Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,860)

Search Parameters:
Keywords = maintenance area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 (registering DOI) - 2 Aug 2025
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 (registering DOI) - 1 Aug 2025
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

19 pages, 440 KiB  
Article
Cost-Benefit Analysis of Diesel vs. Electric Buses in Low-Density Areas: A Case Study City of Jastrebarsko
by Marko Šoštarić, Marijan Jakovljević, Marko Švajda and Juraj Leonard Vertlberg
World Electr. Veh. J. 2025, 16(8), 431; https://doi.org/10.3390/wevj16080431 (registering DOI) - 1 Aug 2025
Abstract
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle [...] Read more.
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle acquisition, operation, charging, maintenance, and environmental impact costs during the lifecycle of the buses. The results show that, despite the higher initial investment in electric buses, these vehicles offer savings, especially when coupled with significantly reduced emissions of pollutants, which decreases indirect costs. However, local contexts differ, leading to a need to revise whether or not a municipality can finance the procurement and operations of such a fleet. The paper utilizes a robust methodological framework, integrating a proposal based on real-world data and demand and combining it with predictive analytics to forecast long-term benefits. The findings of the paper support the introduction of buses as a sustainable solution for Jastrebarsko, which provides insights for public transport planners, urban planners, and policymakers, with a discussion about the specific issues regarding the introduction, procurement, and operations of buses of different propulsion in a low-density area. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

16 pages, 4891 KiB  
Article
Effects of Performance Variations in Key Components of CRTS I Slab Ballastless Track on Structural Response Following Slab-Replacement Operations
by Wentao Wu, Hongyao Lu, Yuelei He and Haitao Xia
Materials 2025, 18(15), 3621; https://doi.org/10.3390/ma18153621 (registering DOI) - 1 Aug 2025
Abstract
Slab-replacement operations are crucial for restoring deteriorated CRTS I slab ballastless tracks to operational standards. This study investigates the structural implications of the operation by evaluating the strength characteristics and material properties of track components both prior to and following replacement. Apparent strength [...] Read more.
Slab-replacement operations are crucial for restoring deteriorated CRTS I slab ballastless tracks to operational standards. This study investigates the structural implications of the operation by evaluating the strength characteristics and material properties of track components both prior to and following replacement. Apparent strength was measured using rebound hammer tests on three categories of slabs: retained, deteriorated, and newly installed track slabs. In addition, samples of old and new filling resins were collected and tested to determine their elastic moduli. These empirical data were subsequently used to develop a refined finite-element model that captures both pre- and post-replacement conditions. Under varying temperature loads, disparities in component performance were found to significantly affect stress distribution. Specifically, before replacement, deteriorated track slabs exhibited 10.74% lower strength compared to adjacent retained slabs, whereas, after replacement, new slabs showed a 25.26% increase in strength over retained ones. The elastic modulus of old filling resin was measured at 5.19 kN/mm, 35.13% below the minimum design requirement, while the new resin reached 10.48 kN/mm, exceeding the minimum by 31.00%. Although the slab-replacement operation enhances safety by addressing structural deficiencies, it may also create new weak points in adjacent areas, where insufficient stiffness results in stress concentrations and potential damage. This study offers critical insights for optimizing maintenance strategies and improving the long-term performance of ballastless track systems. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 1095 KiB  
Article
Barriers and Breakthroughs in Precision Oncology: A National Registry Study of BRCA Testing and PARP Inhibitor Uptake in Women from the National Gynae-Oncology Registry (NGOR)
by Mahendra Naidoo, Clare L Scott, Mike Lloyd, Orla McNally, Robert Rome, Sharnel Perera and John R Zalcberg
Cancers 2025, 17(15), 2541; https://doi.org/10.3390/cancers17152541 - 31 Jul 2025
Abstract
Background: The identification of pathogenic variants in the Breast Cancer Genes 1 and 2 (BRCA1/2) is a critical predictive biomarker for poly (ADP-ribose) polymerase inhibitor (PARPi) therapy in epithelial ovarian cancer (EOC). The aim of this study is to define real-world [...] Read more.
Background: The identification of pathogenic variants in the Breast Cancer Genes 1 and 2 (BRCA1/2) is a critical predictive biomarker for poly (ADP-ribose) polymerase inhibitor (PARPi) therapy in epithelial ovarian cancer (EOC). The aim of this study is to define real-world rates and determinants of germline and somatic BRCA1/2 testing and subsequent PARPi utilisation in Australia using a national clinical quality registry. Methods: This multi-centre cohort study analysed data from 1503 women with non-mucinous EOC diagnosed between May 2017 and July 2022, captured by the Australian National Gynae-Oncology Registry (NGOR). We evaluated rates of germline and somatic testing and PARPi use, using multivariate logistic regression to identify associated clinical and demographic factors. Results: Overall germline and somatic testing rates were 68% and 32%, respectively. For the high-grade serous ovarian cancer (HGSOC) cohort, rates were higher, at 78% and 39%, respectively. Germline testing was significantly less likely for women aged >80 years (OR 0.49), those in regional areas (OR 0.61), and those receiving single-modality treatment. Somatic testing uptake increased significantly following public reimbursement for PARPi (p = 0.004). Among eligible women with a newly diagnosed BRCA pathogenic variant and advanced disease (n = 110), 52% commenced first-line maintenance PARPi. Conclusions: This national study offers valuable insights into Australian ovarian cancer care, highlighting opportunities to enhance testing equity for older women (aged >80) and regional patients. Furthermore, it identifies the translation of a positive test into PARPi therapy as a complex area that warrants further collaborative investigation to optimise patient outcomes. Full article
(This article belongs to the Special Issue Gynecologic Oncology: Clinical and Translational Research)
Show Figures

