Depauperate Small Mammal Assemblage in Wolin National Park (Poland): Effects of Insular Isolation, Topography, and Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Small Mammals Survey
- Meso- and acidophilic forests on mineral soils (V, X, XI, and XII);
- Dry non-forest habitats (II, III, VIII, and IX), both exclusive to the upland part of the park;
- Wetland forests, mostly composed of black alder, associated with organic soils (I, IV, and VII);
- Non-forest wetland habitats, exclusive to the alluvial delta (VI, XIII, and XIV).
3. Results
4. Discussion
4.1. Species Composition
4.2. Potential Methodological Biases Affecting the Structure of Small Mammal Samples
4.3. Factors Leading to the Depauperation of Small Mammal Assemblages
4.4. Structure of Small Mammal Assemblages and Habitat Selection by Particular Species
4.5. Is Small Mammal Zonation in the Wolin National Park Forced by Topography?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WNP | Wolin National Park |
DNP | Drawieński National Park |
LOVNP | Lower Oder Valley National Park |
SNP | Słowiński National Park |
WMNP | Warta Mouth National Park |
NP | National Park |
References
- Hayward, G.F.; Phillipson, J. Community structure and functional role of small mammals in ecosystems. In Ecology of Small Mammals; Springer: Dordrecht, The Netherlands, 1979; pp. 135–211. [Google Scholar]
- Gardezi, T.; da Silva, J. Diversity in relation to body size in mammals: A comparative study. Am. Nat. 1999, 153, 110–123. [Google Scholar] [PubMed]
- Burgin, C.J.; Colella, J.P.; Kahn, P.L.; Upham, N.S. How many species of mammals are there? J. Mammal. 2018, 99, 1–14. [Google Scholar] [CrossRef]
- Stephens, R.B.; Anderson, E.M. Habitat associations and assemblages of small mammals in natural plant communities of Wisconsin. J. Mammal. 2014, 95, 404–420. [Google Scholar] [CrossRef]
- Aulak, W. Small mammal communities of the Białowieża National Park. Acta Theriol. 1970, 15, 465–515. [Google Scholar]
- Niedziałkowska, M.; Kończak, J.; Czarnomska, S.; Jędrzejewska, B. Species diversity and abundance of small mammals in relation to forest productivity in northeast Poland. Ecoscience 2010, 17, 109–119. [Google Scholar] [CrossRef]
- Benedek, A.M.; Sîrbu, I.; Lazăr, A. Responses of small mammals to habitat characteristics in Southern Carpathian forests. Sci. Rep. 2021, 11, 12031. [Google Scholar] [CrossRef]
- Fauteux, D.; Imbeau, L.; Drapeau, P.; Mazerolle, M.J. Small mammal responses to coarse woody debris distribution at different spatial scales in managed and unmanaged boreal forests. For. Ecol. Manag. 2012, 266, 194–205. [Google Scholar] [CrossRef]
- Kamenišťák, J.; Baláž, I.; Tulis, F.; Jakab, I.; Ševčík, M.; Poláčiková, Z.; Klimant, P.; Ambros, M.; Rychlik, L. Changes of small mammal communities with the altitude gradient. Biologia 2020, 75, 713–722. [Google Scholar] [CrossRef]
- Chirichella, R.; Ricci, E.; Armanini, M.; Gobbi, M.; Mustoni, A.; Apollonio, M. Small mammals in a mountain ecosystem: The effect of topographic, micrometeorological, and biological correlates on their community structure. Community Ecol. 2022, 23, 289–299. [Google Scholar] [CrossRef]
- Tomassini, O.; Aghemo, A.; Baldeschi, B.; Bedini, G.; Petroni, G.; Giunchi, D.; Massolo, A. Some like it burnt: Species differences in small mammal assemblage in a Mediterranean basin nearly 3 years after a major fire. Mamm. Res. 2024, 69, 283–302. [Google Scholar] [CrossRef]
- Torre, I.; Ribas, A.; Puig-Gironès, R. Effects of post-fire management on a Mediterranean small mammal community. Fire 2023, 6, 34. [Google Scholar] [CrossRef]
- Jasiulionis, M.; Balčiauskas, L.; Balčiauskienė, L. Size Matters: Diversity and Abundance of Small Mammal Community Varies with the Size of Great Cormorant Colony. Diversity 2023, 15, 220. [Google Scholar] [CrossRef]
- Wikar, Z.; Ciechanowski, M.; Zwolicki, A. The positive response of small terrestrial and semi-aquatic mammals to beaver damming. Sci. Total Environ. 2024, 906, 167568. [Google Scholar] [CrossRef] [PubMed]
- Churchfield, S.; Hollier, J.; Brown, V.K. Community structure and habitat use of small mammals in grasslands of different successional age. J. Zool. 2009, 242, 519–530. [Google Scholar] [CrossRef]
