Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = mammal richness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7206 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 - 1 Aug 2025
Viewed by 205
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
Show Figures

Graphical abstract

27 pages, 3973 KiB  
Article
Modeling the Distribution and Richness of Mammalian Species in the Nyerere National Park, Tanzania
by Goodluck Massawe, Enrique Casas, Wilfred Marealle, Richard Lyamuya, Tiwonge I. Mzumara, Willard Mbewe and Manuel Arbelo
Remote Sens. 2025, 17(14), 2504; https://doi.org/10.3390/rs17142504 - 18 Jul 2025
Viewed by 1031
Abstract
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large [...] Read more.
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large and understudied protected area in Southern Tanzania. We applied species distribution models (SDMs) using presence data collected through ground surveys between 2022 and 2024, combined with environmental variables derived from remote sensing, including land surface temperature, vegetation indices, soil moisture, elevation, and proximity to water sources and human infrastructure. Models were constructed using the Maximum Entropy (MaxEnt) algorithm, and performance was evaluated using the Area Under the Curve (AUC) metric, yielding high accuracy ranging from 0.81 to 0.97. Temperature (32.3%) and vegetation indices (23.4%) emerged as the most influential predictors of species distributions, followed by elevation (21.7%) and proximity to water (14.5%). Species richness, estimated using a stacked SDM approach, was highest in the northern and riparian zones of the park, identifying potential biodiversity hotspots. This study presents the first fine-scale SDMs for mammal species in Nyerere National Park, offering a valuable ecological baseline to support conservation planning and promote sustainable ecotourism development in Tanzania’s southern protected areas. Full article
Show Figures

Graphical abstract

19 pages, 5092 KiB  
Article
Salvianolic Acid B Alleviates LPS-Induced Spleen Injury by Remodeling Redox Status and Suppressing NLRP3 Inflammasome
by Hao Wang, Xiao Dou, Ruixue Wang, Yuxin Jiang, Jinsong Zhang, Xianjuan Qiao, Yingjun Liu, Hao Zhang, Chenhuan Lai, Yanan Chen and Qiang Yong
Antioxidants 2025, 14(7), 883; https://doi.org/10.3390/antiox14070883 - 18 Jul 2025
Viewed by 362
Abstract
Background: The spleen is the primary reservoir of immune cells in mammals. Diverse stimuli can disrupt spleen homeostasis, resulting in spleen injury and immune dysfunction. This study employed a porcine model to assess the therapeutic potential of salvianolic acid B (SAB) against [...] Read more.
Background: The spleen is the primary reservoir of immune cells in mammals. Diverse stimuli can disrupt spleen homeostasis, resulting in spleen injury and immune dysfunction. This study employed a porcine model to assess the therapeutic potential of salvianolic acid B (SAB) against lipopolysaccharide (LPS)-induced splenic injury. Methods: Seventy-two male weanling piglets were randomly assigned to one of four groups: CON-SS, SAB-SS, CON-LPS, and SAB-LPS. The CON-SS and CON-LPS groups received a basal diet, while SAB-SS and SAB-LPS groups received a SAB-supplemented diet. After 14 d, the CON-SS and SAB-SS groups received an intraperitoneal injection of sterile saline, whereas the CON-LPS and SAB-LPS groups were injected with LPS. Blood and spleen tissues were harvested 6 h post-injection for biochemical analysis. Results: LPS induced systemic immune disorders in piglets, as evidenced by increased immune organ indices and decreased white blood cell, lymphocyte, and basophil counts in blood (p < 0.05). LPS also caused histoarchitectural disruption, cell apoptosis, oxidative stress, and inflammation in the spleen (p < 0.05). Conversely, SAB improved splenic histopathology and reduced splenic apoptosis and pro-inflammatory mediators in piglets (p < 0.05). SAB significantly mitigated peroxidation accumulation by facilitating the nuclear translocation of nuclear factor erythroid 2-related factor 2 and strengthening the antioxidant system, and inhibited nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome activation (p < 0.05). Mechanistically, SAB attenuated LPS-induced splenic oxidative stress and NLRP3 inflammasome activation by restoring mitochondrial structure and function (p < 0.05). Conclusions: This research unveils that SAB alleviates LPS-induced spleen disorder by reinforcing antioxidant system and suppressing NLRP3 inflammasome, highlighting SAB’s potential as a prospective therapeutic agent for spleen disorders. Full article
(This article belongs to the Special Issue The OxInflammation Process and Tissue Repair)
Show Figures

Figure 1

13 pages, 2212 KiB  
Article
Ablation of the Evolutionarily Acquired Functions of the Atp1b4 Gene Increases Metabolic Capacity and Reduces Obesity
by Nikolai N. Modyanov, Lucia Russo, Sumona Ghosh Lester, Tamara R. Castañeda, Himangi G. Marathe, Larisa V. Fedorova, Raymond E. Bourey, Sonia M. Najjar and Ivana L. de la Serna
Life 2025, 15(7), 1103; https://doi.org/10.3390/life15071103 - 14 Jul 2025
Viewed by 329
Abstract
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete [...] Read more.
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete loss of its ancestral function and became a skeletal and cardiac muscle-specific component of the inner nuclear membrane. BetaM is expressed at the highest level during perinatal development and is implicated in gene regulation. Here we report the long-term consequences of Atp1b4 ablation on metabolic parameters in adult mice. Male BetaM-deficient (Atp1b4−/Y) mice have remarkably lower body weight and adiposity than their wild-type littermates, despite higher food intake. Indirect calorimetry shows higher energy expenditure (heat production and oxygen consumption) with a greater spontaneous locomotor activity in Atp1b4−/Y males. Their lower respiratory exchange ratio suggests a greater reliance on fat metabolism compared to their wild-type counterparts. Consistently, Atp1b4−/Y KO mice exhibit enhanced β-oxidation in skeletal muscle, along with improved glucose and insulin tolerance. These robust metabolic changes induced by Atp1b4 disruption demonstrate that eutherian BetaM plays an important role in regulating adult mouse metabolism. This demonstrates that bypassing the co-option of Atp1b4 potentially reduces susceptibility to obesity. Thus, Atp1b4 ablation leading to the loss of evolutionarily acquired BetaM functions serves as a model for a potential alternative pathway in mammalian evolution. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

27 pages, 4651 KiB  
Article
Thermal Infrared UAV Applications for Spatially Explicit Wildlife Occupancy Modeling
by Eve Bohnett, Babu Ram Lamichanne, Surendra Chaudhary, Kapil Pokhrel, Giavanna Dorman, Axel Flores, Rebecca Lewison, Fang Qiu, Doug Stow and Li An
Land 2025, 14(7), 1461; https://doi.org/10.3390/land14071461 - 14 Jul 2025
Viewed by 457
Abstract
Assessing the impact of community-based conservation programs on wildlife biodiversity remains a significant challenge. This pilot study was designed to develop and demonstrate a scalable, spatially explicit workflow using thermal infrared (TIR) imagery and unmanned aerial vehicles (UAVs) for non-invasive biodiversity monitoring. Conducted [...] Read more.
Assessing the impact of community-based conservation programs on wildlife biodiversity remains a significant challenge. This pilot study was designed to develop and demonstrate a scalable, spatially explicit workflow using thermal infrared (TIR) imagery and unmanned aerial vehicles (UAVs) for non-invasive biodiversity monitoring. Conducted in a 2-hectare grassland area in Chitwan, Nepal, the study applied TIR-based grid sampling and multi-species occupancy models with thin-plate splines to evaluate how species detection and richness might vary between (1) morning and evening UAV flights, and (2) the Chitwan National Park and Kumroj Community Forest. While the small sample area inherently limits ecological inference, the aim was to test and demonstrate data collection and modeling protocols that could be scaled to larger landscapes with sufficient replication, and not to produce generalizable ecological findings from a small dataset. The pilot study results revealed higher species detection during morning flights, which allowed us to refine our data collection. Additionally, models accounting for spatial autocorrelation using thin plate splines suggested that community-based conservation programs effectively balanced ecosystem service extraction with biodiversity conservation, maintaining richness levels comparable to the national park. Models without splines indicated significantly higher species richness within the national park. This study demonstrates the potential for spatially explicit methods for monitoring grassland mammals using TIR UAV as indicators of anthropogenic impacts and conservation effectiveness. Further data collection over larger spatial and temporal scales is essential to capture the occupancy more generally for species with larger home ranges, as well as any effects of rainfall, flooding, and seasonal variability on biodiversity in alluvial grasslands. Full article
(This article belongs to the Section Land, Biodiversity, and Human Wellbeing)
Show Figures

Figure 1

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 360
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

17 pages, 2182 KiB  
Article
Wildlife-Vehicle Collisions as a Threat to Vertebrate Conservation in a Southeastern Mexico Road Network
by Diana L. Buitrago-Torres, Gilberto Pozo-Montuy, Brandon Brand Buitrago-Marulanda, José Roberto Frías-Aguilar and Mauricio Antonio Mayo Merodio
Wild 2025, 2(3), 24; https://doi.org/10.3390/wild2030024 - 30 Jun 2025
Viewed by 1345
Abstract
Wildlife-vehicle collisions (WVCs) threaten biodiversity, particularly in the Gulf of Mexico, where road expansion increases habitat fragmentation. This research analyzes WVC patterns in southeastern Mexico, estimating collision rates across road types and assessing environmental factors influencing roadkill frequency. Field monitoring in 2016 and [...] Read more.
Wildlife-vehicle collisions (WVCs) threaten biodiversity, particularly in the Gulf of Mexico, where road expansion increases habitat fragmentation. This research analyzes WVC patterns in southeastern Mexico, estimating collision rates across road types and assessing environmental factors influencing roadkill frequency. Field monitoring in 2016 and 2023 recorded vertebrate roadkills along roads in Campeche, Chiapas, and Tabasco. Principal Component Analysis (PCA) and Generalized Additive Models (GAM) evaluated landscape influences on WVC occurrences. A total of 354 roadkill incidents involving 73 species of vertebrates were recorded, with mammals accounting for the highest mortality rate. Hotspots were identified along Federal Highway 259 and State Highways Balancán, Frontera-Jonuta, and Salto de Agua. Road type showed no significant effect. Land cover influenced WVCs, with cultivated forests, grasslands, and savannas showing the highest incidences. PCA identified temperature and elevation as key environmental drivers, while GAM suggested elevation had a weak but notable effect. These findings highlight the risks of road expansion in biodiversity-rich areas, where habitat fragmentation and increasing traffic intensify WVCs. Without targeted mitigation strategies, such as wildlife corridors, underpasses, and road signs, expanding infrastructure could further threaten wildlife populations by increasing roadkill rates and fragmenting habitats, particularly in ecologically sensitive landscapes like wetlands, forests, and coastal areas. Full article
Show Figures

Graphical abstract

27 pages, 2440 KiB  
Article
Structural and Functional Responses of Small Mammal Communities to Land Abandonment in a Region of High Biodiversity
by Anamaria Lazăr, Marcela Alexandra Sandu, Ana Maria Benedek and Ioan Sîrbu
Animals 2025, 15(13), 1857; https://doi.org/10.3390/ani15131857 - 24 Jun 2025
Viewed by 353
Abstract
Small mammals are common in farmland, where their communities are affected by agricultural management. However, so far, no clear patterns have emerged, its effect varying in accordance with the ecological context, spatial scale, and geographic area. We aimed to assess whether the discontinuation [...] Read more.
Small mammals are common in farmland, where their communities are affected by agricultural management. However, so far, no clear patterns have emerged, its effect varying in accordance with the ecological context, spatial scale, and geographic area. We aimed to assess whether the discontinuation of land cultivation and pasture grazing leads to significant changes in the abundance, diversity, and composition of small mammal communities. These were surveyed in transects of live traps set in used and abandoned arable fields and pastures in highly patched agricultural landscapes in Transylvania (Romania). Farmland abandonment was positively related to species richness, taxonomic and functional diversity, and abundance. Its effect was stronger in pastures, where intensive grazing is a limiting factor for small mammals. Functional trait composition was also sensitive to fallowing and abandonment of grazing, which promote diurnal activity, broader niches, and lower fertility. In conclusion, small mammals benefit from the maintenance of uncultivated plots and low numbers of grazing livestock, which we recommend as management strategy in traditional mosaic landscapes, to support taxonomic and functional biodiversity with implications in ecosystem service functionality. Our results also revealed more diverse communities than those showcased by similar studies in central and western Europe, with similar overall abundances. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Graphical abstract

14 pages, 1238 KiB  
Article
Effects of Urbanization on Flowering Phenology, Pollination, and Reproductive Success in the Chiropterophilous Tropical Tree Ceiba pentandra
by Henry F. Dzul-Cauich and Miguel A. Munguía-Rosas
Plants 2025, 14(11), 1575; https://doi.org/10.3390/plants14111575 - 22 May 2025
Viewed by 1759
Abstract
Urbanization often negatively impacts pollinator abundance and richness; however, its effects on different pollination components and plant reproductive success are highly variable. Previous research efforts have also shown geographic and taxonomical bias, with non-insect-pollinated plant species in tropical cities underrepresented in the literature. [...] Read more.
Urbanization often negatively impacts pollinator abundance and richness; however, its effects on different pollination components and plant reproductive success are highly variable. Previous research efforts have also shown geographic and taxonomical bias, with non-insect-pollinated plant species in tropical cities underrepresented in the literature. Although bats represent the most persistent mammal group in urban ecosystems, studies addressing the effect of urbanization on chiropterophilous plants are scarce. Here, we addressed the impacts of urbanization on flowering phenology, pollination, and reproductive success in the chiropterophilous tree Ceiba pentandra (L.) Gaertn. (Malvaceae) in two major tropical cities of the Yucatan Peninsula. We found that urbanization has led to an earlier flowering phenology; however, no effect of urbanization was detected in the two pollination components evaluated: pollinator visitation rate and pollen deposition. Finally, the effects of urbanization on the reproductive success of C. pentandra were mixed. While marginally negative effects of urbanization were found in fruit set, positive effects were found in seed germination. These findings suggest that urban pollinators can provide similar levels of pollination services and thus lead to comparable reproductive success for C. pentandra in forests and cities. Full article
(This article belongs to the Special Issue Plants and Their Floral Visitors in the Face of Global Change)
Show Figures

Figure 1

12 pages, 1185 KiB  
Article
Cornified Epithelial Teeth of Jawless Vertebrates Contain Proteins Similar to Keratin-Associated Proteins of Mammalian Skin Appendages
by Attila Placido Sachslehner, David A. D. Parry and Leopold Eckhart
J. Dev. Biol. 2025, 13(2), 18; https://doi.org/10.3390/jdb13020018 - 19 May 2025
Viewed by 1146
Abstract
Keratins and keratin-associated proteins (KRTAPs) are the main components of mammalian nails and hair. Comparative genomics and gene expression studies have revealed that keratins are conserved in all vertebrates, whereas KRTAPs exist only in mammals. Recently, we found hair keratin-like cysteine-rich keratins in [...] Read more.
Keratins and keratin-associated proteins (KRTAPs) are the main components of mammalian nails and hair. Comparative genomics and gene expression studies have revealed that keratins are conserved in all vertebrates, whereas KRTAPs exist only in mammals. Recently, we found hair keratin-like cysteine-rich keratins in jawless vertebrates with confirmed expression in the cornified epithelial teeth of the sea lamprey (Petromyzon marinus). Here, we report that KRTAP-like proteins are also present in the horny teeth of the lamprey. Mass spectrometry-based proteomics identified proteins that share features with KRTAPs, such as high contents of cysteine and tyrosine residues, which support intermolecular interactions, and abundant glycine residues, which endow the proteins with flexibility. Genes encoding KRTAP-like proteins are arranged in a cluster in P. marinus, and the presence of at least one KRTAP-like protein is conserved in phylogenetically diverse species of lamprey, including Lampetra fluviatilis, Lethenteron reissneri, Geotria australis, and Mordacia mordax. The KRTAP-like genes of lampreys contain two exons, whereas mammalian KRTAPs have only a single exon. Although KRTAPs and KRTAP-like proteins are products of independent evolution, their common expression in cornified skin appendages suggests that they fulfill similar functions. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

44 pages, 38981 KiB  
Article
From Camera Image to Active Target Tracking: Modelling, Encoding and Metrical Analysis for Unmanned Underwater Vehicles
by Samuel Appleby, Giacomo Bergami and Gary Ushaw
AI 2025, 6(4), 71; https://doi.org/10.3390/ai6040071 - 7 Apr 2025
Viewed by 771
Abstract
Marine mammal monitoring, a growing field of research, is critical to cetacean conservation. Traditional ‘tagging’ attaches sensors such as GPS to such animals, though these are intrusive and susceptible to infection and, ultimately, death. A less intrusive approach exploits UUV commanded by a [...] Read more.
Marine mammal monitoring, a growing field of research, is critical to cetacean conservation. Traditional ‘tagging’ attaches sensors such as GPS to such animals, though these are intrusive and susceptible to infection and, ultimately, death. A less intrusive approach exploits UUV commanded by a human operator above ground. The development of AI for autonomous underwater vehicle navigation models training environments in simulation, providing visual and physical fidelity suitable for sim-to-real transfer. Previous solutions, including UVMS and L2D, provide only satisfactory results, due to poor environment generalisation while sensors including sonar create environmental disturbances. Though rich in features, image data suffer from high dimensionality, providing a state space too great for many machine learning tasks. Underwater environments, susceptible to image noise, further complicate this issue. We propose SWiMM2.0, coupling a Unity simulation modelling of a BLUEROV UUV with a DRL backend. A pre-processing step exploits a state-of-the-art CMVAE, reducing dimensionality while minimising data loss. Sim-to-real generalisation is validated by prior research. Custom behaviour metrics, unbiased to the naked eye and unprecedented in current ROV simulators, link our objectives ensuring successful ROV behaviour while tracking targets. Our experiments show that SAC maximises the former, achieving near-perfect behaviour while exploiting image data alone. Full article
Show Figures

Figure 1

16 pages, 1885 KiB  
Article
Administration of Polyphenol-Rich Sugarcane Extract Alleviates Deficits Induced by Amyloid-Beta1–42 (Aβ1–42) in Transgenic C. elegans
by Deniz Heydarian, Matthew Flavel, Mihiri Munasinghe, Markandeya Jois and Jency Thomas
J. Ageing Longev. 2025, 5(2), 12; https://doi.org/10.3390/jal5020012 - 2 Apr 2025
Viewed by 435
Abstract
Polyphenol-Rich Sugarcane Extract (PRSE), derived from Saccharum officinarum, demonstrates significant neuroprotective effects against amyloid-beta (Aβ1–42)-induced deficits associated with Alzheimer’s disease (AD). This study utilized transgenic C. elegans expressing Aβ1–42 to investigate PRSE’s impact on lifespan, sensory behavior, learning, memory, [...] Read more.
Polyphenol-Rich Sugarcane Extract (PRSE), derived from Saccharum officinarum, demonstrates significant neuroprotective effects against amyloid-beta (Aβ1–42)-induced deficits associated with Alzheimer’s disease (AD). This study utilized transgenic C. elegans expressing Aβ1–42 to investigate PRSE’s impact on lifespan, sensory behavior, learning, memory, and amyloid fibril accumulation. Supplementation with 5 mg/mL of PRSE extended the mean lifespan of Aβ1–42 worms by 11% (17.78 ± 0.36 days) and reduced amyloid fibril levels by 34% in aged worms compared to untreated worms. PRSE also improved sensory behavior, with a 27% increase in naïve chemotaxis at day 8. Memory deficits were mitigated, with PRSE-treated worms showing 21% and 30% reductions in short-term associative memory loss after 1 h intervals on days 8 and 12, respectively. These improvements can be associated with the polyphenolic compounds in PRSE, which aid in reducing amyloid aggregation. The findings highlight PRSE’s potential as a dietary supplement to address AD-related symptoms and pathologies. Further studies are needed to understand its mechanisms and confirm its effectiveness in mammals, supporting its potential use as a natural preventative supplement for Alzheimer’s and related neurodegenerative diseases. Full article
Show Figures

