Spatiotemporal Variations in Human Birth Weight Are Associated with Multiple Thermal Indices
Abstract
:1. Introduction
1.1. Thermal Indices Relevant for the Assessment of Differences in Birth Weight
1.2. Objectives
2. Materials and Methods
2.1. Global Data for BW
2.2. Global Thermal Indices
2.3. Statistical Models for the Global Dataset
2.4. Models of Temporal Change in Annual Mean Birth Weight
3. Results
Annual Variation in Birth Weights
4. Discussion
4.1. Temporal Integration of Thermal Cues and the Effect on Pregnancies and Maternal Phenotypes
4.2. The Accuracy of the Thermic Environment Models
4.3. Further Model Development and the Impact of Other Putative Contributors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
BW | birth weight |
References
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Neumann, J.E.; Price, J.; Chinowsky, P.; Wright, L.; Ludwig, L.; Streeter, R.; Jones, R.; Smith, J.B.; Perkins, W.; Jantarasami, L.; et al. Climate change risks to US infrastructure: Impacts on roads, bridges, coastal development, and urban drainage. Clim. Change 2015, 131, 97–109. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of global climate change on agricultural production: A comprehensive review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef]
- Onoh, U.C.; Ogunade, J.; Owoeye, E.; Awakessien, S.; Asomah, J.K. Impact of climate change on biodiversity and ecosystems services. IIARD Int. J. Geogr. Environ. Manag. 2024, 10, 77–93. [Google Scholar]
- Gaitán-Espitia, J.D.; Hobday, A.J. Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Glob. Change Biol. 2021, 27, 475–488. [Google Scholar] [CrossRef]
- Fuller, A.; Mitchell, D.; Maloney, S.K.; Hetem, R.S.; Fonsêca, V.F.; Meyer, L.C.; van de Ven, T.M.F.N.; Snelling, E.P. How dryland mammals will respond to climate change: The effects of body size, heat load and a lack of food and water. J. Exp. Biol. 2021, 224 (Suppl. S1), jeb238113. [Google Scholar] [CrossRef] [PubMed]
- Haines, A.; Kovats, R.S.; Campbell-Lendrum, D.; Corvalán, C. Climate change and human health: Impacts, vulnerability and public health. Public Health 2006, 120, 585–596. [Google Scholar] [CrossRef]
- Litt, J.S.; Gerry Taylor, H.; Margevicius, S.; Schluchter, M.; Andreias, L.; Hack, M. Academic achievement of adolescents born with extremely low birth weight. Acta Paediatr. 2012, 101, 1240–1245. [Google Scholar] [CrossRef]
- Nobili, V.; Alisi, A.; Panera, N.; Agostoni, C. Low birth weight and catch-up-growth associated with metabolic syndrome: A ten year systematic review. Pediatr. Endocrinol. Rev. 2008, 6, 241–247. [Google Scholar] [PubMed]
- Del Giudice, M. Early stress and human behavioral development: Emerging evolutionary perspectives. J. Dev. Orig. Health Dis. 2014, 5, 270–280. [Google Scholar] [CrossRef]
- Wells, J.C.; Cole, T.J.; Cortina-Borja, M.; Sear, R.; Leon, D.A.; Marphatia, A.A.; Murray, J.; Wehrmeister, F.C.; Oliveira, P.D.; Goncalves, H.; et al. Low maternal capital predicts life history trade-offs in daughters: Why adverse outcomes cluster in individuals. Front. Public Health 2019, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.F. Race, genetics and growth. J. Biosoc. Sci. Suppl. 1969, 1, 43–67. [Google Scholar] [CrossRef]
- Wells, J.C.; Cole, T.J. Birth weight and environmental heat load: A between-population analysis. Am. J. Phys. Anthropol. 2002, 119, 276–282. [Google Scholar] [CrossRef]
- Jensen, P.M.; Sørensen, M. Differences in human birth weight and corollary attributes as a result of temperature regime. Ann. Hum. Biol. 2013, 40, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef]
- Choudhari, R.H. Multidimensional impact of climate change on human reproduction and fertility: A medical perspective on changing dynamics. In Research Anthology on Environmental and Societal Impacts of Climate Change; IGI Global: Hershey, PA, USA, 2022. [Google Scholar] [CrossRef]
- Johnson, R.E.; Kark, R.M. Environment and food intake in man. Science 1947, 105, 378–379. [Google Scholar] [CrossRef]
- Chaiyabutr, N.; Buranakarl, C.; Loypetjra, P. Renal regulation of urea excretion during urea infusion in acute heat exposed buffaloes. Asian-Australas. J. Anim. Sci. 1992, 5, 81–90. [Google Scholar] [CrossRef]
- McClelland, I.S.; Persaud, C.; Jackson, A.A. Urea kinetics in healthy women during normal pregnancy. Br. J. Nutr. 1997, 77, 165–181. [Google Scholar] [CrossRef]
- Roberts, D.F. Body weight, race and climate. Am. J. Phys. Anthropol. 1953, 11, 533–558. [Google Scholar] [CrossRef]
- Pomeroy, E.; Stock, J.T.; Wells, J.C. Population history and ecology, in addition to climate, influence human stature and body proportions. Sci. Rep. 2021, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- GHO Global Health Observatory. Mean BMI (kg/m2) (Age-Standardized Estimate). 2020. Available online: https://apps.who.int/gho/data/node.main.A904?lang=en (accessed on 12 August 2020).
- Polgreen, P.M.; Polgreen, E.L. Infectious diseases, weather, and climate. Clin. Infect. Dis. 2018, 66, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.; Fuerst, H.T. Low birth weight and maternal virus diseases: A prospective study of rubella, measles, mumps, chickenpox, and hepatitis. JAMA 1966, 97, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.; Samateh, T.; Wabnitz, K.; Mayhew, S.; Allen, H.; Bonell, A. The challenges of working in the heat whilst pregnant: Insights from Gambian women farmers in the face of climate change. Front. Public Health 2022, 10, 152. [Google Scholar] [CrossRef]
- Mortola, J.P.; Frappell, P.B.; Aguero, L.; Armstrong, K. Birth weight and altitude: A study in Peruvian communities. J. Pediatr. 2000, 136, 324–329. [Google Scholar] [CrossRef]
- Yang, L.; Helbich-Poschacher, V.; Cao, C.; Klebermass-Schrehof, K.; Waldhoer, T. Maternal altitude and risk of low birthweight: A systematic review and meta-analyses. Placenta 2020, 101, 124–131. [Google Scholar] [CrossRef]
- Anekwe, C.V.; Jarrell, A.R.; Townsend, M.J.; Gaudier, G.I.; Hiserodt, J.M.; Stanford, F.C. Socioeconomics of obesity. Curr. Obes. Rep. 2020, 9, 272–279. [Google Scholar] [CrossRef]
- Kogan, M.D. Social causes of low birth weight. J. R. Soc. Med. 1995, 88, 611–615. [Google Scholar] [CrossRef]
- Wells, J.C.; Stock, J.T. Re-examining heritability: Genetics, life history and plasticity. Trends Endocrinol. Metab. 2011, 22, 421–428. [Google Scholar] [CrossRef]
- Kramer, M.S. Determinants of low birth weight: Methodological assessment and meta-analysis. Bull. World Health Organ. 1987, 65, 663–737. [Google Scholar] [PubMed]
- Jensen, P.M.; De Fine Licht, H.H. Predicting global variation in infectious disease severity: A bottom-up approach. Evol. Med. Public Health 2016, 1, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Sone, T.; Doi, T.; Kahyo, H. Seasonality of mean birth weight and mean gestational period in Japan. Hum. Biol. 1993, 65, 481–501. [Google Scholar] [PubMed]
- Lechtig, A.; Yarbrough, C.; Delgado, H.; Habicht, J.P.; Martorell, R.; Klein, R.E. Influence of maternal nutrition on birth weight. Am. J. Clin. Nutr. 1975, 28, 1223–1233. [Google Scholar] [CrossRef]
- Christian, P. Micronutrients, birth weight, and survival. Annu. Rev. Nutr. 2010, 30, 83–104. [Google Scholar] [CrossRef] [PubMed]
- De Rooij, S.R.; Bleker, L.S.; Painter, R.C.; Ravelli, A.C.; Roseboom, T.J. Lessons learned from 25 years of research into long term consequences of prenatal exposure to the Dutch famine 1944–1945: The Dutch famine birth cohort. Int. J. Environ. Res. Public Health 2022, 32, 1432–1446. [Google Scholar] [CrossRef]
- Han, C.; Hong, Y.C. Fetal and childhood malnutrition during the Korean War and metabolic syndrome in adulthood. Nutrition 2019, 62, 186–193. [Google Scholar] [CrossRef]
- Tolkunova, K.; Usoltsev, D.; Moguchaia, E.; Boyarinova, M.; Kolesova, E.; Erina, A.; Voortman, T.; Vasilyeva, E.; Kostareva, A.; Shlyakhto, E.; et al. Transgenerational and intergenerational effects of early childhood famine exposure in the cohort of offspring of Leningrad Siege survivors. Sci. Rep. 2023, 13, 11188. [Google Scholar] [CrossRef]
- Arage, G.; Belachew, T.; Hassen, H.; Abera, M.; Abdulhay, F.; Abdulahi, M.; Abate, K.H. Effects of prenatal exposure to the 1983–1985 Ethiopian great famine on the metabolic syndrome in adults: A historical cohort study. Br. J. Nutr. 2020, 124, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Liczbińska, G.; Králík, M. Body size at birth in babies born during World War II: The evidence from Poland. Am. J. Mol. Biol. 2020, 32, e23421. [Google Scholar] [CrossRef]
- Kramer, M.S.; Victora, C.G. Low birth weight and perinatal mortality. In Nutrition and Health in Developing Countries; Semba, R.D., Bloem, M.W., Eds.; Humana Press: Totowa, NJ, USA, 2001; pp. 57–69. [Google Scholar]
- Wilcox, A.J.; Russell, I.T. Birthweight and perinatal mortality: III. Towards a new method of analysis. Int. J. Epidemiol. 1986, 15, 188–196. [Google Scholar] [CrossRef]
- Wilcox, A.J. On the importance—And the unimportance—Of birthweight. Int. J. Epidemiol. 2001, 30, 1233–1241. [Google Scholar] [CrossRef]
- Goldin, C.; Margo, R.A. The poor at birth: Birth weights and infant mortality at Philadelphia’s Almshouse Hospital, 1848–1873. Explor. Econ. Hist. 1989, 26, 360–379. [Google Scholar] [CrossRef]
- Graafmans, W.C.; Richardus, J.H.; Borsboom, G.J.; Bakketeig, L.; Langhoff-Roos, J.; Bergsjø, P.; Macfarlane, A.; Verloove-Vanhorick, S.P.; Mackenbach, J.P. EuroNatal Working Group. Birth weight and perinatal mortality: A comparison of “optimal” birth weight in seven Western European countries. Epidemiology 2002, 13, 569–574. [Google Scholar] [CrossRef]
- Ezechukwu, C.C.; Ugochukwu, E.F.; Egbuonu, I.; Chukwuka, J.O. Risk factors for neonatal mortality in a regional tertiary hospital in Nigeria. Niger. J. Clin. Pract. 2004, 7, 50–52. [Google Scholar]
- Liang, F.W.; Chou, H.C.; Chiou, S.T.; Chen, L.H.; Wu, M.H.; Lue, H.C.; Chiang, T.L.; Lu, T.H. Trends in birth weight-specific and-adjusted infant mortality rates in Taiwan between 2004 and 2011. Pediatr. Neonatol. 2018, 59, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Boo, N.Y.; Nasri, N.M.; Cheong, S.K.; Sivamohan, N.A. 2-year study of neonatal mortality in a large Malaysian hospital. Singap. Med. J. 1991, 32, 142–147. [Google Scholar]
- Singh, M.; Tripathy, K.; Arya, L.S. Birth weight gestational age correlates of neonatal mortality. Indian J. Pediatr. 1982, 49, 511–517. [Google Scholar] [CrossRef]
- Jonsson, T. Metabolic theory predicts animal self-thinning. J. Anim. Ecol. 2017, 86, 645–653. [Google Scholar] [CrossRef]
- Prentice, A.M.; Rayco-Solon, P.; Moore, S.E. Insights from the developing world: Thrifty genotypes and thrifty phenotypes. Proc. Nutr. Soc. 2005, 64, 153–161. [Google Scholar] [CrossRef]
- Cox, E.; Takov, V. Embryology, ovarian follicle development. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar] [PubMed]
- Meredith, H.V. Birth order and body size II. Neonatal and childhood materials. Am. J. Phys. Anthropol. 1950, 8, 195–224. [Google Scholar] [CrossRef]
- WHO. World Health Organization. Maternal Health and Safe Motherhood Programme. In Low Birth Weight: A Tabulation of Available Information; World Health Organization: Geneva, Switzerland, 1992. [Google Scholar]
- UN. United Nations: UN Data, Live Births by Birth Weight and Sex of Child. 2024. Available online: http://data.un.org/Data.aspx?d=POP&f=tableCode%3A60 (accessed on 21 June 2024).
- Ogston, F. On the Average Length and Weight of Mature New-Born Scotch Children. Edinb. Med. J. 1881, 26, 603. [Google Scholar] [PubMed]
- Wells, J.C. What was human birth weight in the past? Simulations based on data on stature from the palaeolithic to the present. J. Life Sci. 2009, 1, 115–120. [Google Scholar] [CrossRef]
- Yüzen, D.; Graf, I.; Diemert, A.; Arck, P.C. Climate change and pregnancy complications: From hormones to the immune response. Front. Endocrinol. 2023, 14, 1149284. [Google Scholar] [CrossRef] [PubMed]
- Carolan-Olah, M.; Frankowska, D. High environmental temperature and preterm birth: A review of the evidence. Midwifery 2014, 30, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, Y.; Zhang, H.; Zhang, Y.; Zhao, J.; Wang, Y.; Xie, X.; Wang, L.; Zhang, Q.; Liu, D.; et al. The association between ambient temperature and the risk of preterm birth in China. Sci. Total Environ. 2018, 613, 439–446. [Google Scholar] [CrossRef]
- Chodick, G.; Flash, S.; Deoitch, Y.; Shalev, V. Seasonality in birth weight: Review of global patterns and potential causes. Hum. Biol. 2009, 81, 463–477. [Google Scholar] [CrossRef]
- Foster, F.; Collard, M. A reassessment of Bergmann’s rule in modern humans. PLoS ONE 2013, 8, e72269. [Google Scholar] [CrossRef]
- Bogin, B.; Hermanussen, M.; Scheffler, C. Bergmann’s rule is a “just-so” story of human body size. J. Physiol. Anthropol. 2022, 41, 15. [Google Scholar] [CrossRef]
- Allen, J.A. The influence of physical conditions in the genesis of species. Radic. Rev. 1877, 1, 108–140. [Google Scholar]
- Serrat, M.A.; King, D.; Lovejoy, C.O. Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proc. Natl. Acad. Sci. USA 2008, 105, 19348–19353. [Google Scholar] [CrossRef]
- Betti, L.; Lycett, S.J.; von Cramon-Taubadel, N.; Pearson, O.M. Are human hands and feet affected by climate? A test of A llen’s rule. Am. J. Phys. Anthropol. 2015, 158, 132–140. [Google Scholar] [CrossRef]
- Bindon, J.R.; Baker, P.T. Bergmann’s rule and the thrifty genotype. Am. J. Phys. Anthropol. 1997, 104, 201–210. [Google Scholar] [CrossRef]
- Stelmach-Mardas, M.; Kleiser, C.; Uzhova, I.; Peñalvo, J.L.; La Torre, G.; Palys, W.; Lojko, D.; Nimptsch, K.; Suwalska, A.; Linseisen, J.; et al. Seasonality of food groups and total energy intake: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2016, 70, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 2017, 57, 943–960. [Google Scholar] [CrossRef] [PubMed]
- Chodick, G.; Shalev, V.; Goren, I.; Inskip, P.D. Seasonality in birth weight in Israel: New evidence suggests several global patterns and different etiologies. Ann. Epidemiol. 2007, 17, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Cook, A.; Haggar, F.; Bower, C.; Nassar, N. Seasonal variation in fetal growth: Accounting for sociodemographic, biological, and environmental exposures. Am. J. Obstet. Gynecol. 2012, 206, 74.e1–74.e7. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Peng, Y.; Zhou, H. Diurnal temperature range variation and its causes in a semiarid region from 1957 to 2006. Int. J. Climatol. 2014, 34, 343–354. [Google Scholar] [CrossRef]
- Jang, Y.S.; Shen, S.F.; Juang, J.Y.; Huang, C.Y.; Lo, M.H. Discontinuity of diurnal temperature range along elevated regions. Geophys. Res. Lett. 2022, 49, e2021GL097551. [Google Scholar] [CrossRef]
- Buklijas, T.; Al-Gailani, S. A fetus in the world: Physiology, epidemiology, and the making of fetal origins of adult disease. Hist. Philos. Life Sci. 2023, 45, 44. [Google Scholar] [CrossRef]
- Rocha, J.L.; Godinho, R.; Brito, J.C.; Nielsen, R. Life in deserts: The genetic basis of mammalian desert adaptation. Trends Ecol. Evol. 2021, 36, 637–650. [Google Scholar] [CrossRef]
- Kingma, B.; Frijns, A.; van Marken Lichtenbelt, W. The thermoneutral zone: Implications for metabolic studies. Front. Biosci. (Elite Ed.) 2012, 4, 1975–1985. [Google Scholar] [CrossRef]
- Kuzawa, C.W.; Bragg, J.M. Plasticity in human life history strategy: Implications for contemporary human variation and the evolution of genus Homo. Curr. Anthropol. 2012, 53, S369–S382. [Google Scholar] [CrossRef]
- Romero-Mujalli, D.; Fuchs, L.I.; Haase, M.; Hildebrandt, J.P.; Weissing, F.J.; Revilla, T.A. Emergence of phenotypic plasticity through epigenetic mechanisms. Evol. Lett. 2024, 8, 561–574. [Google Scholar] [CrossRef]
- Kuzawa, C.W.; Fried, R.L. Intergenerational memories of past nutritional deprivation: The phenotypic inertia model. In The Arc of Life: Evolution and Health Across the Life Course; Jasienska, G., Sherry, D., Holmes, D., Eds.; Springer: New York, NY, USA, 2017; pp. 7–20. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Spencer, H.G. Predictive adaptive responses and human evolution. Trends Ecol. Evol. 2005, 20, 527–533. [Google Scholar] [CrossRef]
- Bateson, P.; Gluckman, P.; Hanson, M. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis. Physiol. J. 2014, 592, 2357–2368. [Google Scholar] [CrossRef]
- Keys, A.; Henschel, A.; Mickelsen, O.; Taylor, H.L. The Biology of Human Starvation; University of Minnesota Press: Minneapolis, MN, USA, 1950; Volume 1 & 2, xxxii+1–764, pp. viii+765–1385. ISBN 9780816672332. [Google Scholar]
- Dulloo, A.G. Physiology of weight regain: Lessons from the classic Minnesota Starvation Experiment on human body composition regulation. Obes. Rev. 2021, 22, e13189. [Google Scholar] [CrossRef]
- Meredith, H.V. Body weight at birth of viable human infants: A worldwide comparative treatise. Hum. Biol. 1970, 142, 217–264. [Google Scholar] [PubMed]
- WMO. World Meteorological Organization, World Weather Information Service. 2021. Available online: http://worldweather.wmo.int/ (accessed on 12 August 2020).
- WWO. World Weather Online. Temperature Averages. 2021. Available online: https://www.worldweatheronline.com/ (accessed on 12 August 2020).
- TAD. Time and Date; Climate and Weather Records. 2021. Available online: https://www.timeanddate.com/weather/@7729880/climate (accessed on 12 August 2020).
- Barber, N. On the relationship between fertility and geographic latitude: A cross-national study. Cross-Cult. Res. 2002, 36, 3–15. [Google Scholar] [CrossRef]
- Pickett, S.T. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology: Approaches and Alternatives; Springer: New York, NY, USA, 1989; pp. 110–135. [Google Scholar]
- Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 2019, 34, 416–421. [Google Scholar] [CrossRef] [PubMed]
- WBCK. World Bank Climate Knowlegde Portal. 2024. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 12 August 2020).
- Jensen, P.M.; Sørensen, M. In search of environmental factors associated with global differences in birth weight and BMI. Am. J. Hum. Biol. 2025, 37, e70038. [Google Scholar] [CrossRef] [PubMed]
- Boerma, J.T.; Weinstein, K.I.; Rutstein, S.O.; Sommerfelt, A.E. Data on birth weight in developing countries: Can surveys help? Bull. World Health Organ. 1996, 74, 209–216. [Google Scholar] [PubMed]
- Tambi, M.D.; Effects of Maternal Immunization on Birth Weight in Rural Cameroon. African Economic Research Consortium, Nairobi (Research Paper: 413). 2021. Available online: https://publication.aercafricalibrary.org/handle/123456789/1284 (accessed on 12 August 2020).
- Airede, A.I. Birth weights of Nigerian newborn infants—A review. West Afr. J. Med. 1995, 14, 116–120. [Google Scholar] [PubMed]
- Hughes, M.M.; Katz, J.; Mullany, L.C.; Khatry, S.K.; LeClerq, S.C.; Darmstadt, G.L.; Tielsch, J.M. Seasonality of birth outcomes in rural Sarlahi District, Nepal: A population-based prospective cohort. BMC Pregnancy Childbirth 2014, 14, 310. [Google Scholar] [CrossRef]
- Wendl-Richter, H.U. Birthweight distribution in rural north-west Burkina Faso. Trop. Med. Int. Health 1997, 2, 404–408. [Google Scholar] [CrossRef]
- Murray, L.J.; O’Reilly, D.P.; Betts, N.; Patterson, C.C.; Smith, G.D.; Evans, A.E. Season and outdoor ambient temperature: Effects on birth weight. Obstet. Gynecol. 2000, 96, 689–695. [Google Scholar] [CrossRef]
- de Jonge, L.V.H.; Waller, G.; Stettler, N. Ethnicity modifies seasonal variations in birth weight and weight gain of infants. J. Nutr. 2003, 133, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Olendzki, B.C.; Li, W.; Hafner, A.R.; Chiriboga, D.; Hebert, J.R.; Campbell, M.; Sarnie, M.; Ockene, I.S. Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. Eur. J. Clin. Nutr. 2006, 60, 519–528. [Google Scholar] [CrossRef]
- Bernstein, S.; Zambell, K.; Amar, M.J.; Arango, C.; Kelley, R.C.; Miszewski, S.G.; Tryon, S.; Courville, A.B. Dietary intake patterns are consistent across seasons in a cohort of healthy adults in a metropolitan population. J. Acad. Nutr. Diet. 2016, 116, 38–45. [Google Scholar] [CrossRef]
- OWD. Our World in Data Daily Supply of Calories Per Person, 1274 to 2021, Measured in Kilocalories Per Person Per Day. 2024. Available online: https://ourworldindata.org/grapher/daily-per-capita-caloric-supply (accessed on 13 June 2024).
- Bantje, H. Seasonal variations in birthweight distribution in Ikwiriri village, Tanzania. J. Trop. Pediatr. 1983, 29, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Azeez, M.A.; Akinboro, A.; Bakare, A.A. Human sex ratio at birth in South West Nigeria. Indian J. Hum. Genet. 2007, 13, 59. [Google Scholar] [CrossRef]
- OWD. Our World in Data. Average Age of Mothers at Childbirth, Estimated Average Age of Women Who Have Given Birth in Each Year. This Includes All Births that Year, not just Women’s First Childbirth. 2025. Available online: https://ourworldindata.org/grapher/period-average-age-of-mothers?time=latest (accessed on 3 March 2025).
- Jensen, P.M.; Sørensen, M.; Weiner, J. Human total fertility rate affected by ambient temperatures in both the present and previous generations. Int. J. Biometeorol. 2021, 65, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Davy, R.; Esau, I.; Chernokulsky, A.; Outten, S.; Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 2017, 37, 79–93. [Google Scholar] [CrossRef]
Time | Short Term | Long Term | Association |
---|---|---|---|
Terms | Weather | Climate | Remote |
Responses | Avoidance | Adaptation | |
Effector | Behavior | Anthropometrics | |
Alleviations | Stress/injury | Substandard | |
Impacts | Pregnancies | Maternal phenotype | Proximate |
Biological index | Birth weight |
Data Type | Variable | Abbrev | Observed/ Calculated | Mean | Std Dev | Min | Max |
---|---|---|---|---|---|---|---|
Daily | Low minimum | T1 | Observed | 6.7 | 10.8 | −32.2 | 23.2 |
Low maximum | T2 | Observed | 15.8 | 12.1 | −23.8 | 31.3 | |
High minimum | T3 | Observed | 18.4 | 5.3 | 3.7 | 26.7 | |
High maximum | T4 | Observed | 28.9 | 6.1 | 11.6 | 40.0 | |
Low amplitude | A1 | T2-T1 | 9.1 | 2.8 | 4.0 | 15.4 | |
Seasonal amplitude | A2 | T3-T2 | 2.6 | 8.9 | −11.5 | 27.5 | |
High amplitude | A3 | T4-T3 | 10.5 | 2.0 | 5.5 | 14.8 | |
Mean daily amplitude | A1–3 | A1/2 + A3/2 | 9.9 | 2.1 | 5.2 | 14.6 | |
Monthly | Low | T5 | (T1 + T2)/2 | 11.3 | 11.4 | −28.0 | 26.6 |
High | T6 | (T3 + T4)/2 | 23.7 | 5.6 | 7.7 | 33.3 | |
Seasonal amplitude | A4 | T6-T5 | 12.4 | 8.1 | 1.2 | 35.7 | |
Annual | Mean | T7 | (T1 + T2 + T3 + T4)/4 | 17.5 | 8.0 | −10.2 | 28.1 |
Model | BW % | Parameter | Estimate | SE | t Value | Pr > |t| | R2 | R2* |
---|---|---|---|---|---|---|---|---|
25 | Intercept | 3975.78 | 128.45 | 30.95 | <0.0001 | 0.91 | 0.83 | |
1 | Coefficient of variation | −40.39 | 6.97 | −5.79 | <0.0001 | (569) | (596) | |
Daily amplitude (A1–3) | −22.83 | 6.70 | −3.41 | 0.001 | ||||
Seasonal amplitude (A4) | −9.14 | 6.43 | −1.42 | 0.16 | ||||
Annual mean (T7) | −24.78 | 4.63 | −5.35 | <0.0001 | ||||
Seasonal amplitude × Annual mean | 0.39 | 0.34 | 1.15 | 0.25 | ||||
50 | Intercept | 3949.61 | 165.20 | 23.91 | <0.0001 | 0.8 | 0.75 | |
2 | Coefficient of variation | −26.27 | 8.97 | −2.93 | 0.0054 | (594) | (601) | |
Daily amplitude (A1–3) | −20.48 | 8.61 | −2.38 | 0.02 | ||||
Seasonal amplitude (A4) | −10.59 | 8.26 | −1.28 | 0.20 | ||||
Annual mean (T7) | −24.74 | 5.96 | −4.15 | 0.0002 | ||||
Seasonal amplitude × Annual mean | 0.61 | 0.44 | 1.40 | 0.16 | ||||
75 | Intercept | 4104.40 | 141.27 | 29.05 | <0.0001 | 0.80 | 0.80 | |
3 | Coefficient of variation | −5.92 | 7.67 | −0.77 | 0.44 | (579) | (577) | |
Daily amplitude (A1–3) | −30.31 | 7.36 | −4.12 | 0.0002 | ||||
Seasonal amplitude (A4) | −16.06 | 7.07 | −2.27 | 0.03 | ||||
Annual mean (T7) | −27.51 | 5.09 | −5.40 | <0.0001 | ||||
Seasonal amplitude × Annual mean | 0.86 | 0.37 | 2.32 | 0.03 | ||||
CV | Intercept | 5.75 | 2.64 | 2.18 | 0.0345 | 0.54 | ||
4 | Daily amplitude (A1–3) | 0.19 | 0.14 | 1.35 | 0.18 | |||
Seasonal amplitude (A4) | −0.38 | 0.13 | −3.03 | 0.004 | ||||
Annual mean (T7) | −0.13 | 0.10 | −1.35 | 0.18 | ||||
Seasonal amplitude × Annual mean | 0.02 | 0.01 | 3.52 | 0.001 |
Model | Parameter | Estimate | SE | t Value | Pr > |t| | R2 |
---|---|---|---|---|---|---|
Intercept | 3855.39 | 88.09 | 43.77 | <0.0001 | 0.78 | |
5 | Coefficient of variation | 0.04 | 7.83 | 0.01 | 0.99 | |