Figure 1

25 pages, 2151 KiB  
Article
A Possibility of Tribological Investigation of Physicochemical Processes in a Friction Pair Operating Under Selective Transfer Conditions
by Filip Ilie, Daniel Constantin Cotici and Andrei-Florin Hristache
Lubricants 2025, 13(8), 331; https://doi.org/10.3390/lubricants13080331 - 30 Jul 2025
Viewed by 147
Abstract
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed [...] Read more.
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed method allows for the study of tribochemical transformations of glycerin and the friction pair materials during the work process with selective transfer. The analysis of the experimental results allows for the establishment of the conditions for a stable and stationary selective transfer during the operation of the bronze/steel pair, by friction, at which the friction coefficient (COF) values and wear are low. This was achieved by implementing continuous lubrication with fresh glycerin in the contact area, choosing the optimal flow rate, and maintaining an optimal ratio between glycerin and the chemical transformation products, within well-established limits, to avoid undesirable consequences. Acrolein, as a product of chemical transformation (resulting from the catalytic dehydration of glycerin), is the most important for the initiation and stability of the selective transfer, and as the main reaction product, also represents a pathway of regeneration. Thus, it was found that the friction relative moments and the acrolein concentration presented conclusive/specific results at loads of 4–15 MPa and a sliding speed of 0.3 m/s. The optimum lubricant entry speed is 15–30 mg/min, for a minimum COF and reduced wear (about 0.028–0.03 at relatively high operating temperatures (45 and 60 °C)), and at low temperatures (30 °C) the minimum COF is about 0.038, but the lubricant inlet entry speed increases considerably, by around 1000 mg/min. Therefore, this paper aims to demonstrate the possibility of moving to another stage of practical use of a friction pair (with greatly improved tribological properties) that operates with selective transfer, much different from the ones still present, using a lubricant with special properties (glycerin). The research method used (polarization) highlights the physicochemical properties, tribochemical transformations of the lubricant, and the friction pair materials present in the contact area, for the understanding, maintenance, and stability of selective transfer, based on experiments, as a novelty compared to other studies. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

27 pages, 6263 KiB  
Article
Revealing the Ecological Security Pattern in China’s Ecological Civilization Demonstration Area
by Xuelong Yang, Haisheng Cai, Xiaomin Zhao and Han Zhang
Land 2025, 14(8), 1560; https://doi.org/10.3390/land14081560 - 29 Jul 2025
Viewed by 161
Abstract
The construction and maintenance of an ecological security pattern (ESP) are important for promoting the regional development of ecological civilizations, realizing sustainable and healthy development, and creating a harmonious and beautiful space for human beings and nature to thrive. Traditional construction methods have [...] Read more.
The construction and maintenance of an ecological security pattern (ESP) are important for promoting the regional development of ecological civilizations, realizing sustainable and healthy development, and creating a harmonious and beautiful space for human beings and nature to thrive. Traditional construction methods have the limitations of a single dimension, a single method, and excessive human subjective intervention for source and corridor identification, without considering the multidimensional quality of the sources and the structural connectivity and resilience optimization of the corridors. Therefore, an ecological civilization demonstration area (Jiangxi Province) was used as the study area, a new research method for ESP was proposed, and an empirical study was conducted. To evaluate ecosystem service (ES) importance–disturbance–risk and extract sustainability sources through the deep embedded clustering–self-organizing map (DEC–SOM) deep unsupervised learning clustering algorithm, ecological networks (ENs) were constructed by applying the minimum cumulative resistance (MCR) gravity model and circuit theory. The ENs were then optimized to improve performance by combining the comparative advantages of the two approaches in terms of structural connectivity and resilience. A comparative analysis of EN performance was constructed among different functional control zones, and the ESP was constructed to include 42 ecological sources, 134 corridors, 210 restoration nodes, and 280 protection nodes. An ESP of ‘1 nucleus, 3 belts, 6 zones, and multiple corridors’ was constructed, and the key restoration components and protection functions were clarified. This study offers a valuable reference for ecological management, protection, and restoration and provides insights into the promotion of harmonious symbiosis between human beings and nature and sustainable regional development. Full article
(This article belongs to the Special Issue Urban Ecological Indicators: Land Use and Coverage)
Show Figures

Figure 1

17 pages, 2979 KiB  
Article
Discussion on the Design of Sprayed Eco-Protection for Near-Slope Roads Along Multi-Level Slopes
by Haonan Chen and Jianjun Ye
Appl. Sci. 2025, 15(15), 8408; https://doi.org/10.3390/app15158408 - 29 Jul 2025
Viewed by 88
Abstract
This study proposes a design method for near-slope roads along multi-level slopes that integrates excavation requirements and post-construction ecological restoration through sprayed eco-protection. Firstly, the design principles and procedural steps for near-slope roads are established. The planar layouts of multi-level slopes are categorized, [...] Read more.
This study proposes a design method for near-slope roads along multi-level slopes that integrates excavation requirements and post-construction ecological restoration through sprayed eco-protection. Firstly, the design principles and procedural steps for near-slope roads are established. The planar layouts of multi-level slopes are categorized, including mixing areas, turnaround areas, berms, and access ramps. Critical technical parameters, such as curve radii and widths of berms and ramps, as well as dimensional specifications for turnaround areas, are systematically formulated with corresponding design formulas. The methodology is applied to the ecological restoration project of multi-level slopes in the Huamahu mountainous area, and a comparative technical-economic analysis is conducted between the proposed design and the original scheme. Results demonstrate that the optimized design reduces additional maintenance costs caused by near-slope roads by 6.5–8.0% during the curing period. This research advances the technical framework for multi-level slope governance and enhances the ecological design standards for slope protection engineering. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 1343 KiB  
Article
Role of Plasma-Derived Exosomal MicroRNAs in Mediating Type 2 Diabetes Remission
by Sujing Wang, Shuxiao Shi, Xuanwei Jiang, Guangrui Yang, Deshan Wu, Kexin Li, Victor W. Zhong and Xihao Du
Nutrients 2025, 17(15), 2450; https://doi.org/10.3390/nu17152450 - 27 Jul 2025
Viewed by 376
Abstract
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month [...] Read more.
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month intensive weight loss phase consuming LCD (815–835 kcal/day) and a 3-month weight maintenance phase (N = 32). Sixteen participants were randomly selected for characterization of plasma-derived exosomal miRNA profiles at baseline, 3 months, and 6 months using small RNA sequencing. Linear mixed-effects models were used to identify differentially expressed exosomal miRNAs between responders and non-responders. Pathway enrichment analyses were conducted using target mRNAs of differentially expressed miRNAs. Logistic regression models assessed the predictive value of differentially expressed miRNAs for T2D remission. Results: Among the 16 participants, 6 achieved weight loss ≥10% and 12 achieved T2D remission. Eighteen exosomal miRNAs, including miR-92b-3p, miR-495-3p, and miR-452b-5p, were significantly associated with T2D remission and weight loss. Pathway analyses revealed enrichment in PI3K-Akt pathway, FoxO signaling pathway, and insulin receptor binding. The addition of individual miRNAs including miR-15b-3p, miR-26a-5p, and miR-3913-5p to base model improved the area under the curve values by 0.02–0.08 at 3 months and by 0.02–0.06 at 6 months for T2D remission. Conclusions: This study identified exosomal miRNAs associated with T2D remission and weight loss following LCD intervention. Several exosomal miRNAs might serve as valuable predictors of T2D remission in response to LCD intervention. Full article
(This article belongs to the Special Issue Nutrition for Patients with Diabetes and Clinical Obesity)
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 277
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 159
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