Figure 1

24 pages, 4593 KiB  
Article
Depauperate Small Mammal Assemblage in Wolin National Park (Poland): Effects of Insular Isolation, Topography, and Vegetation
by Mateusz Ciechanowski, Zuzanna Wikar, Teresa Kowalewska, Maksymilian Wojtkiewicz, Julia Brachman, Bartosz Sarnowski, Katarzyna Borzym and Amelia Rydzyńska
Diversity 2025, 17(4), 246; https://doi.org/10.3390/d17040246 - 29 Mar 2025
Viewed by 542
Abstract
Terrestrial small mammal species typically assemble according to plant communities, but multiple factors, including large-scale geographic patterns, influence their assemblage structure. Despite their ecological significance, small mammals are often underrepresented in biodiversity assessments, and many Polish national parks lack comprehensive surveys. This is [...] Read more.
Terrestrial small mammal species typically assemble according to plant communities, but multiple factors, including large-scale geographic patterns, influence their assemblage structure. Despite their ecological significance, small mammals are often underrepresented in biodiversity assessments, and many Polish national parks lack comprehensive surveys. This is also the case for Wolin National Park (WNP), Poland’s only national park on a coastal marine island, which is known for its unique bat fauna. Here, we surveyed small mammals in WNP using live and pitfall trapping, identifying only nine species—the lowest richness among the five regional national parks (which host 11–13 species based on trapping data alone). Rarefaction analysis indicated a very low probability of detecting additional species with further sampling. This unexpectedly low richness is likely linked to insular isolation and the park’s location at the edge of the regional distributions of three species. Cluster analysis revealed a key pattern in WNP’s small mammal assemblages: a division between two distinct landscape units—moraine hills and the alluvial delta—where Apodemus flavicollis and Apodemus agrarius were the predominant species, respectively. This division had a greater influence on assemblage clustering than local vegetation. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Genome Editing in Mouse Embryo Using the CRISPR/Cas12i3 System
by Jiale He, Juan Liu, Yuan Yue, Lin Wang, Zhize Liu, Guangyin Xi, Lei An, Jianhui Tian and Yinjuan Wang
Int. J. Mol. Sci. 2025, 26(7), 3036; https://doi.org/10.3390/ijms26073036 - 26 Mar 2025
Viewed by 841
Abstract
The CRISPR/Cas system is a sizable family that is currently a popular and efficient gene editing tool. Cas12i3, as a member of the Type V-I family, has the characteristics of recognizing T-rich PAM sequences and being guided by shorter crRNA and has higher [...] Read more.
The CRISPR/Cas system is a sizable family that is currently a popular and efficient gene editing tool. Cas12i3, as a member of the Type V-I family, has the characteristics of recognizing T-rich PAM sequences and being guided by shorter crRNA and has higher gene editing efficiency than Cas9 in rice. However, as a potential tool in accelerating the breeding process, the application of Cas12i3 in mammalian embryos has not yet been reported. Our study systematically evaluated the feasibility of applying CRISPR/Cas12i3 to gene editing in mouse embryos, with the core pluripotency regulator gene Nanog as the target. We successfully constructed a Nanog loss-of-function mouse embryo model using CRISPR/Cas12i3. At the targeted Nanog locus, its editing efficiency exceeded that of the Cas9 system under matched experimental conditions; no off-target phenomenon was detected. Moreover, the Cas12i3 system exhibited no side effect on mouse embryo development and proliferation of blastocyst cells. Finally, we obtained healthy chimeric gene-edited offspring by optimizing the concentration of the Cas12i3 mixture. These results confirm the feasibility and safety of CRISPR/Cas12i3 for gene editing in mammals, which provides a reliable tool for one-step generation of gene-edited animals for applications in biology, medical research, and large livestock breeding. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
Effects of Climate and Land Use on Different Facets of Mammal Diversity in Giant Panda Range
by Qibing Che, Chunxiao Li, Xuzhe Zhao, Jindong Zhang, Junfeng Tang and Caiquan Zhou
Animals 2025, 15(5), 630; https://doi.org/10.3390/ani15050630 - 21 Feb 2025
Viewed by 628
Abstract
Understanding the patterns and drivers of different facets of biodiversity is crucial for biodiversity conservation under global environmental change. In this study, we present the first assessment of the patterns of taxonomic, functional and phylogenetic diversity for 171 mammals in the giant panda [...] Read more.
Understanding the patterns and drivers of different facets of biodiversity is crucial for biodiversity conservation under global environmental change. In this study, we present the first assessment of the patterns of taxonomic, functional and phylogenetic diversity for 171 mammals in the giant panda range and their associations with climate, land use factors and topographic heterogeneity. We found that functional diversity showed a very different pattern with species richness and phylogenetic diversity. Additionally, mammal assemblages were more functionally diverse but phylogenetically similar than expected by chance in very few regions after controlling for species richness. Furthermore, species richness was positively correlated with topographic heterogeneity, the proportion of forest, mean annual temperature and temperature anomaly and negatively correlated with annual precipitation and precipitation anomaly between current and historical periods, while both functional and phylogenetic diversity are predominantly correlated with climate factors. Specifically, higher functional and phylogenetic diversity was mainly found in regions with a lower proportion of cropland, annual precipitation, mean annual temperature and precipitation anomaly between current and historical periods. These results indicate the large mismatches of driving factors between taxonomic diversity and the other diversity facets and the importance of contemporary climate and land use conditions and climate anomaly between current and historical periods in determining mammal functional and phylogenetic diversity in the giant panda range. Overall, our findings highlight the importance of integrating multiple dimensions of diversity to infer the underlying processes determining the spatial pattern of biodiversity and to better inform conservation management and planning. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Graphical abstract

Back to TopTop