- Gentili, S.; Sigura, M.; Bonesi, L. Decreased small mammals species diversity and increased population abundance along a gradient of agricultural intensification. Hystrix 2014, 25, 39–44. [Google Scholar] [CrossRef]
- Wołk, E.; Wołk, K. Responses of small mammals to the forest management in the Białowieża Primeval Forest. Acta Theriol. 1982, 27, 45–59. [Google Scholar]
- Pearce, J.; Venier, L. Small mammals as bioindicators of sustainable boreal forest management. For. Ecol. Manag. 2005, 208, 153–175. [Google Scholar] [CrossRef]
- Ważna, A.; Cichocki, J.; Bojarski, J.; Gabryś, G. Impact of sheep grazing on small mammals diversity in lower mountain coniferous forest glades. Appl. Ecol. Environ. Res. 2016, 14, 115–127. [Google Scholar] [CrossRef]
- Adler, G.H.; Wilson, M.L. Small mammals on Massachusetts islands: The use of probability functions in clarifying biogeographic relationships. Oecologia 1985, 66, 178–186. [Google Scholar]
- Haq, S.M.A. Multi-benefits of national parks and protected areas: An integrative approach for developing countries. Environ. Socio-Econ. S. 2016, 4, 1–11. [Google Scholar] [CrossRef]
- Jamroży, G. Ssaki Polskich Parków Narodowych: Drapieżne, Kopytne, Zajęczaki, Duże Gryzonie; Instytut Bioróżnorodności Leśnej Uniwersytetu Rolniczego.Adv. Tomasz Müller: Kraków, Poland, 2014; 432p. [Google Scholar]
- Ciechanowski, M.; Wikar, Z.; Borzym, K.; Janikowska, E.; Brachman, J.; Jankowska-Jarek, M.; Bidziński, K. Exceptionally Uniform Bat Assemblages across Different Forest Habitats Are Dominated by Single Hyperabundant Generalist Species. Forests 2024, 15, 337. [Google Scholar] [CrossRef]
- Piotrowska, H. Stosunki geobotaniczne wysp Wolina i południowo-wschodniego Uznamu [Geobotanical study of the Wolin and south-east Uznam Isles]. Monogr. Bot. 1966, 22, 1–157. [Google Scholar]
- Piotrowska, H. Wyspa Wolin ze szczególnym uwzględnieniem Wolińskiego Parku Narodowego. In Szata Roślinna Pomorza—Zróżnicowanie, Dynamika, Zagrożenia, Ochrona; Przewodnik Sesji Terenowych 51. Zjazdu PTB 15-19 IX 1998; Herbich, J., Herbichowa, M., Eds.; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 1998; pp. 9–21. [Google Scholar]
- Pucek, Z. Keys to Vertebrates of Poland: Mammals; Polish Scientific Publishers: Warszawa, Poland, 1981; pp. 1–367. [Google Scholar]
- Aulagnier, S.; Mitchell-Jones, A.J.; Zima, J.; Haffner, P.; Moutou, F.; Chevalier, J. Mammals of Europe, North Africa and the Middle East; Bloomsbury Publishing: London, UK, 2009; pp. 1–272. [Google Scholar]
- Michaux, J.R.; Chevret, P.; Filippucci, M.G.; Macholan, M. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: Cytochrome b and 12S rRNA. Mol. Phyl. Evol. 2002, 23, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Hammer, R.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Piłacińska, B.; Ziomek, J.; Bajaczyk, R. Drobne ssaki Drawieńskiego Parku Narodowego [Small mammals of the Drawieński National Park]. Bad. Fizjogr. Pol. Zach. 1999, 46, 95–106. [Google Scholar]
- Wojtaszyn, G.; Rutkowski, T.; Lesiński, G.; Stephan, W.; Salamandra, P.T.O.P. Soricomorphs and rodents of the Ujście Warty National Park and the surrounding area. Chrońmy Przyr. Ojczystą 2015, 71, 179–191. [Google Scholar]
- Rychlik, L.S.; Eichert, U.M.; Kowalski, K. Diversity of small mammal assemblages in natural forests and other habitats of the Słowiński National Park, northern Poland—Preliminary results. Natl. Jahrb. Unteres Odertal 2020, III, 66–71. [Google Scholar]
- Decher, J.; Bakarr, I.; Hoffmann, A.; Jentke, T.; Klappert, A.; Kowalski, G.; Kuzdrowska, K.; Malinowska, B.; Rychlik, L.S. Aktualisierung unserer Kenntnisse über die Kleinsäugergemeinschaften im Nationalpark Unteres Odertal. Natl.-Jahrb. Unteres Odertal 2021, 18, 145–150. [Google Scholar]
- Hoffmann, A.; Jankowiak, Ł.; Modelska, Z.; Piórkowska, K.; Decher, J.; Jentke, T.; Klappert, A.; Kuzdrowska, K.; Malinowska, B.; Sęk, O.W.; et al. Diversität von Kleinsäugern im nördlichen Teil des Nationalparks Unteres Odertal. Natl.-Jarbuch Unteres Odertal 2022, 19, 37–45. [Google Scholar]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, 566–570. [Google Scholar]
- ClustVis. Available online: https://biit.cs.ut.ee/clustvis/ (accessed on 1 July 2024).
- Herold, W. Zur Kleinsäugerfauna der Insel Usedom und Wolin. Dohrniana 1934, 13, 176–196. [Google Scholar]
- Pucek, Z.; Raczyński, J. (Eds.) Atlas of Polish Mammals; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1983; pp. 1–188 (text), pp. 1–175 (maps). [Google Scholar]
- Herold, W. Beiträge zur Säugetierfauna Usedom-Wollins. I Abch. Ber. Pommerschen Nat-forsch. Ges. Stettin. 1921, 2, 75–79. [Google Scholar]
- Open Forest Data. Available online: https://dataverse.openforestdata.pl/dataverse/zoo (accessed on 5 May 2024).
- Ciechanowski, M.; Wikar, Z.; Kowalewska, T.; Wojtkiewicz, M.; Brachman, J.; Sarnowski, B.; Borzym, K.; Rydzyńska, A. Department of Vertebrate Ecology and Zoology, University of Gdańsk, Gdańsk, Poland. 2023; unpublished data. [Google Scholar]
- Gaffrey, G. Die Rezenten Wildlebenden Säugetiere Pommerns. Ph.D. Thesis, Universität Greifswald, Greifswald, Germany, 1944. [Google Scholar]
- Skuratowicz, W. Materiały do fauny pcheł (Aphaniptera) Polski. Acta Parasitol. Pol. 1954, 2, 65–96. [Google Scholar]
- Herold, W. Zur Verbreitung der Schlagmäuse in Pommern. I Abch. Ber. Pommerschen Nat-Forsch. Ges. Stettin 1922, 3, 43–50. [Google Scholar]
- Herold, W. Zum Vorkommen von Glis glis (L.). Dohrniana 1939, 18. [Google Scholar]
- Goc, M. Stanowisko popielicy szarej Glis glis w Słowińskim Parku Narodowym. Przegląd Przyr. 2019, 30, 114–115. [Google Scholar]
- Rathke, D.; Bröring, U. Colonization of post-mining landscapes by shrews and rodents (Mammalia: Rodentia, Soricomorpha). Ecol. Eng. 2005, 24, 149–156. [Google Scholar] [CrossRef]
- Nicolas, V.; Colyn, M. Relative efficiency of three types of small mammal traps in an African rainforest. Belg. J. Zool. 2006, 136, 107. [Google Scholar]
- Pucek, Z. Trap response and estimation of numbers of shrews in removal catches. Acta Theriol. 1969, 14, 403–426. [Google Scholar] [CrossRef]
- O’Brien, C.; McShea, W.J.; Guimondou, S.; Barriere, P.; Carleton, M.D. Terrestrial small mammals (Soricidae and Muridae) from the Gamba Complex in Gabon: Species composition and comparison of sampling techniques. Bull. Biol. Soc. Wash. 2006, 12, 353–363. [Google Scholar]
- Bovendorp, R.S.; Mccleery, R.A.; Galetti, M. Optimising sampling methods for small mammal communities in Neotropical rainforests. Mamm. Rev. 2017, 47, 148–158. [Google Scholar] [CrossRef]
- Pankakoski, E. The cone trap—A useful tool for index trapping of small mammals. Ann. Zool. Fenn. 1979, 16, 144–150. [Google Scholar]
- Pelikan, J.; Zejda, J.; Holisova, V. Efficiency of different traps in catching small mammals. Folia Zool. 1977, 26, 1–13. [Google Scholar]
- Darinot, F. Dispersal and Genetic Structure in a Harvest Mouse (Micromys minutus Pallas, 1771) Population, Subject to Seasonal Flooding. PhD Thesis, PSL University, Paris, 2019. [Google Scholar]
- Occhiuto, F.; Mohallal, E.; Gilfillan, G.D.; Lowe, A.; Reader, T. Seasonal patterns in habitat use by the harvest mouse (Micromys minutus) and other small mammals. Mammalia 2021, 85, 325–335. [Google Scholar] [CrossRef]
- Ziomek, J. Drobne ssaki (Micromammalia) Roztocza. Część I. Micromammalia wybranych biotopów Roztocza Środkowego. Fragm. Faunist. 1998, 41, 93–123. [Google Scholar] [CrossRef]
- Juskaitis, R. Peculiarities of habitats of the common dormouse, Muscardinus avellanarius, within its distributional range and in Lithuania: A review. Folia Zool. 2007, 56, 337. [Google Scholar]
- Ciechanowski, M.; Cichocki, J.; Ważna, A.; Piłacińska, B. Small-mammal assemblages inhabiting Sphagnum peat bogs in various regions of Poland. Biol. Lett. 2012, 49, 115–133. [Google Scholar] [CrossRef]
- Raczyński, J.; Fedyk, S.; Gębczyńska, Z.; Pucek, M. Drobne ssaki środkowego i dolnego basenu Biebrzy. Zesz. Probl. Post. Nauk Roln. 1983, 255, 297–328. [Google Scholar]
- Gębczyńska, Z.; Raczyński, J. Fauna i ekologia drobnych ssaków Narwiańskiego Parku Narodowego. Park. Nar. Rez. Przyr. 1997, 16, 37–61. [Google Scholar]
- Willott, S.J. Species accumulation curves and the measure of sampling effort. J. Appl. Ecol. 2001, 38, 484–486. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Juškaitis, R. Diversity of small mammal community in Lithuania (1. A review). Acta Zool. Litu. 1997, 7, 29–45. [Google Scholar] [CrossRef]
- da Luz Mathias, M.; Hart, E.B.; da Graca Ramalhinho, M.; Jaarola, M. Microtus agrestis (Rodentia: Cricetidae). Mamm. Species 2017, 49, 23–39. [Google Scholar] [CrossRef]
- Mitchell-Jones, A.J.; Mitchell, J.; Amori, G.; Bogdanowicz, W.; Spitzenberger, F.; Krystufek, B.; Reijnders, P.J.H.; Spitzenberger, E.; Stubbe, M.; Thissen, J.B.M.; et al. The Atlas of European Mammals; T & AD Poyser: London, UK, 2000; Volume 3. [Google Scholar] [CrossRef]
- Igea, J.; Aymerich, P.; Bannikova, A.A.; Gosálbez, J.; Castresana, J. Multilocus species trees and species delimitation in a temporal context: Application to the water shrews of the genus Neomys. BMC Evol. Biol. 2015, 15, 209. [Google Scholar] [CrossRef]
- Cichocki, J.; Kościelska, A.; Piłacińska, B.; Kowalski, M.; Ważna, A.; Dobosz, R.; Nowakowski, K.; Lesiński, G.; Gabrys, G. Occurrence of lesser white-toothed shrew Crocidura suaveolens (Pallas, 1811) in Poland. Zesz. Naukowe. Acta Biol. Uniw. Szczeciński 2014, 21, 149–168. [Google Scholar]
- Haberl, W.; Kryštufek, B. Spatial distribution and population density of the harvest mouse Micromys minutus in a habitat mosaic at Lake Neusiedl, Austria. Mammalia 2003, 67, 355–366. [Google Scholar] [CrossRef]
- Surmacki, A.; Gołdyn, B.; Tryjanowski, P. Location and habitat characteristics of the breeding nests of the harvest mouse (Micromys minutus) in the reed-beds of an intensively used farmland. Mammalia 2005, 69, 5–9. [Google Scholar] [CrossRef]
- Brzeziński, M.; Jedlikowski, J.; Komar, E. Space use, habitat selection and daily activity of water voles Arvicola amphibius co-occurring with the invasive American mink Neovison vison. Folia Zool. 2019, 68, 21–28. [Google Scholar] [CrossRef]
- van der Putten, T.A.; Verhees, J.J.; Koma, Z.; van Hoof, P.H.; Heijkers, D.; de Boer, W.F.; Esser, H.J.; Hoogerwerf, G.; Lemmers, P. Insights into the fine-scale habitat use of Eurasian Water Shrew (Neomys fodiens) using radio tracking and LiDAR. J. Mammal. 2025, gyae146. [Google Scholar] [CrossRef]
- Rychlik, L. Habitat preferences of four sympatric species of shrews. Acta Theriol. 2000, 45 (Suppl. S1), 173–190. [Google Scholar]
- Łopucki, R.; Mróz, I.; Klich, D.; Kitowski, I. Small mammals of xerothermic grasslands of south-eastern Poland. Ann. Wars. Univ. Life Sci.—SGGW. Anim. Sci. 2018, 57, 257–267. [Google Scholar] [CrossRef]
- Tattersall, F.H.; Macdonald, D.W.; Hart, B.J.; Manley, W.J.; Feber, R.E. Habitat use by wood mice (Apodemus sylvaticus) in a changeable arable landscape. J. Zool. 2001, 255, 487–494. [Google Scholar] [CrossRef]
- Suchomel, J.; Purchart, L.; Čepelka, L. Structure and diversity of small-mammal communities of lowland forests in the rural central European landscape. Eur. J. For. Res. 2012, 131, 1933–1941. [Google Scholar] [CrossRef]
- Loeb, S.C. Responses of small mammals to coarse woody debris in a southeastern pine forest. J. Mammal. 1999, 80, 460–471. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Maintenance of small mammals using post-harvest woody debris structures on clearcuts: Linear configuration of piles is comparable to windrows. Mamm. Res. 2018, 63, 11–19. [Google Scholar] [CrossRef]
- Jędrzejewski, W.; Jędrzejewska, B. Rodent cycles in relation to biomass and productivity of ground vegetation and predation in the Palearctic. Acta Theriol. 1996, 41, 1–34. [Google Scholar] [CrossRef]
- Andreassen, H.P.; Sundell, J.; Ecke, F.; Halle, S.; Haapakoski, M.; Henttonen, H.; Huitu, O.; Jacob, J.; Johnsen, K.; Koskela, E.; et al. Population cycles and outbreaks of small rodents: Ten essential questions we still need to solve. Oecologia 2021, 195, 601–622. [Google Scholar] [CrossRef] [PubMed]
- Trout, R.C. A review of studies on populations of wild harvest mice (Micromys minutus (Pallas). Mamm. Rev. 1978, 8, 143–158. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Balčiauskienė, L. Long-Term Stability of Harvest Mouse Population. Diversity 2023, 15, 1102. [Google Scholar] [CrossRef]
- Ciechanowski, M.; Fałtynowicz, W.; Zieliński, S. The nature of the planned reserve “Dolina Mirachowskiej Strugi” in the Kaszubskie Lakeland (northern Poland). Acta Bot. Cassubica 2004, 4, 5–137. [Google Scholar]
- Balčiauskas, L.; Skipitytė, R.; Balčiauskienė, L.; Jasiulionis, M. Resource partitioning confirmed by isotopic signatures allows small mammals to share seasonally flooded meadows. Ecol. Evol. 2019, 9, 5479–5489. [Google Scholar] [CrossRef]
- Dokulilová, M.; Krojerová-Prokešová, J.; Heroldová, M.; Čepelka, L.; Suchomel, J. Population dynamics of the common shrew (Sorex araneus) in Central European forest clearings. Eur. J. Wildl. Res. 2023, 69, 54. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Balčiauskienė, L. Habitat and Body Condition of Small Mammals in a Country at Mid-Latitude. Land 2024, 13, 1214. [Google Scholar] [CrossRef]
- Pucek, Z.; Jędrzejewski, W.; Jędrzejewska, B.; Pucek, M. Rodent population dynamics in a primeval deciduous forest (Białowieża National Park) in relation to weather, seed crop, and predation. Acta Theriol. 1993, 38, 199–232. [Google Scholar]
- Panov, V.V.; Karpenko, S.V. The population dynamics of the water shrew Neomys fodiens (Mammalia, Soricidae) and its helminthes fauna in the northern Baraba. Parazitologiia 2004, 38, 448–456. [Google Scholar]
- Strzelczyk, J.; Łabuz, T. Zmiany linii brzegowej oraz powierzchni wyspy Wolin w holocenie i ich wpływ na osadnictwo od mezolitu do czasów współczesnych (Coastline and the surface of the Wolin Island changes in the Holocene and their impact on settlement from the Mesolithic to modern times). In Najnowsze Doniesienia z Zakresu Ochrony Środowiska i Nauk Pokrewnych; Danielewska, A., Maciag, M., Eds.; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2020. [Google Scholar]
- Bohdal, T.; Navrátil, J.; Sedláček, F. Small terrestrial mammals living along streams acting as natural landscape barriers. Ekológia 2016, 35, 191–204. [Google Scholar] [CrossRef]
- Schenk, F. Comparison of spatial learning in woodmice (Apodemus sylvaticus) and hooded rats (Rattus norvegicus). J. Comp. Psychol. 1987, 101, 150. [Google Scholar] [CrossRef]
- Stawski, C.; Koteja, P.; Sadowska, E.T.; Jefimow, M.; Wojciechowski, M.S. Selection for high activity-related aerobic metabolism does not alter the capacity of non-shivering thermogenesis in bank voles. J. Comp. Physiol. A 2015, 180, 51–56. [Google Scholar] [CrossRef]
- Lomolino, M.V.; Riddle, B.R.; Whittaker, R.J.; Brown, J.H. Biogeography, 4th ed.; Sinauer Associates, Inc. Publishers: Sunderland, MA, USA, 2010; pp. 509–619. [Google Scholar]
- Lomolino, M.V. Mammalian island biogeography: Effects of area, isolation and vagility. Oecologia 1984, 61, 376–382. [Google Scholar]
- Barreto, E.; Rangel, T.F.; Pellissier, L.; Graham, C.H. Area, isolation and climate explain the diversity of mammals on islands worldwide. Proc. R. Soc. B 2021, 288, 20211879. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, Y.; Yu, M.; Xu, G.; Ding, P. Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. Div. Distrib. 2010, 16, 862–873. [Google Scholar] [CrossRef]
- Mallinger, E.C.; Khadka, B.; Farmer, M.J.; Morrison, M.; Van Stappen, J.; Van Deelen, T.R.; Olson, E.R. Longitudinal trends of the small mammal community of the Apostle Islands archipelago. Comm. Ecol. 2021, 22, 55–67. [Google Scholar] [CrossRef]
- Pichler, T.R.; Mallinger, E.C.; Farmer, M.J.; Morrison, M.J.; Khadka, B.; Matzinger, P.J.; Kirschbaum, A.; Goodwin, K.R.; Route, W.T.; Van Stappen, J.; et al. Comparative biogeography of volant and nonvolant mammals in a temperate island archipelago. Ecosphere 2022, 13, e3911. [Google Scholar] [CrossRef]
- Peltonen, A.; Hanski, I. Patterns of island occupancy explained by colonization and extinction rates in shrews. Ecology 1991, 72, 1698–1708. [Google Scholar] [CrossRef]
- Christiansen, T.S. Island Biogeography of Small Mammals in Denmark: Effects of Area, Isolation and Habitat Diversity. Master’s Thesis, University of Aarhus, Aarhus, Denmark, 2005. [Google Scholar]
- Kleinekuhle, J.; Bach, L.; Donning, A.; Berns, S. Die freilebenden Säugetiere (Mammalia) der Ostfriesischen Inseln unter besonderer Berücksichtigung der Insel Norderney, der Raubsäuger (Carnivora) und der Fledermäuse (Chiroptera). Abh. Naturwiss Ver Brem. 2023, 48, 1–19. [Google Scholar]
- Wijngaarden, A. The terrestrial mammal-fauna of the Dutch Wadden-Islands. Z. Saugetiere 1964, 29, 359–368. [Google Scholar]
- Girjatowicz, J.P.; Świątek, M. Relationship between air temperature change and southern Baltic coastal lagoons ice conditions. Atmosphere 2021, 12, 931. [Google Scholar] [CrossRef]
- Heisler, L.M.; Somers, C.M.; Poulin, R.G. Owl pellets: A more effective alternative to conventional trapping for broad-scale studies of small mammal communities. Methods Ecol. Evol. 2016, 7, 96–103. [Google Scholar] [CrossRef]
- Schröpfer, R. The Structure of European Small Mammal Communities. Zool. Jb. Syst. 1990, 117, 355–367. [Google Scholar]
- Suchomel, J.; Purchart, L.; Čepelka, L.; Heroldová, M. Structure and diversity of small mammal communities of mountain forests in Western Carpathians. Eur. J. For. Res. 2014, 133, 481–490. [Google Scholar] [CrossRef]
- Zwolak, R.; Witczuk, J.; Bogdziewicz, M.; Rychlik, L.; Pagacz, S. Simultaneous population fluctuations of rodents in montane forests and alpine meadows suggest indirect effects of tree masting. J. Mammal. 2018, 99, 586–595. [Google Scholar] [CrossRef]
- Romanowski, J.; Dudek-Godeau, D.; Lesiński, G. The Diversity of Small Mammals along a Large River Valley Revealed from Pellets of Tawny Owl Strix aluco. Biology 2023, 12, 1118. [Google Scholar] [CrossRef]
- Cornulier, T.; Yoccoz, N.G.; Bretagnolle, V.; Brommer, J.E.; Butet, A.; Ecke, F.; Framstad, E.; Henttonen, H.; Hörnfeldt, B.; Huitu, O.; et al. Europe-wide dampening of population cycles in keystone herbivores. Science 2013, 340, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Juškaitis, R.; Ulevičius, A. Kuršių Nerijos nacionalinio parko smulkieji žinduoliai. Theriol. Litu. 2002, 2, 34–46. [Google Scholar]
- Grodziński, W. The succession of small mammal communities on an overgrown clearing and landslip in the Western Carpathians. Bull. Acad. Pol. Sc. Cl. II 1958, 6, 10. [Google Scholar]
- Bogdziewicz, M.; Zwolak, R. Responses of small mammals to clear-cutting in temperate and boreal forests of Europe: A meta-analysis and review. Eur. J. For. Res. 2014, 133, 1–11. [Google Scholar] [CrossRef]
- Mažeikytė, R. Small mammals in the mosaic landscape of eastern Lithuania: Species composition, distribution and abundance. Acta Zool. Litu. 2002, 12, 381–391. [Google Scholar] [CrossRef]
- Šinkūnas, R.; Balčiauskas, L. Small mammal communities in the fragmented landscape in Lithuania. Acta Zool. Litu. 2006, 16, 130–136. [Google Scholar] [CrossRef]
- Greenberg, R.; Maldonado, J.E.; Droege, S.A.M.; McDonald, M.V. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates. BioScience 2006, 56, 675–685. [Google Scholar] [CrossRef]
- Verkuil, Y.I.; van Guldener, W.E.; Lagendijk, D.G.; Smit, C. Molecular identification of temperate Cricetidae and Muridae rodent species using fecal samples collected in a natural habitat. Mamm. Res. 2018, 63, 379–385. [Google Scholar] [CrossRef]
- Christensen, J.T.; Jensen, T.S. Småpattedyrfaunaen på Anholt og Sprogø. Flora Og Fauna 2024, 129, 3–7. [Google Scholar]
- Ambros, M. Drobné cicavce (Mammalia: Soricomorpha, Rodentia) území európskeho významu: Slaniská a slané lúky. Naturae Tutela 2018, 22, 203–214. [Google Scholar]
- Rico, A.; Kindlmann, P.; Sedlacek, F. Barrier effects of roads on movements of small mammals. Folia Zool. 2007, 56, 1. [Google Scholar]
- Andrzejewski, R.; Babińska-Werka, J.; Gliwicz, J.; Goszczyński, J. Synurbization processes in population of Apodemus agrarius. I. Characteristics of populations in an urbanization gradient. Acta Theriol. 1978, 23, 341–358. [Google Scholar]
- Lesiński, G.; Gryz, J.; Krauze-Gryz, D.; Stolarz, P. Population increase and synurbization of the yellow-necked mouse Apodemus flavicollis in some wooded areas of Warsaw agglomeration, Poland, in the years 1983–2018. Urban Ecosyst. 2021, 24, 481–489. [Google Scholar] [CrossRef]
- Suárez-Tangil, B.D.; Rodríguez, A. Environmental filtering drives the assembly of mammal communities in a heterogeneous Mediterranean region. Ecol. Appl. 2023, 33, e2801. [Google Scholar] [CrossRef]
Site | Landscape Unit | Habitat Characteristics |
---|---|---|
I | mh | Alder–ash riparian forest Fraxino–Alnetum (70 years) along a stream between two lakes, transitioning to the ecotone of black alder swamp forest and reed bed along the shore of a eutrophic lake |
II | mh | Treeless communities on coastal dunes; the site is divided into two shorter trap-lines of equal length: IIa—grey dunes Helichryso–Jasionetum and IIb—white dunes Elymo–Ammophiletum |
III | mh | Mesic meadow Arrhenatherion elatioris on a hill slope, regularly mowed; few scattered shrubs near the trap-line |
IV | mh | Black alder swamp forest Ribeso nigri–Alnetum (45 years) along the shore of a eutrophic lake; hollows filled with water; locally, patches of reed Phragmites australis in the herbaceous layer |
V | mh | Moist Subatlantic oak–hornbeam forest Stellario–Carpinetum (40–165 years) on a lakeside terrace and parallel slope; abundant hazelnut Corylus avellana in the undergrowth |
VI | ad | A mosaic of wet, glycophilous meadows, low reed and sedge beds, adjacent to the narrow (50–60 m) strip of trees (pedunculate oaks and black alders) along the ditch; during the trapping, meadows were freshly mowed and partially flooded |
VII | ad | A dike (5–10 m wide) between the two narrow canals, covered by a mosaic of sedge communities and willow shrubs, surrounded by black alder swamp forests Ribeso nigri–Alnetum (96 years) from both sides |
VIII | mh | Active marine cliff with mosaic of early Trifolio–Anthyllidetum swards with abundant grasses and field wormwood Artemisia campestris and later sea-buckthorn Hippophae rhamnoides shrubland succession stages |
IX | mh | Surrounding of the permanently occupied forester’s lodge—traps located along the buildings’ walls, in the garden, on piles of firewood, under shrubs, and in an orchard |
X | mh | Fertile woodruff beach forest Galio-odorati Fagetum (125–165 years) with abundant coarse woody debris of natural origin |
XI | mh | A complex of acidophilic, broadleaved woodlands (90–165 years); the site is divided into two shorter trap-lines of equal length: IIa—acid-poor beech forest Luzulo pilosae–Fagetum with traces of recent active restoration (mostly the removal of planted Scotch pine) resulting in abundant woody debris and IIb—acid-poor oak–beech forest Fago–Quercetum |
XII | mh | A complex of coastal woodlands on dunes; the site is divided into two shorter trap-lines of equal length: XIIa—pine forest Empetro nigri–Pinetum (52 years) and XIIb—acidic birch–oak forest Betulo–Quercetum (65–135 years) |
XIII | ad | Halophytic mire Glauco–Puccinietalia, consisting of low sward dominated by Juncus gerardi, intensively grazed by cattle, and patches of higher vegetation, including Schoenoplectus tabernaemontani along a flooded depression |
XIV | ad | Reed bed Phragmitetum commune, consisting mostly of high reeds, forming an ecotone (10–40 m wide) between birch–oak forest and mowed, glycophilous meadows |
Site/Habitat | Species | Total | S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sara | Smin | Nfod | Cgla | Aoec | Magr | Marv | A/M | Aagr | Afla | Asp | |||
I | 1 | 4 | 1 | 37 | - | - | - | - | - | 16 | 6 | 65 | 5 |
IIa | - | - | - | - | - | - | 1 | - | - | 7 | 1 | 9 | 2 |
IIb | - | - | - | - | - | - | - | - | - | 1 | - | 1 | 1 |
III | - | - | - | - | - | - | 2 | - | - | 1 | 2 | 5 | 2 |
IV | 2 | 12 | - | 21 | - | - | - | - | - | 29 | 3 | 67 | 4 |
V | - | 2 | - | 6 | - | - | - | - | - | 16 | 2 | 26 | 3 |
VI | - | - | - | 4 | 4 | 3 | - | 1 | 2 | 1 | - | 15 | 5 |
VII | 1 | 1 | - | - | - | 4 | - | - | 5 | - | - | 11 | 4 |
VIII | - | - | - | - | - | - | - | - | - | 12 | - | 12 | 1 |
IX | - | - | - | 3 | - | - | - | - | 1 | 3 | - | 7 | 3 |
X | 3 | - | - | 92 | - | - | - | - | - | 21 | 3 | 119 | 3 |
XIa | - | - | - | - | - | - | - | - | - | 2 | - | 2 | 1 |
XIb | - | - | - | - | - | - | - | - | - | 1 | - | 1 | 1 |
XIIa | - | 1 | - | - | - | - | - | - | - | - | - | 1 | 1 |
XIIb | - | - | - | 1 | - | - | - | - | - | - | - | 1 | 1 |
XIII | - | - | - | - | - | - | - | - | 8 | - | - | 8 | 1 |
XIV | 6 | 9 | - | - | - | 2 | - | - | 30 | - | - | 47 | 4 |
total | 13 | 29 | 1 | 164 | 4 | 9 | 3 | 1 | 46 | 110 | 17 | 397 | 9 |
% | 3.3 | 7.3 | 0.3 | 41.3 | 1.0 | 2.3 | 0.8 | 0.3 | 11.6 | 27.7 | 4.3 | 100.0 | |
Number of habitats | 5 | 6 | 1 | 7 | 1 | 3 | 2 | - | 5 | 12 | - | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciechanowski, M.; Wikar, Z.; Kowalewska, T.; Wojtkiewicz, M.; Brachman, J.; Sarnowski, B.; Borzym, K.; Rydzyńska, A. Depauperate Small Mammal Assemblage in Wolin National Park (Poland): Effects of Insular Isolation, Topography, and Vegetation. Diversity 2025, 17, 246. https://doi.org/10.3390/d17040246
Ciechanowski M, Wikar Z, Kowalewska T, Wojtkiewicz M, Brachman J, Sarnowski B, Borzym K, Rydzyńska A. Depauperate Small Mammal Assemblage in Wolin National Park (Poland): Effects of Insular Isolation, Topography, and Vegetation. Diversity. 2025; 17(4):246. https://doi.org/10.3390/d17040246
Chicago/Turabian StyleCiechanowski, Mateusz, Zuzanna Wikar, Teresa Kowalewska, Maksymilian Wojtkiewicz, Julia Brachman, Bartosz Sarnowski, Katarzyna Borzym, and Amelia Rydzyńska. 2025. "Depauperate Small Mammal Assemblage in Wolin National Park (Poland): Effects of Insular Isolation, Topography, and Vegetation" Diversity 17, no. 4: 246. https://doi.org/10.3390/d17040246
APA StyleCiechanowski, M., Wikar, Z., Kowalewska, T., Wojtkiewicz, M., Brachman, J., Sarnowski, B., Borzym, K., & Rydzyńska, A. (2025). Depauperate Small Mammal Assemblage in Wolin National Park (Poland): Effects of Insular Isolation, Topography, and Vegetation. Diversity, 17(4), 246. https://doi.org/10.3390/d17040246