constraints. Validation results based on a combined driving profile confirm the effectiveness of the proposed controller in maintaining the battery charge, reducing fluctuations in fuel cell power output, and ensuring reliable performance under practical conditions. Comparative evaluations are conducted against two benchmark controllers: one designed to maintain a constant state of charge and another based on a soft actor–critic learning algorithm. Full article
(This article belongs to the Special Issue Forecasting and Optimization in Transport Energy Management Systems)
Show Figures

Figure 1

42 pages, 10454 KiB  
Article
State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms
by Romel Carrera, Leonidas Quiroz, Cesar Guevara and Patricia Acosta-Vargas
Sensors 2025, 25(15), 4632; https://doi.org/10.3390/s25154632 - 26 Jul 2025
Viewed by 473
Abstract
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under [...] Read more.
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop