Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = major ions chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4812 KiB  
Article
Geochemical Assessment of Long-Term CO2 Storage from Core- to Field-Scale Models
by Paa Kwesi Ntaako Boison, William Ampomah, Jason D. Simmons, Dung Bui, Najmudeen Sibaweihi, Adewale Amosu and Kwamena Opoku Duartey
Energies 2025, 18(15), 4089; https://doi.org/10.3390/en18154089 - 1 Aug 2025
Viewed by 190
Abstract
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated [...] Read more.
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated through history-matching, utilizing data from saltwater disposal wells to improve predictive accuracy. Core-scale simulations incorporating mineral interactions and equilibrium reactions validated the model against laboratory flow-through experiments. The calibrated geochemical model was subsequently upscaled into a field-scale 3D model of the SJB site to predict how mineral precipitation and dissolution affect reservoir properties. The results indicate that the majority of the injected CO2 is trapped structurally, followed by residual trapping and dissolution trapping; mineral trapping was found to be negligible in this study. Although quartz and calcite precipitation occurred, the dissolution of feldspars, phyllosilicates, and clay minerals counteracted these effects, resulting in a minimal reduction in porosity—less than 0.1%. The concentration of the various ions in the brine is directly influenced by dissolution/precipitation trends. This study provides valuable insights into CO2 sequestration’s effects on reservoir fluid dynamics, mineralogy, and rock properties in the San Juan Basin. It highlights the importance of reservoir simulation in assessing long-term CO2 storage effectiveness, particularly focusing on geochemical interactions. Full article
Show Figures

Figure 1

15 pages, 1457 KiB  
Article
The Hydrochemical Characteristics Evolution and Driving Factors of Shallow Groundwater in Luxi Plain
by Na Yu, Yingjie Han, Guang Liu, Fulei Zhuang and Qian Wang
Sustainability 2025, 17(14), 6432; https://doi.org/10.3390/su17146432 - 14 Jul 2025
Viewed by 277
Abstract
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the [...] Read more.
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the safety of groundwater quality and ensuring the high-quality development of the water supply. This study took Liaocheng City in the hinterland of the Luxi Plain as the study area. To clarify the hydrochemical characteristics evolution trend of groundwater in the area, the hydrochemical characteristics of shallow groundwater in recent years were systematically analyzed. The methods of ion ratio, correlation analysis, Gibbs and Gaillardet endmember diagrams, as well as the application of the absolute principal component scores–multiple linear regression (APCS-MLR) receptor model were used to determine the contribution rates of different ion sources to groundwater and to elucidate the driving factors behind the evolution of groundwater chemistry. Results showed significant spatiotemporal variations in the concentrations of major ions such as Na+, SO42−, and Cl in groundwater in the study area, and these variations demonstrated an overall increasing trend. Notably, the increases in total hardness (THRD), SO4, and Cl concentrations were particularly pronounced, while the variations in Na+, Mg2+, Ca2+ and other ions were relatively gradual. APCS-MLR receptor model analysis revealed that the ions such as Na+, Ca2+, Mg2+, SO42−, Cl, HCO3 and NO3 all have a significant influence on the hydrochemical composition of groundwater due to the high absolute principal component scores of them. The hydrochemical characteristics of groundwater in the study area were controlled by multiple processes, including evaporites, silicates and carbonates weathering, evaporation-concentration, cation alternating adsorption and human activities. Among the natural driving factors, rock weathering had a greater influence on the evolution of groundwater hydrochemical characteristics. Moreover, mining activities were the most important anthropogenic factor, followed by agricultural activities and living activities. Full article
Show Figures

Figure 1

29 pages, 2696 KiB  
Article
Hydrogeochemical Characterization and Water Quality Index-Based Evaluation of Groundwater for Drinking, Livestock, and Irrigation Use in the Arid Ewaso Ng’iro–Lagh Dera Basin, Kenya
by Githinji Tabitha Wambui, Dindi Edwin Wandubi, Kuria Zacharia Njuguna, Olago Daniel Ochieng and Gicheruh Chrysanthus Muchori
Hydrology 2025, 12(7), 160; https://doi.org/10.3390/hydrology12070160 - 20 Jun 2025
Viewed by 1074
Abstract
Groundwater is the main source of water for both domestic and agricultural use in arid regions. This study assessed the hydrogeochemical characteristics and suitability of groundwater for drinking and irrigation in Kenya’s Ewaso Ng’iro–Lagh Dera Basin. A total of 129 borehole groundwater samples [...] Read more.
Groundwater is the main source of water for both domestic and agricultural use in arid regions. This study assessed the hydrogeochemical characteristics and suitability of groundwater for drinking and irrigation in Kenya’s Ewaso Ng’iro–Lagh Dera Basin. A total of 129 borehole groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total hardness, and major ions. The groundwater was found to be mostly neutral to slightly alkaline and ranged from marginal to brackish in salinity. The dominant water type is Na-HCO3, with the ionic order Na+ > Ca2+ > Mg2+ > K+ and HCO3 > Cl > SO42− > NO3. Mineral saturation indices indicate that the water is undersaturated with gypsum and anhydrite but is saturated with calcite, dolomite, and aragonite. Groundwater chemistry is primarily influenced by ion exchange, the mixing of fresh and paleo-saline water, and rock weathering processes. The water quality index (WQI) reveals that 80.5% of groundwater is suitable for drinking. The rest have high levels of sodium, EC, and bicarbonate. Thus, they are not suitable. The irrigation water quality index (IWQI) places most samples in the moderate-to-severe restriction category due to high salinity and sodicity. These findings highlight the importance of properly treating groundwater before use. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

17 pages, 1481 KiB  
Article
Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen and Jean-Paul Jay-Gerin
J. Nucl. Eng. 2025, 6(2), 17; https://doi.org/10.3390/jne6020017 - 9 Jun 2025
Viewed by 492
Abstract
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, [...] Read more.
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, and enhance safety. Boron, widely used as a neutron absorber, plays a significant role in reactor performance and safety. This study focuses on the yields of radiolytic species in subcritical and supercritical water exposed to 4He and 7Li recoil ions from the 10B(n,α)7Li fission reaction in SCWR/SCW-SMR environments. (2) Methods: We use Monte Carlo track chemistry simulations to calculate yields (G values) of primary radicals (eaq, H, and OH) and molecular species (H2 and H2O2) from water radiolysis by α-particles and Li3⁺ recoils across 1 picosecond to 0.1 millisecond timescales. (3) Results: Simulations show substantially lower radical yields, notably eaq and OH, alongside higher molecular product yields compared to low linear energy transfer (LET) radiation, underscoring the high-LET nature of 10B(n,α)7Li recoil nuclei. Key changes include elevated G(OH) and G(H2), and a decrease in G(H), primarily driven during the homogeneous chemical stage of radiolysis by the reaction H + H2O → OH + H2. This reaction significantly contributes to H2 production, potentially reducing the need for added hydrogen in coolant water to mitigate oxidizing species. In supercritical conditions, low G(H₂O₂) suggests that H2O2 is unlikely to be a major contributor to material oxidation. (4) Conclusions: The 10B(n,α)7Li reaction’s yield estimates could significantly impact coolant chemistry strategies in SCWRs and SCW-SMRs. Understanding radiolytic behavior in these conditions aids in refining reactor models and coolant chemistry to minimize corrosion and radiolytic damage. Future experiments are needed to validate these predictions. Full article
Show Figures

Figure 1

21 pages, 6140 KiB  
Article
Investigating Dual Character of Atmospheric Ammonia on Particulate NH4NO3: Reducing Evaporation Versus Promoting Formation
by Hongxiao Huo, Yating Gao, Lei Sun, Yang Gao, Huiwang Gao and Xiaohong Yao
Atmosphere 2025, 16(6), 685; https://doi.org/10.3390/atmos16060685 - 5 Jun 2025
Viewed by 535
Abstract
Ammonium nitrate (NH4NO3) is a major constituent of fine particulate matter (PM2.5), playing a critical role in air quality and atmospheric chemistry. However, the dual regulatory role of ammonia (NH3) in both the formation and [...] Read more.
Ammonium nitrate (NH4NO3) is a major constituent of fine particulate matter (PM2.5), playing a critical role in air quality and atmospheric chemistry. However, the dual regulatory role of ammonia (NH3) in both the formation and volatilization of NH4NO3 under ambient atmospheric conditions remains inadequately understood. To address this gap, we conducted high-resolution field measurements at a clean tropical coastal site in China using an integrated system of Aerosol Ion Monitor-Ion Chromatography, a Scanning Mobility Particle Sizer, and online OC/EC analyzers. These observations were complemented by thermodynamic modeling (E-AIM) and source apportionment via a Positive Matrix Factorization (PMF) model. The E-AIM simulations revealed persistent thermodynamic disequilibrium, with particulate NO3 tending to volatilize even under NH3gas-rich conditions during the northeast monsoon. This suggests that NH4NO3 in PM2.5 forms rapidly within fresh combustion plumes and/or those modified by non-precipitation clouds and then undergoes substantial evaporation as it disperses through the atmosphere. Under the southeast monsoon conditions, reactions constrained by sea salt aerosols became dominant, promoting the formation of particulate NO3 while suppressing NH4NO3 formation despite ongoing plume influence. In scenarios of regional accumulation, elevated NH3 concentrations suppressed NH4NO3 volatilization, thereby enhancing the stability of particulate NO3 in PM2.5. PMF analysis identified five source factors, with NO3 in PM2.5 primarily associated with emissions from local power plants and the large-scale regional background, showing marked seasonal variability. These findings highlight the complex and dynamic interplay between the formation and evaporation of NH4NO3 in NH3gas-rich coastal atmospheres. Full article
Show Figures

Figure 1

18 pages, 4422 KiB  
Article
Hydrogeochemical Signatures and Spatiotemporal Variation of Groundwater Quality in the Upper and Lower Reaches of Rizhao Reservoir
by Youcheng Lv, Xiaodong Li, Jie Yuan, Hong Tian, Tongzheng Wei, Min Wang, Yuqiang Dai, Jianguo Feng, Yuqi Zhang and Peng Yang
Water 2025, 17(11), 1659; https://doi.org/10.3390/w17111659 - 29 May 2025
Cited by 1 | Viewed by 415
Abstract
Groundwater is crucial for human survival and social development. In this study, ArcGIS 10.8, Origin 2024, and Excel were employed to investigate the hydrochemical properties of groundwater in the Rizhao reservoir (RZR) through statistical analysis, Durov plots, ion ratio analysis, and the entropy [...] Read more.
Groundwater is crucial for human survival and social development. In this study, ArcGIS 10.8, Origin 2024, and Excel were employed to investigate the hydrochemical properties of groundwater in the Rizhao reservoir (RZR) through statistical analysis, Durov plots, ion ratio analysis, and the entropy weight water quality index (EWQI). The analysis is based on monitoring data from six sites located both upstream and downstream of RZR, focusing on dynamic changes in groundwater quality and major ion concentrations. The findings suggest that the groundwater in RZR exhibits weak alkalinity and is categorized as hard freshwater. The predominant anion and cation are HCO3 and Ca2+, which together determine that the dominant water chemistry type in RZR is HCO3-Ca type. Groundwater ions predominantly stem from the dissolution of silicate and evaporite rocks. In comparison to the dry season, the fluctuations in groundwater parameters are more pronounced during the wet season. Between 2020 and 2022, the concentrations of most ions exhibited an upward trend. Notably, nitrate (NO3) experienced significant fluctuations and relatively high concentrations, peaking in the wet season of 2023. The primary source of nitrate in RZR is agricultural activities. Overall, the quality of groundwater in RZR is good and suitable for human consumption. Nevertheless, the EWQI values are increasing at most monitoring sites, with the most significant rise observed at site R02. Moreover, while the upstream monitoring point exhibits better water quality, its EWQI value has increased significantly, and ion concentrations display substantial fluctuations. Local authorities are advised to adopt active measures to manage groundwater quality in RZR to ensure its sustainable use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

26 pages, 9639 KiB  
Article
Hydrochemical Characteristics and Evolution Laws of Groundwater in Huangshui River Basin, Qinghai
by Ziqi Wang, Ting Lu, Shengnan Li, Kexin Zhou, Yidong Gu, Bihui Wang and Yudong Lu
Water 2025, 17(9), 1349; https://doi.org/10.3390/w17091349 - 30 Apr 2025
Viewed by 418
Abstract
Groundwater plays a leading role in ecological environment protection in semi-arid regions. The Huangshui River Basin is located in the Tibetan Plateau and Loess Plateau transition zone of semi-arid areas. Its ecological environment is relatively fragile, and there is an urgent need for [...] Read more.
Groundwater plays a leading role in ecological environment protection in semi-arid regions. The Huangshui River Basin is located in the Tibetan Plateau and Loess Plateau transition zone of semi-arid areas. Its ecological environment is relatively fragile, and there is an urgent need for systematic study of the basin to develop a groundwater environment and realize the rational and efficient development of water resources. In this study, methodologically, we combined the following: 1. Field sampling (271 groundwater samples across the basin’s hydrogeological units); 2. Comprehensive laboratory analysis of major ions and physicochemical parameters; 3. Multivariate statistical analysis (Pearson correlation, descriptive statistics); 4. Geospatial techniques (ArcGIS kriging interpolation); 5. Hydrochemical modeling (Piper diagrams, Gibbs plots, PHREEQC simulations). Key findings reveal the following: 1. Groundwater is generally weakly alkaline (pH 6.94–8.91) with TDS ranging 155–10,387 mg/L; 2. Clear spatial trends: TDS and major ions (Na+, Ca2+, Mg2+, Cl, SO42−) increase along flow paths; 3. Water types evolve from Ca-HCO3-dominant (upper reaches) to complex Ca-SO4/Ca-Cl mixtures (lower reaches); 4. Water–rock interactions dominate hydrochemical evolution, with secondary cation exchange effects; 5. PHREEQC modeling identifies dominant carbonate dissolution (mean SIcalcite = −0.32) with localized evaporite influences (SIgypsum up to 0.12). By combining theoretical calculations and experimental results, this study reveals distinct hydrochemical patterns and evolution mechanisms. The groundwater transitions from Ca-HCO3-type in upstream areas to complex Ca-SO4/Cl mixtures downstream, driven primarily by dissolution of gypsum and carbonate minerals. Total dissolved solids increase dramatically along flow paths (155–10,387 mg/L), with Na+ and SO42− showing the strongest correlation to mineralization (r > 0.9). Cation exchange processes and anthropogenic inputs further modify water chemistry in midstream regions. These findings establish a baseline for sustainable groundwater management in this ecologically vulnerable basin. Full article
Show Figures

Figure 1

19 pages, 3834 KiB  
Article
Geogenic Contamination of Groundwater in a Highland Watershed: Hydrogeochemical Assessment, Source Apportionment, and Health Risk Evaluation of Fluoride and Nitrate
by Kashif Alam, Muhammad Nafees, Wajid Ali, Said Muhammad and Abdur Raziq
Hydrology 2025, 12(4), 70; https://doi.org/10.3390/hydrology12040070 - 26 Mar 2025
Viewed by 654
Abstract
Groundwater is one of the major sources of freshwater supply for drinking and domestic purposes. This study evaluates the hydrogeochemical processes, groundwater quality for human consumption, associated health risks from fluoride F and nitrate (NO3), and sources of dissolved [...] Read more.
Groundwater is one of the major sources of freshwater supply for drinking and domestic purposes. This study evaluates the hydrogeochemical processes, groundwater quality for human consumption, associated health risks from fluoride F and nitrate (NO3), and sources of dissolved solutes in a highland watershed in northern Pakistan. Groundwater samples (n = 51) were gathered and analyzed for a range of physicochemical parameters. To evaluate contamination, indices such as the nitrate pollution index (NPI) and fluoride pollution index (FPI) were applied, along with a composite groundwater pollution index to assess overall water quality. The findings revealed that total dissolved solid, turbidity, F, and K+ levels exceeded health-based thresholds in 20%, 1%, 4%, and 2% of samples, respectively. Among the water sources, handpumps were identified as the most contaminated. According to the NPI and composite index, 96% and 92% of the samples did not show significant contamination, respectively. However, the FPI results highlighted that 59% of the samples exhibited low F pollution, while 41% fell under medium pollution levels. While NO3 ingestion posed no notable health risks, F exposure presented significant concerns, with 58.8% of the samples posing risks, particularly for children. The dominant hydrochemical facies were Ca-Mg-HCO3, with the main influence on water chemistry by rock-water interactions and reverse ion exchange processes. Full article
Show Figures

Figure 1

28 pages, 12048 KiB  
Article
Exploring Thermal Runaway: Role of Battery Chemistry and Testing Methodology
by Sébastien Sallard, Oliver Nolte, Lorenz von Roemer, Brahim Soltani, Alexander Fandakov, Karsten Mueller, Maria Kalogirou and Marc Sens
World Electr. Veh. J. 2025, 16(3), 153; https://doi.org/10.3390/wevj16030153 - 6 Mar 2025
Cited by 3 | Viewed by 3346
Abstract
One of the major concerns for battery electric vehicles (BEVs) is the occurrence of thermal runaway (TR), usually of a single cell, and its propagation to adjacent cells in a battery pack. To guarantee sufficient safety for the vehicle occupants, the TR mechanisms [...] Read more.
One of the major concerns for battery electric vehicles (BEVs) is the occurrence of thermal runaway (TR), usually of a single cell, and its propagation to adjacent cells in a battery pack. To guarantee sufficient safety for the vehicle occupants, the TR mechanisms must be known and predictable. In this work, we compare thermal runaway scenarios using different initiation protocols (heat–wait–seek, constant heating, nail penetration) and battery chemistries (nickel manganese cobalt oxide, NMC; lithium iron phosphate, LFP; and sodium-ion batteries, SIB) with the cells in a fully charged state. Our goal is to specifically trigger a variety of different possible TR scenarios (internal failure, external hotspot, mechanical damage) with different types of chemistries to obtain reliable data that are subsequently employed for modeling and prediction of the phenomenon. The safety of the tested cells depending on their chemistry can be summarized as LFP > SIB >> NMC. The data of the TR experiments were used as the basis for high-fidelity modeling and predicting of TR phenomena in 3D. The models simulated reaction rates, represented by the typically employed Arrhenius approach. The effects of the investigated TR triggering methods and cell chemistries were represented with sufficient accuracy, enabling the application of the models for the simulation of thermal propagation in battery packs. Full article
Show Figures

Figure 1

16 pages, 2648 KiB  
Article
Comparative Study of the Sensory Impacts of Acidifiers for Red Wine Production
by Abigail Keng, Ronan Symoneaux, Andrew Lyne and Andreea Botezatu
Beverages 2025, 11(1), 20; https://doi.org/10.3390/beverages11010020 - 24 Jan 2025
Cited by 1 | Viewed by 1556
Abstract
Rising temperatures have caused a major shift in wine chemistry, including increased sugar and pH along with decreased acidity. Wines produced from such grapes tend to be microbiologically unstable and are often described as unpalatable. This study looks at treatments to lower pH [...] Read more.
Rising temperatures have caused a major shift in wine chemistry, including increased sugar and pH along with decreased acidity. Wines produced from such grapes tend to be microbiologically unstable and are often described as unpalatable. This study looks at treatments to lower pH and enhance sensory characteristics of wines produced from grapes grown at higher temperatures. The four acidification treatments included the following: tartaric acid; verjus—an acidic juice made from unripe grapes; glucose oxidase with catalase enzyme (GOx), which converts glucose to gluconic acid; and ion exchange. All treatments were able to reduce pH to the target pH of 3.6. Sensory analysis was conducted using the Hierarchical Rate-All-That-Apply (HRATA) method and preference testing. Analysis of the HRATA and GCMS data using Principal Component Analysis (PCA) accounted for 78.69% and 70% of the variance observed, respectively. Wines treated with GOx and verjus exhibited the most distinct sensory profiles when compared to each other, the other treatments, and the control group. GOx-treated wines were associated with positive flavor descriptors including caramel, hazelnut, lemon, and fruity which correlated well with the aromatic compounds determined by GCMS. There were no significant differences in consumer preferences of treatments. This study shows how different acidifiers can be utilized by winemakers to affect not just the pH and acidity but also the aromatic and flavor profile of the wine. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Figure 1

33 pages, 5779 KiB  
Review
Electric Vehicle Battery Technologies and Capacity Prediction: A Comprehensive Literature Review of Trends and Influencing Factors
by Vo Tri Duc Sang, Quang Huy Duong, Li Zhou and Carlos F. A. Arranz
Batteries 2024, 10(12), 451; https://doi.org/10.3390/batteries10120451 - 19 Dec 2024
Cited by 6 | Viewed by 8128
Abstract
Electric vehicle (EV) battery technology is at the forefront of the shift towards sustainable transportation. However, maximising the environmental and economic benefits of electric vehicles depends on advances in battery life cycle management. This comprehensive review analyses trends, techniques, and challenges across EV [...] Read more.
Electric vehicle (EV) battery technology is at the forefront of the shift towards sustainable transportation. However, maximising the environmental and economic benefits of electric vehicles depends on advances in battery life cycle management. This comprehensive review analyses trends, techniques, and challenges across EV battery development, capacity prediction, and recycling, drawing on a dataset of over 22,000 articles from four major databases. Using Dynamic Topic Modelling (DTM), this study identifies key innovations and evolving research themes in battery-related technologies, capacity degradation factors, and recycling methods. The literature is structured into two primary themes: (1) “Electric Vehicle Battery Technologies, Development & Trends” and (2) “Capacity Prediction and Influencing Factors”. DTM revealed pivotal findings: advancements in lithium-ion and solid-state batteries for higher energy density, improvements in recycling technologies to reduce environmental impact, and the efficacy of machine learning-based models for real-time capacity prediction. Gaps persist in scaling sustainable recycling methods, developing cost-effective manufacturing processes, and creating standards for life cycle impact assessment. Future directions emphasise multidisciplinary research on new battery chemistries, efficient end-of-life management, and policy frameworks that support circular economy practices. This review serves as a resource for stakeholders to address the critical technological and regulatory challenges that will shape the sustainable future of electric vehicles. Full article
Show Figures

Figure 1

21 pages, 13415 KiB  
Article
Modeling Thermal Runaway Mechanisms and Pressure Dynamics in Prismatic Lithium-Ion Batteries
by Mohammad Ayayda, Ralf Benger, Timo Reichrath, Kshitij Kasturia, Jacob Klink and Ines Hauer
Batteries 2024, 10(12), 435; https://doi.org/10.3390/batteries10120435 - 6 Dec 2024
Cited by 1 | Viewed by 3453
Abstract
Lithium-ion batteries play a vital role in modern energy storage systems, being widely utilized in devices such as mobile phones, electric vehicles, and stationary energy units. One of the critical challenges with their use is the thermal runaway (TR), typically characterized by a [...] Read more.
Lithium-ion batteries play a vital role in modern energy storage systems, being widely utilized in devices such as mobile phones, electric vehicles, and stationary energy units. One of the critical challenges with their use is the thermal runaway (TR), typically characterized by a sharp increase in internal pressure. A thorough understanding and accurate prediction of this behavior are crucial for improving the safety and reliability of these batteries. To achieve this, two new combined models were developed: one to simulate the thermal runaway and another to simulate the internal cell pressure. The thermal model tracks a chain of decomposition reactions that eventually lead to TR. At the same time, the pressure model simulates the proportional increase in pressure due to the evaporation of the electrolyte and the gases produced from the decomposition reactions. What sets this work apart is the validation of the pressure model through experimental data, specifically for prismatic lithium-ion cells using NMC chemistries with varying stoichiometries—NMC111 and NMC811. While the majority of the literature focuses on the simulation of temperature and pressure for cylindrical cells, studies addressing these aspects in prismatic cells are much less common. This article addresses this gap by conducting pressure validation experiments, which are hardly documented in the existing studies. Furthermore, the model’s accuracy and flexibility are tested through two experiments, conducted under diverse conditions to ensure robust and adaptive predictions of cell behavior during failure scenarios. Full article
Show Figures

Figure 1

30 pages, 11211 KiB  
Article
Hydro-Geochemistry and Water Quality Index Assessment in the Dakhla Oasis, Egypt
by Mahmoud H. Darwish, Hanaa A. Megahed, Asmaa G. Sayed, Osman Abdalla, Antonio Scopa and Sedky H. A. Hassan
Hydrology 2024, 11(10), 160; https://doi.org/10.3390/hydrology11100160 - 30 Sep 2024
Cited by 3 | Viewed by 1742
Abstract
Water quality is crucial to the environmental system and thus its chemistry is important, and can be directly related to the water’s source, the climate, and the geology of the region. This study focuses on analyzing the hydrochemistry of specific locations within the [...] Read more.
Water quality is crucial to the environmental system and thus its chemistry is important, and can be directly related to the water’s source, the climate, and the geology of the region. This study focuses on analyzing the hydrochemistry of specific locations within the Dakhla Oasis in Egypt. A total of thirty-nine groundwater samples representing the Nubian Sandstone Aquifer (NSSA) and seven surface water samples from wastewater lakes and canals were collected for analysis. Key parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) were measured on-site, while major ions and trace elements (Fe+2 and Mn+2) were analyzed in the laboratory. The water quality index (WQI) method was employed to assess the overall water quality. Hydro-chemical facies were investigated using Piper’s, Scholler’s, and Stiff diagrams, revealing sodium as the dominant cation and chloride, followed by bicarbonate as the dominant anion. The hydro-chemical composition indicates that Na–Cl constitutes the primary water type in this study. This points to the dissolution of evaporates and salt enrichment due to intense evaporation resulting from the region’s hyper-aridity. In groundwater samples, the order of hydro-chemical facies is HCO3 > Cl > SO4−2 > Na+ > Ca+2 > K+ > Mg+2, while in wastewater samples, it is Cl > Na+ > SO4−2 > HCO3 > Ca+2 > Mg+2 > K+. When considering iron and manganese parameters, the water quality index (WQI) values suggest that most groundwater samples exhibit excellent to good quality but become poor or very poor when these elements are included. This study could prove valuable for water resource management in the Dakhla Oasis. Full article
Show Figures

Figure 1

16 pages, 3257 KiB  
Article
Major Ion Chemistry of Surface Water and Its Controlling Factors in Ebinur Lake Basin
by Jiaxin Zhou, Fuyuan Gao, Ruiqi Yang, Chuancheng Zhao and Qingfeng Li
Water 2024, 16(19), 2780; https://doi.org/10.3390/w16192780 - 29 Sep 2024
Cited by 1 | Viewed by 1566
Abstract
The sustainable development of arid regions is significantly constrained by the availability of water resources, which play a crucial role in this context. It is necessary to deeply investigate and analyze the hydrochemical characteristics and major ion sources. This study, which was based [...] Read more.
The sustainable development of arid regions is significantly constrained by the availability of water resources, which play a crucial role in this context. It is necessary to deeply investigate and analyze the hydrochemical characteristics and major ion sources. This study, which was based on data from 183 water samples collected from the Jinghe River Basin, provided a comprehensive analysis of the river water hydrochemistry. The results show that the average TDSs (total dissolved solids) was measured at 49.8 mg·L−1. HCO3 (82.4%) and Ca2+ (77.1%) were the ions present in the highest abundances. The river water was classified as the HCO3-Ca2+ hydrochemical type. The Gibbs diagrams indicated that the ion composition was primarily influenced by rock weathering. Additionally, the Na-normalized molar ratio diagrams suggested that the chemical composition was primarily governed by the weathering and dissolution of silicate rocks, while the carbonate rock dissolution played a lesser role. This study demonstrates a critical aspect of water resources quality evaluation, which is of great significance for the sustainable development, utilization and environmental protection of regional water resources. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 8461 KiB  
Review
Regolith-Hosted Rare Earth Element Mineralization in the Esperance Region, Western Australia: Major Characteristics and Potential Controls
by Nikita Sergeev and Tiffany Collins
Minerals 2024, 14(8), 847; https://doi.org/10.3390/min14080847 - 22 Aug 2024
Cited by 3 | Viewed by 2063
Abstract
A number of regolith-hosted REE occurrences have recently been discovered in the Esperance region in southern Western Australia. This paper summarizes major characteristics of REE mineralization and discusses contributing factors and potential controls. The main aim is to explain why there is a [...] Read more.
A number of regolith-hosted REE occurrences have recently been discovered in the Esperance region in southern Western Australia. This paper summarizes major characteristics of REE mineralization and discusses contributing factors and potential controls. The main aim is to explain why there is a lack of highly sought-after ion-adsorption-clay-type REE deposits across the region despite the presence of the regolith-hosted REE mineralization on a regional scale. Local mineralization mostly occurs as continuous flat-lying enrichment “blankets” within the residual regolith developed over Archaean–Proterozoic granite gneisses and granitoids with elevated REE content. The enriched horizon is commonly located in the lower saprolite and saprock and is accompanied by an overlying REE-depleted zone. This distribution pattern, together with the data on HREE fractionation and the presence of the supergene REE minerals, indicates chemogenic type enrichment formed by supergene REE mobilization into groundwater, downward transport, and accumulation in the lower part of the weathering profile. Residual REE accumulation processes due to bulk rock volume and mass reduction during weathering also contribute to mineralization. It is proposed that climate and groundwater chemistry are the critical regional controls on the distribution of REEs in the weathering profile and on their speciation in the enrichment zone. Cenozoic aridification of climate in southwest Australia heavily overprinted pre-existing REE distributions in the weathering profile. Acidic (pH < 4), highly saline groundwaters intensely leached away any relatively weakly bound, adsorbed or colloidal REE forms, moving them downward. Dissolved REEs precipitated as secondary phosphates in neutral to alkaline environment at lower Eh near the base of the weathering profile forming the supergene enrichment zone. Low denudation rates, characteristic of areas of low relief under the arid climate, are favourable for the preservation of the existing weathering profiles with REE mineralization. Full article
(This article belongs to the Special Issue Chemical Weathering Studies)
Show Figures

Figure 1

Back to TopTop