Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = mammals reproduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 598 KiB  
Article
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
by Karl T. Ulrich
Sustainability 2025, 17(15), 7034; https://doi.org/10.3390/su17157034 - 2 Aug 2025
Viewed by 137
Abstract
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive [...] Read more.
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Graphical abstract

22 pages, 1370 KiB  
Review
Roles of Cyclic Nucleotide Phosphodiesterases in Signal Transduction Pathways in the Nematode Caenorhabditis elegans
by Kranti K. Galande and Rick H. Cote
Cells 2025, 14(15), 1174; https://doi.org/10.3390/cells14151174 - 30 Jul 2025
Viewed by 773
Abstract
Cyclic nucleotide signaling pathways play essential roles in the physiology of the nematode Caenorhabditis elegans, influencing processes such as reproduction, environmental sensing, and cellular homeostasis. The intracellular levels of cAMP and cGMP are tightly regulated by their synthesis by adenylyl and guanylyl [...] Read more.
Cyclic nucleotide signaling pathways play essential roles in the physiology of the nematode Caenorhabditis elegans, influencing processes such as reproduction, environmental sensing, and cellular homeostasis. The intracellular levels of cAMP and cGMP are tightly regulated by their synthesis by adenylyl and guanylyl cyclases and their degradation catalyzed by 3′,5′-cyclic nucleotide phosphodiesterases (PDEs). Mammals possess eleven PDE families (PDE1 through PDE11), whereas nematode genomes contain six PDE genes orthologous to six of the mammalian PDE families. Despite their evolutionary conservation, the signaling pathways, regulatory mechanisms, and enzymatic properties of nematode PDEs remain incompletely understood. This review synthesizes current knowledge on the regulation of cyclic nucleotide levels in C. elegans, highlighting how dysregulation of nematode PDEs affects a wide range of physiological and behavioral processes, including sensory transduction, development, and locomotion. Full article
Show Figures

Graphical abstract

10 pages, 1100 KiB  
Article
The Biology of Demodecid Mites (Trombidiformes: Demodecidae) and Their Parasitism in the Eurasian Beaver Castor fiber Linnaeus, 1758, with a Description of a New Species
by Leszek Rolbiecki, Joanna N. Izdebska, Joanna Dzido and Sławomira Fryderyk
Animals 2025, 15(14), 2136; https://doi.org/10.3390/ani15142136 - 18 Jul 2025
Viewed by 253
Abstract
The largest Eurasian rodent, the Eurasian beaver Castor fiber, is known for its amphibious lifestyle that allows it to adapt its environment to its needs. Due to its lifestyle and evolutionary history, the beaver is characterized by a distinct, unique parasitofauna. In [...] Read more.
The largest Eurasian rodent, the Eurasian beaver Castor fiber, is known for its amphibious lifestyle that allows it to adapt its environment to its needs. Due to its lifestyle and evolutionary history, the beaver is characterized by a distinct, unique parasitofauna. In this context, the occurrence of mites from the Demodecidae family in the Eurasian beaver was investigated. The topography of the Demodex castoris was analyzed: it was previously known from a single record from a single skin location of this host. The mite was found in large numbers in various locations in the hairy skin, including the head, trunk, and limbs. In addition, a new species associated with hairless skin, mainly around the mouth, was discovered and described: Demodex ovaportans sp. nov. The females of this species carry the egg on the dorsal side of the podosoma, which may be a form of care and a previously unknown reproductive strategy in Demodecidae. Our findings confirm that a host-specific demodecid mite species associated with the hairy skin of the entire body is a universal model in mammals. They also emphasize the uniqueness of the beaver parasitofauna, as evidenced by the host specificity and the different biology of the demodecids described in it. Full article
(This article belongs to the Special Issue Diversity and Interactions Between Mites and Vertebrates)
Show Figures

Figure 1

24 pages, 1481 KiB  
Article
Sources of Environmental Exposure to the Naturally Occurring Anabolic Steroid Ecdysterone in Horses
by Martin N. Sillence, Kathi Holt, Fang Ivy Li, Patricia A. Harris, Mitchell Coyle and Danielle M. Fitzgerald
Animals 2025, 15(14), 2120; https://doi.org/10.3390/ani15142120 - 17 Jul 2025
Viewed by 337
Abstract
Ecdysterone controls moulting and reproduction in insects, crustaceans, and helminths. It is also produced by many plants, probably as an insect deterrent. The steroid is not made by vertebrates but has anabolic effects in mammals and could be useful for treating sarcopenia in [...] Read more.
Ecdysterone controls moulting and reproduction in insects, crustaceans, and helminths. It is also produced by many plants, probably as an insect deterrent. The steroid is not made by vertebrates but has anabolic effects in mammals and could be useful for treating sarcopenia in aged horses. However, ecdysterone is banned in horseracing and equestrian sports, and with no limit of reporting, the risk of unintended exposure to this naturally occurring prohibited substance is a concern. To explore this risk, pasture plants and hay samples were analysed for ecdysterone content, as well as samples of blood, faeces, and intestinal mucosa from horses (euthanized for non-research purposes) with varying degrees of endo-parasite infestation. The variability in serum ecdysterone concentrations between different horses after administering a fixed dose was also examined. Ecdysterone was detected in 24 hay samples (0.09 to 3.74 µg/g) and several weeds, with particularly high concentrations in Chenopodium album (244 µg/g) and Solanum nigrum (233 µg/g). There was a positive correlation between faecal ecdysterone and faecal egg counts, but no effect of anthelmintic treatment and no relation to the number of encysted cyathostome larvae in the large intestine mucosa. Certain horses maintained an unusually high serum ecdysterone concentration over several weeks and/or displayed an abnormally large response to oral ecdysterone administration. Thus, the risk of environmental exposure to ecdysterone is apparent, and several factors must be considered when determining an appropriate dosage for clinical studies or setting a reporting threshold for equine sports. Full article
Show Figures

Figure 1

27 pages, 5816 KiB  
Article
Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans
by Piper Reid Hunt, Martine Ferguson, Nicholas Olejnik, Jeffrey Yourick and Robert L. Sprando
Toxics 2025, 13(7), 589; https://doi.org/10.3390/toxics13070589 - 14 Jul 2025
Viewed by 348
Abstract
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like [...] Read more.
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like C. elegans lacks these systems. However, many genetic pathways required for mammalian morphogenesis have at least some conserved elements in this small, invertebrate model. The C. elegans lifecycle is 3 days. The effects of 5FU, HU, and RV on the C. elegans morphology were evaluated on day 4 post-initiation of the feeding after hatching for continuous and 24 h (early-only) developmental exposures. Continuous exposures to 5FU and HU induced increases in the incidences of abnormal gonadal structures that were significantly reduced in early-only exposure groups. The incidence of prolapse increased with continuous 5FU and HU exposures and was further increased in early-only exposure groups. Intestinal prolapse through the vulval muscle in C. elegans may be related to reported 5FU and HU effects on skeletal muscle and the gastrointestinal tract in mammals. Continuous RV exposures induced a phenotype lacking a uterus and gonad arms, as well as vulval anomalies that were largely, but not completely, reversed with early-only exposures, which is consistent with reported reversible reproductive tract anomalies after an RV exposure in mammals. These findings suggest that C. elegans can be used to detect the hazard risk from chemicals that adversely affect conserved pathways involved in organismal morphogenesis, but to determine the fit-for-purpose use of this model in chemical safety evaluations, further studies using larger and more diverse chemical test panels are needed. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