Low minimum (T3) | −18.16 | 3.22 | −5.64 | <0.0001 | ||
Amplitude—A1 | −21.40 | 8.98 | −2.38 | 0.02 | ||
Amplitude—A2 | −9.17 | 3.72 | −2.47 | 0.01 | ||
Amplitude—A3 | −24.65 | 9.58 | −2.57 | 0.01 | ||
Intercept | 3855.39 | 88.09 | 43.77 | <0.0001 | 0.78 | |
6 | Coefficient of variation | 0.04 | 7.83 | 0.01 | 0.99 | |
High maximum (T4) | −18.16 | 3.22 | −5.64 | <0.0001 | ||
Amplitude—A1 | −3.24 | 9.00 | −0.36 | 0.72 | ||
Amplitude—A2 | 8.99 | 1.90 | 4.74 | <0.0001 | ||
Amplitude—A3 | −6.49 | 9.90 | −0.66 | 0.51 | ||
Intercept | 3693.94 | 79.34 | 46.56 | <0.0001 | 0.71 | |
7 | Coefficient of variation | −6.24 | 7.48 | −0.83 | 0.40 | |
Seasonal Low (T5) | −22.04 | 3.36 | −6.56 | <0.0001 | ||
Seasonal amplitude (A4) | −12.81 | 3.97 | −3.22 | 0.002 | ||
Intercept | 3693.94 | 79.34 | 46.56 | <0.0001 | 0.71 | |
8 | Coefficient of variation | −6.24 | 7.48 | −0.83 | 0.40 | |
Seasonal high (T6) | −22.04 | 3.36 | −6.56 | <0.0001 | ||
Seasonal Amplitude (A4) | 9.23 | 1.95 | 4.73 | <0.0001 | ||
Intercept | 3648.19 | 41.45 | 88.01 | <0.0001 | 0.71 | |
9 | Coefficient of variation | −7.05 | 7.34 | −0.96 | 0.34 | |
Annual Mean (T7) | −20.50 | 2.47 | −8.31 | <0.0001 |
RM | Parameter | Estimate | SE | t Value | Pr > |t| | R2/AIC | R2*/AIC* |
---|---|---|---|---|---|---|---|
Intercept | 3618.24 | 36.75 | 98.45 | <0.0001 | 0.63 | 0.77 | |
Daily amplitude (A1–12) | −17.90 | 4.60 | −3.89 | 0.0001 | 2901 | 2789 | |
0 | Seasonal amplitude (A4) | 2.41 | 1.66 | 1.45 | 0.14 | ||
Annual mean (T7:1–12) | −26.00 | 5.11 | −5.09 | <0.0001 | |||
Seasonal amplitude × Annual mean | 0.56 | 0.25 | 2.22 | 0.02 | |||
Intercept | 3610.83 | 38.30 | 94.27 | <0.0001 | 0.68 | 0.77 | |
Daily amplitude (A1–12) | −28.16 | 4.76 | −5.91 | <0.0001 | 2860 | 2782 | |
5 | Seasonal amplitude (A4) | 5.83 | 1.97 | 2.97 | 0.003 | ||
Annual mean (T7:1–12) | −24.73 | 5.92 | −4.18 | <0.0001 | |||
Seasonal amplitude × Annual mean | 0.63 | 0.29 | 2.14 | 0.03 | |||
Intercept | 3607.40 | 38.03 | 94.85 | <0.0001 | 0.7 | 0.78 | |
Daily amplitude (A1–12) | −31.70 | 4.82 | −6.57 | <0.0001 | 2846 | 2772 | |
10 | Seasonal amplitude (A4) | 7.09 | 2.04 | 3.48 | 0.0006 | ||
Annual mean (T7:1–12) | −23.22 | 6.12 | −3.79 | 0.0002 | |||
Seasonal amplitude × Annual mean | 0.58 | 0.30 | 1.9 | 0.06 | |||
Intercept | 3597.91 | 36.36 | 98.96 | <0.0001 | 0.73 | 0.78 | |
Daily amplitude (A1–12) | −36.64 | 4.78 | −7.67 | <0.0001 | 2821 | 2770 | |
20 | Seasonal amplitude (A4) | 9.06 | 2.02 | 4.5 | <0.0001 | ||
Annual mean (T7:1–12) | −19.06 | 5.97 | −3.19 | 0.002 | |||
Seasonal amplitude × Annual mean | 0.40 | 0.30 | 1.34 | 0.18 | |||
Intercept | 3598.60 | 35.26 | 102.07 | <0.0001 | 0.74 | 0.79 | |
Daily amplitude (A1–12) | −36.80 | 4.71 | −7.82 | <0.0001 | 2809 | 2763 | |
30 | Seasonal amplitude (A4) | 9.02 | 1.96 | 4.6 | <0.0001 | ||
Annual mean (T7:1–12) | −19.40 | 5.90 | −3.29 | 0.0011 | |||
Seasonal amplitude × Annual mean | 0.42 | 0.29 | 1.43 | 0.15 | |||
Intercept | 3600.39 | 35.19 | 102.3 | <0.0001 | 0.74 | 0.79 | |
Daily amplitude (A1–12) | −35.74 | 4.72 | −7.58 | <0.0001 | 2810 | 2768 | |
35 | Seasonal amplitude (A4) | 8.61 | 1.96 | 4.39 | <0.0001 | ||
Annual mean (T7:1–12) | −19.96 | 5.95 | −3.35 | 0.0009 | |||
Seasonal amplitude × Annual mean | 0.43 | 0.29 | 1.46 | 0.14 | |||
Intercept | 3567.01 | 27.55 | 129.45 | <0.0001 | 0.74 | 0.79 | |
Daily amplitude (A1–12) | −38.98 | 4.46 | −8.73 | <0.0001 | 2809 | 2763 | |