28 pages, 3018 KiB  
Review
The Role of Neurohypophysial Hormones in the Endocrine and Paracrine Control of Gametogenesis in Fish
by Maya Zanardini and Hamid R. Habibi
Cells 2025, 14(14), 1061; https://doi.org/10.3390/cells14141061 - 10 Jul 2025
Viewed by 404
Abstract
Arginine vasopressin (AVP) and oxytocin (OXT) are neuropeptides traditionally recognized for their roles in the control of osmoregulation, blood pressure, lactation, and parturition in mammals. However, growing evidence suggests that AVPand OXT also regulate gonadal functions in teleost fish. Their expression in both [...] Read more.
Arginine vasopressin (AVP) and oxytocin (OXT) are neuropeptides traditionally recognized for their roles in the control of osmoregulation, blood pressure, lactation, and parturition in mammals. However, growing evidence suggests that AVPand OXT also regulate gonadal functions in teleost fish. Their expression in both male and female gonads, the presence of their receptors in ovaries and testes, and their interactions with steroids and other gonadal factors indicate a role in modulating gametogenesis and steroidogenesis via autocrine and paracrine mechanisms. Here, we review the current findings on AVP and OXT in teleost gonads, compared to the observed functions in mammals, emphasizing their systemic interactions within the hypothalamic–pituitary–gonadal (HPG) axis. While highlighting the roles of gonadal AVP and OXT in fish reproduction, we underscore the need for further research to unravel their complex multifactorial regulatory networks. Insights into the vasopressinergic system could enhance aquaculture practices by improving spawning success and reproductive efficiency. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Graphical abstract

18 pages, 3095 KiB  
Article
A Transcriptomics Approach to Unveil the Antioxidant Effects of Tryptophan on Oocyte Quality Under Oxidative Stress in Pigs
by Zhekun Zhu, Yanlong Li, Xinyin Fan, Shuang Cai, Siyu Li, Yutian Wang, Xinyu Wang and Fengjuan Yang
Biomolecules 2025, 15(7), 949; https://doi.org/10.3390/biom15070949 - 30 Jun 2025
Viewed by 295
Abstract
This study investigates the effect of tryptophan treatment on aged pig oocytes, focusing on its potential to reduce oxidative stress and improve oocyte quality. An oxidative stress model was induced using hydrogen peroxide (H2O2) to mimic aging effects on [...] Read more.
This study investigates the effect of tryptophan treatment on aged pig oocytes, focusing on its potential to reduce oxidative stress and improve oocyte quality. An oxidative stress model was induced using hydrogen peroxide (H2O2) to mimic aging effects on oocytes. Fresh ovaries from young sows were collected, and oocytes were aspirated and cultured for in vitro maturation. Oocytes in the H2O2 and the H2O2+Trp groups were exposed to 100 µM H2O2 for 30 min, with the H2O2+Trp group receiving an additional 50 µM tryptophan supplementation. RNA-sequencing was performed to study the underlying mechanism through which tryptophan mitigated the H2O2-induced oxidative stress in oocytes. The results demonstrated that tryptophan supplementation significantly reduced oxidative stress markers such as H2O2 and malonaldehyde (MDA) while restoring key antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT) confirming its antioxidant role. Furthermore, tryptophan improved cumulus cell expansion, and oocyte quality, which were compromised by oxidative stress. Transcriptomics study revealed the enrichment of several KEGG pathways, such as P13K-Akt signaling pathways as a critical regulator of cell survival and function, emphasizing the protective effects of tryptophan on oocyte integrity. Moreover, the protein–protein interaction (PPI) network identified several hub genes in the tryptophan-treated group compared with H2O2, including TIMP1, CCN2, and MMP12 as key players in ECM remodeling and cellular adhesion, which are critical for restoring oocyte quality. These findings suggest that tryptophan supplementation not only mitigated oxidative stress but also modulated gene expression related to cellular functions and stress response. These results propose that tryptophan could be a valuable therapeutic strategy for improving reproductive outcomes in aging sows and other mammals facing age-related oocyte dysfunction. Full article
(This article belongs to the Special Issue Placental-Related Disorders of Pregnancy: 2nd Edition)
Show Figures

Figure 1

18 pages, 2189 KiB  
Article
Changes of CB1 Receptor Expression in Tissues of Cocaine-Exposed Eels
by Lorenzo Riccio, Teresa Chianese, Aldo Mileo, Sabrina Balsamo, Rosaria Sciarrillo, Roberta Gatta, Luigi Rosati, Maria De Falco and Anna Capaldo
Animals 2025, 15(12), 1734; https://doi.org/10.3390/ani15121734 - 12 Jun 2025
Viewed by 1073
Abstract
Previous studies performed on the European eel Anguilla anguilla showed changes in the morphology and physiology of several tissues after exposure to environmental cocaine concentrations. To better understand the model through which cocaine produced its effects on these tissues, we investigated whether there [...] Read more.
Previous studies performed on the European eel Anguilla anguilla showed changes in the morphology and physiology of several tissues after exposure to environmental cocaine concentrations. To better understand the model through which cocaine produced its effects on these tissues, we investigated whether there were alterations in the expression of cannabinoid CB1 receptor (CB1R). Indeed, the endocannabinoid system, and CB1R, regulate neurotransmission, neurodevelopment, embryonic development, reproduction, and the activity of the gastrointestinal system. CB1R has been detected in nervous and peripheral tissues in mammals, and orthologues of the mammalian CB1R are found throughout vertebrates including chicken, turtle, frog, and fish. Therefore, samples of gut, kidney, ovary, muscle, liver, skin, and gills from cocaine-exposed and non-exposed eels were processed for routine histology. Immunohistochemical analysis was carried out to evaluate the immunolocalization of the CB1R. Our results showed for the first time (1) the presence of CB1R in the peripheral tissues of the eel, and (2) statistically significant differences in the localization of CB1R in the gut, kidney, ovary, muscle, and liver of the eels exposed to cocaine, compared to controls. These results demonstrate the involvement of CB1R in cocaine effects and suggest its potential role as a biomarker of tissue alteration. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

21 pages, 11870 KiB  
Review
Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(11), 2453; https://doi.org/10.3390/molecules30112453 - 3 Jun 2025
Cited by 1 | Viewed by 971
Abstract
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different [...] Read more.
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different environmental conditions may contribute to its invasive properties. Biotic stressors, such as herbivores, pathogens, and competing plant species are known to exert significant selective pressure on the plant’s survival, distribution, and abundance. L. leucocephala has been reported to contain several compounds involved in the defense functions against these biotic stressors. A large amount of L-mimosine, a non-protein amino acid, was found in all plant parts of L. leucocephala, including its flowers. L-Mimosine is toxic to herbivorous mammals and insects, parasitic nematodes, pathogenic fungi, and neighboring competing plant species by inactivating various essential enzymes and blocking DNA replication, and/or inducing oxidative stress conditions. Several flavonoids, polyphenolic compounds, and/or derivatives of benzoic and cinnamic acids are toxic to parasitic nematodes, pathogenic fungi and bacteria, and competing plant species by disrupting plasma membrane structures and functions, and various metabolic processes. These compounds may represent the invasive traits of L. leucocephala that have undergone natural selection during the evolution of the species. They may contribute to the defense functions against the biotic stressors, and increase its survival, distribution, and abundance in the introduced ranges. This is the first review to focus on the compounds involved in the defense functions against biotic stressors. Full article
Show Figures

Figure 1

25 pages, 14782 KiB  
Article
Genome-Wide Identification and Expression Analysis of Zona Pellucida (ZP) Gene Family in Cynoglossus semilaevis
by Kaili Zhang, Zhangfan Chen, Chengbin Gao, Xihong Li, Na Wang, Min Zhang, Haipeng Yan, Zhenxia Sha and Songlin Chen
Int. J. Mol. Sci. 2025, 26(11), 5346; https://doi.org/10.3390/ijms26115346 - 2 Jun 2025
Viewed by 608
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) is a commercially important mariculture species; however, its fertilization and hatching rates under artificial conditions remain relatively low. Zona pellucida proteins (ZPs), which mediate sperm–egg binding, were previously identified as differentially expressed genes between newly [...] Read more.
The Chinese tongue sole (Cynoglossus semilaevis) is a commercially important mariculture species; however, its fertilization and hatching rates under artificial conditions remain relatively low. Zona pellucida proteins (ZPs), which mediate sperm–egg binding, were previously identified as differentially expressed genes between newly differentiated ovaries and testes in C. semilaevis. In this study, we identified 25 ZPs of C. semilaevis through genomic analysis and classified them into five subfamilies. All genes possessed a conserved ZP domain, characteristic of the gene family from mammals to teleosts. Among them, nine genes were highly expressed in ovary cells, with the expression levels increasing during ovarian development, while another three genes were predominantly expressed in liver cells. Protein–protein interaction analysis predicted that 12 ZPs interacted with key reproductive regulators such as Gdf9, Arid4a, Arid4b, and Rbl, which were involved in steroidogenesis, sperm–egg recognition, and folliculogenesis. Functional analyses using RNA interference revealed that Cszpc7-1 knockdown in ovarian cells led to the downregulation of cyp19a, esr2, bmp15, and adamts-1, while the expression of rbl, gnas, adgrl1, and adgrl2 was upregulated. In contrast, Cszpax1 knockdown resulted in decreased expression of cyp19a, foxl2, arid4a, and zeb1, along with upregulation of arid4b, ogg1, and gdf9. These results suggested that ZP genes might contribute to ovarian homeostasis by regulating steroid hormone synthesis, follicular development, and ovulation. This study contributed to a deeper understanding of the reproductive mechanisms of C. semilaevis and provided evolutionary insights into the functional divergence of the ZP gene family across teleosts. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2359 KiB  
Article
Porcine Ovarian piRNA Dynamics: A Comparative Study During Follicular Atresia
by Jinbi Zhang, Long Huang, Xinxin Qin, Wenjie Li, Xiaolong Cheng and Zengxiang Pan
Biology 2025, 14(6), 609; https://doi.org/10.3390/biology14060609 - 26 May 2025
Viewed by 418
Abstract
Follicular atresia is a natural process of follicular degeneration in mammal ovaries, significantly impacting female reproductive potential. However, the underlying regulatory mechanisms remain underexplored, particularly those involving non-coding RNAs like PIWI-interacting RNAs (piRNAs). In this study, we collected single antral follicles from the [...] Read more.
Follicular atresia is a natural process of follicular degeneration in mammal ovaries, significantly impacting female reproductive potential. However, the underlying regulatory mechanisms remain underexplored, particularly those involving non-coding RNAs like PIWI-interacting RNAs (piRNAs). In this study, we collected single antral follicles from the ovaries of 180-day-old commercial sows, classified them as healthy (HF) and atretic (AF) based on morphological and biochemical criteria, and sequenced the RNA samples using the Illumina Hiseq 3000 system (San Diego, CA, USA). piRNAs were identified using three algorithms, and the differential expression was compared and validated by qPCR. The target genes of differentially expressed piRNAs were predicted and subjected to functional analysis. A total of 452 piRNAs were identified across all samples, with 103 showing differential expression between HFs and AFs. Among the top 12 piRNAs with the most significant expression differences validated by qPCR, 5 (piR-23, piR-27, piR-64, piR-65, and piR-76) exhibited statistically significant differences. Pathway analysis showed that these piRNAs primarily targeted genes involved in cell apoptosis regulation, inflammation and oxidative stress response, substance transport and signal transduction, and cellular structural integrity maintenance. Our study provides the first comprehensive profile of piRNAs in porcine ovarian follicles during atresia and reveals underlying potential regulatory mechanisms. These findings enhance our understanding of piRNA functions during the early follicular atresia process and offer insights for further functional studies and biomarker development in ovarian pathology. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

24 pages, 1217 KiB  
Article
Heat Wave, Cone Crops, Forest-Floor Small Mammals, and Mustelid Predation in Coniferous Forests of Southern British Columbia
by Thomas P. Sullivan, Druscilla S. Sullivan and Alan Vyse
Ecologies 2025, 6(2), 39; https://doi.org/10.3390/ecologies6020039 - 22 May 2025
Viewed by 545
Abstract
We report a landscape-scale natural experiment that followed the abundance and demography of forest-floor small mammals and the activity of small mustelids over a 4-year period of an extreme heat wave and abundant coniferous cone crops. Deer mice (Peromyscus maniculatus) and [...] Read more.
We report a landscape-scale natural experiment that followed the abundance and demography of forest-floor small mammals and the activity of small mustelids over a 4-year period of an extreme heat wave and abundant coniferous cone crops. Deer mice (Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi) are major species in the coniferous forest-floor small mammal community near Summerland in southern British Columbia, Canada. Their major mammalian predators include the short-tailed weasel (Mustela richardsonii), long-tailed weasel (Neogale frenata), and American marten (Martes americana). We evaluated three hypotheses (H) that may explain the changes in these mammals from 2021 to 2024: (H1) that large coniferous cone crops in 2022 would have generated high populations of forest-floor small mammals in 2023 owing to enhanced reproductive output and overwinter survival; (H2) that increased activity of mustelids would have followed population increases, resulting in the decline of small mammal prey in 2024; and (H3) that the widespread occurrence of cone crops in 2022 would also have elicited the same mammalian responses in 2023 at a second study area (Golden, BC) 276 km and three mountain ranges from Summerland. During the summer periods of each year, small mammal populations were monitored by intensive live-trapping, and mustelid presence was measured via an index of activity based on live traps, fecal scats, and predation events. The mean abundance and reproductive performance of the P. maniculatus and M. gapperi populations increased in response to the coniferous seedfall, thereby supporting H1. The activity of small mustelids responded positively to increased numbers of small mammal prey and potentially acted in a regulatory and top–down function in these communities, and hence partially support H2. Similar responses at Summerland and Golden indicated that this seedfall event and changes in the mammalian community occurred at a landscape-scale, thereby providing partial support for H3. Potential differential effects of large seed crops on consumers did not affect the mean abundance patterns for P. maniculatus but apparently reduced this metric for M. gapperi. Heat waves, induced by anthropogenic climate change, may alter the frequency of coniferous masting events, and their effects may temporarily change the number and species of mammalian seed consumers and their predators. Full article
Show Figures

Figure 1

14 pages, 1238 KiB  
Article
Effects of Urbanization on Flowering Phenology, Pollination, and Reproductive Success in the Chiropterophilous Tropical Tree Ceiba pentandra
by Henry F. Dzul-Cauich and Miguel A. Munguía-Rosas
Plants 2025, 14(11), 1575; https://doi.org/10.3390/plants14111575 - 22 May 2025
Viewed by 1762
Abstract
Urbanization often negatively impacts pollinator abundance and richness; however, its effects on different pollination components and plant reproductive success are highly variable. Previous research efforts have also shown geographic and taxonomical bias, with non-insect-pollinated plant species in tropical cities underrepresented in the literature. [...] Read more.
Urbanization often negatively impacts pollinator abundance and richness; however, its effects on different pollination components and plant reproductive success are highly variable. Previous research efforts have also shown geographic and taxonomical bias, with non-insect-pollinated plant species in tropical cities underrepresented in the literature. Although bats represent the most persistent mammal group in urban ecosystems, studies addressing the effect of urbanization on chiropterophilous plants are scarce. Here, we addressed the impacts of urbanization on flowering phenology, pollination, and reproductive success in the chiropterophilous tree Ceiba pentandra (L.) Gaertn. (Malvaceae) in two major tropical cities of the Yucatan Peninsula. We found that urbanization has led to an earlier flowering phenology; however, no effect of urbanization was detected in the two pollination components evaluated: pollinator visitation rate and pollen deposition. Finally, the effects of urbanization on the reproductive success of C. pentandra were mixed. While marginally negative effects of urbanization were found in fruit set, positive effects were found in seed germination. These findings suggest that urban pollinators can provide similar levels of pollination services and thus lead to comparable reproductive success for C. pentandra in forests and cities. Full article
(This article belongs to the Special Issue Plants and Their Floral Visitors in the Face of Global Change)
Show Figures

Figure 1

21 pages, 2159 KiB  
Article
Spatiotemporal Variations in Human Birth Weight Are Associated with Multiple Thermal Indices
by Per M. Jensen and Marten Sørensen
Atmosphere 2025, 16(5), 569; https://doi.org/10.3390/atmos16050569 - 9 May 2025
Cited by 1 | Viewed by 402
Abstract
Human populations are scattered worldwide and live under widely different climates. Like other mammals, humans respond to climatic influences through various processes involving behavior, physiology, and various forms of adaptation. Human populations can be explored in investigating patterns of adaptation because many of [...] Read more.
Human populations are scattered worldwide and live under widely different climates. Like other mammals, humans respond to climatic influences through various processes involving behavior, physiology, and various forms of adaptation. Human populations can be explored in investigating patterns of adaptation because many of their biological attributes have been monitored for over a century. Here, we evaluated the association between several thermal indices and human birth weight (BW) and offered some initial observations on the temporal integration of thermal cues associated with pregnancy outcomes. We compiled three datasets: (1) a dataset with global coverage of recent BWs; (2) an extended time series for seven European countries; and (3) a time series for four countries in equatorial Africa. Each dataset was analyzed for associations between BW and mean annual temperature, as well as seasonal and daily amplitudes. Mean annual temperatures, as well as seasonal and daily amplitudes, delivered consistent and comparable impacts in our analyses. The thermal indices can explain approx. 80% of the global variation in BW and 25–50% of the BW variation in time series covering the last 70 to 120 years. Mean BW in larger aggregates of humans (i.e., millions) is associated with several thermal indices, likely associated with systematic differences in proximate factors (e.g., maternal height, weight, food intake) between populations. This study underlines the diverse impact of the thermal environment on human reproduction, but it also underscores that this impact is less pronounced for differences in mean BW with respect to different communities, and it is possibly undetectable and/or irrelevant with respect to differences between individuals. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

13 pages, 3696 KiB  
Article
Exploring Tissue- and Sex-Specific DNA Methylation in Cattle Using a Pan-Mammalian Infinium Array
by Zhenbin Hu, Clarissa Boschiero, Mahesh Neupane, Nayan Bhowmik, Liu Yang, Levi Kilian, James Mel DeJarnette, Mehdi Sargolzaei, Bo Harstine, Cong-Jun Li, Wenbin Tuo, Ransom L. Baldwin, Curtis P. Van Tassell, Charles G. Sattler and George E. Liu
Int. J. Mol. Sci. 2025, 26(9), 4284; https://doi.org/10.3390/ijms26094284 - 1 May 2025
Viewed by 552
Abstract
DNA methylation is crucial in gene expression regulation and tissue differentiation in livestock. However, genome-wide methylation patterns among tissues remain underexplored in cattle, one of the world’s most important farm animals. This study investigates sex- and tissue-specific DNA methylation in cattle using CpG [...] Read more.
DNA methylation is crucial in gene expression regulation and tissue differentiation in livestock. However, genome-wide methylation patterns among tissues remain underexplored in cattle, one of the world’s most important farm animals. This study investigates sex- and tissue-specific DNA methylation in cattle using CpG site methylation data generated by an Infinium DNA Methylation array (HorvathMammalMethyl-Chip40) across seven tissues. Our analysis revealed significant tissue-specific methylation differences, with reproductive tissues/cells, such as the sperm, exhibiting distinct profiles compared to somatic tissues like hair and blood. Principal component analysis (PCA) highlighted tissue differentiation as the primary driver of methylation variability. We also identified 222 CpG sites with significant sex-based methylation differences, particularly on the X chromosome, suggesting the potential epigenetic regulation of sex-specific traits. The Gene Ontology (GO) enrichment analysis indicated that these methylation patterns may influence biological processes such as epithelial cell proliferation and blood vessel remodeling. Overall, this study provides important insights into sex- and tissue-specific epigenetic regulation in cattle, with implications for improving livestock breeding strategies through integrating epigenetic data. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

Back to TopTop