30 | Seasonal amplitude (A4) | 11.19 | 1.25 | 8.97 | <0.0001 | ||
Annual mean (T7:1–12) | −11.19 | 1.38 | −8.11 | <0.0001 |
RM | Parameter | Estimate | SE | t Value | Pr > |t| | R2/AIC | R2*/AIC* |
---|---|---|---|---|---|---|---|
Intercept | 6217.26 | 1140.38 | 5.45 | <0.0001 | 0.17 | 0.19 | |
Daily amplitude (A1–12) | −65.06 | 15.84 | −4.11 | <0.0001 | 1167.00 | 1170 | |
0 | Seasonal amplitude (A4) | −492.30 | 247.91 | −1.99 | 0.05 | ||
Annual mean (T7:1–12) | −91.51 | 40.42 | −2.26 | 0.03 | |||
Seasonal amplitude × Annual mean | 19.08 | 9.40 | 2.03 | 0.05 | |||
Intercept | 8728.11 | 1853.45 | 4.71 | <0.0001 | 0.19 | 0.22 | |
Daily amplitude (A1–12) | −75.55 | 17.18 | −4.40 | <0.0001 | 1165 | 1167 | |
5 | Seasonal amplitude (A4) | −1137.91 | 427.89 | −2.66 | 0.009 | ||
Annual mean (T7:1–12) | −180.53 | 66.40 | −2.72 | 0.008 | |||
Seasonal amplitude × Annual mean | 43.06 | 16.13 | 2.67 | 0.009 | |||
Intercept | 11,587.99 | 2112.00 | 5.49 | <0.0001 | 0.25 | 0.26 | |
Daily amplitude (A1–12) | −91.47 | 17.70 | −5.17 | <0.0001 | 1159 | 1162 | |
10 | Seasonal amplitude (A4) | −1722.31 | 485.48 | −3.55 | 0.0006 | ||
Annual mean (T7:1–12) | −287.14 | 75.99 | −3.78 | 0.0003 | |||
Seasonal amplitude × Annual mean | 66.07 | 18.38 | 3.59 | 0.0005 | |||
Intercept | 14,166.50 | 2735.92 | 5.18 | <0.0001 | 0.25 | 0.26 | |
Daily amplitude (A1–12) | −119.21 | 23.22 | −5.13 | <0.0001 | 1158 | 1162 | |
20 | Seasonal amplitude (A4) | −2263.48 | 627.27 | −3.61 | 0.0005 | ||
Annual mean (T7:1–12) | −375.36 | 96.72 | −3.88 | 0.0002 | |||
Seasonal amplitude × Annual mean | 87.05 | 23.78 | 3.66 | 0.0004 | |||
Intercept | 13,607.31 | 3094.80 | 4.40 | <0.0001 | 0.22 | 0.23 | |
Daily amplitude (A1–12) | −121.10 | 27.07 | −4.47 | <0.0001 | 1162 | 1166 | |
30 | Seasonal amplitude (A4) | −2145.48 | 726.33 | −2.95 | 0.004 | ||
Annual mean (T7:1–12) | −353.03 | 108.16 | −3.26 | 0.0016 | |||
Seasonal amplitude × Annual mean | 82.60 | 27.44 | 3.01 | 0.0034 | |||
Intercept | 13,774.22 | 3251.45 | 4.24 | <0.0001 | 0.22 | 0.25 | |
Daily amplitude (A1–12) | −123.91 | 28.55 | −4.34 | <0.0001 | 1161 | 1164 | |
35 | Seasonal amplitude (A4) | −2163.70 | 769.58 | −2.81 | 0.006 | ||
Annual mean (T7:1–12) | −359.21 | 113.23 | −3.17 | 0.002 | |||
Seasonal amplitude × Annual mean | 83.52 | 29.04 | 2.88 | 0.005 | |||
Intercept | 4251.33 | 409.26 | 10.39 | <0.0001 | 0.14 | 0.20 | |
20 | Daily amplitude (A1–12) | −49.70 | 14.26 | −3.49 | 0.0008 | 1169 | 1168 |
Seasonal amplitude (A4) | 30.76 | 25.63 | 1.20 | 0.23 | |||
Annual mean (T7:1–12) | −26.76 | 17.96 | −1.49 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, P.M.; Sørensen, M. Spatiotemporal Variations in Human Birth Weight Are Associated with Multiple Thermal Indices. Atmosphere 2025, 16, 569. https://doi.org/10.3390/atmos16050569
Jensen PM, Sørensen M. Spatiotemporal Variations in Human Birth Weight Are Associated with Multiple Thermal Indices. Atmosphere. 2025; 16(5):569. https://doi.org/10.3390/atmos16050569
Chicago/Turabian StyleJensen, Per M., and Marten Sørensen. 2025. "Spatiotemporal Variations in Human Birth Weight Are Associated with Multiple Thermal Indices" Atmosphere 16, no. 5: 569. https://doi.org/10.3390/atmos16050569
APA StyleJensen, P. M., & Sørensen, M. (2025). Spatiotemporal Variations in Human Birth Weight Are Associated with Multiple Thermal Indices. Atmosphere, 16(5), 569. https://doi.org/10.3390/atmos16050569