19 pages, 1887 KiB  
Review
Comparative Analysis of Beamforming Techniques and Beam Management in 5G Communication Systems
by Cristina Maria Andras, Gordana Barb and Marius Otesteanu
Sensors 2025, 25(15), 4619; https://doi.org/10.3390/s25154619 - 25 Jul 2025
Viewed by 284
Abstract
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio [...] Read more.
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio energy to a specific user equipment (UE), thereby enhancing signal quality—crucial for maximizing spectral efficiency. The work presents a classification of beamforming techniques, categorized according to the implementation within 5G New Radio (NR) architectures. Furthermore, the paper investigates beam management (BM) procedures, which are essential Layer 1 and Layer 2 mechanisms responsible for the dynamic configuration, monitoring, and maintenance of optimal beam pair links between gNodeBs and UEs. The article emphasizes the spectral spectrogram of Synchronization Signal Blocks (SSBs) generated under various deployment scenarios, illustrating how parameters such as subcarrier spacing (SCS), frequency band, and the number of SSBs influence the spectral occupancy and synchronization performance. These insights provide a technical foundation for optimizing initial access and beam tracking in high-frequency 5G deployments, particularly within Frequency Range (FR2). Additionally, the versatility of 5G’s time-frequency structure is demonstrated by the spectrogram analysis of SSBs in a variety of deployment scenarios. These results provide insight into how different configurations affect the synchronization signals’ temporal and spectral occupancy, which directly affects initial access, cell identification, and energy efficiency. Full article
Show Figures

Figure 1

19 pages, 468 KiB  
Article
Predicting Individual Residential Engagement: Exploring the Role of Perceived Residential Environmental Quality, Descriptive Norms, Problem Awareness, and Place Attachment
by Paola Passafaro, Ankica Kosic, Marina Molinari and Francesca Valeria Frisari
Urban Sci. 2025, 9(8), 287; https://doi.org/10.3390/urbansci9080287 - 23 Jul 2025
Viewed by 241
Abstract
This paper builds on place theory and the psycho-social approach to the study of perceived residential environmental quality to examine the relationship between environmental perceptions and residential action in the neighborhood. An exploratory study on (N = 185) Italian respondents assessed the [...] Read more.
This paper builds on place theory and the psycho-social approach to the study of perceived residential environmental quality to examine the relationship between environmental perceptions and residential action in the neighborhood. An exploratory study on (N = 185) Italian respondents assessed the role of perceived residential environmental quality (i.e., perceived quality of green areas and perceived maintenance levels within the neighborhood), awareness of neighborhood environmental problems, neighborhood descriptive norms, and place attachment (attachment to the neighborhood) as predictors of self-reported individual residential engagement (engagement in improving the environmental quality of the neighborhood). Likert-type measures of the corresponding constructs were included in a structured questionnaire and used to carry out an online survey. Findings showed problem awareness and descriptive norms to directly predict residential engagement. Problem awareness mediated the relationship between perceived maintenance levels and residential engagement. Place attachment was directly predicted by perceived residential quality (quality of green areas), but did not show an independent predictive power vis-à-vis residential engagement. Results suggest new possible research avenues for modelling the individual commitment to improve the environmental quality of one’s own residential architectural and green environment. Full article
Show Figures

Figure 1

19 pages, 9770 KiB  
Article
Microstructural Characterization of S355J2 Steel Plate Cut with Plasma in Water-Bed
by Teodor Machedon-Pisu, Mihai Machedon-Pisu and Arthur Olah
Coatings 2025, 15(8), 866; https://doi.org/10.3390/coatings15080866 - 23 Jul 2025
Viewed by 304
Abstract
When processing widely used materials in welded structures such as steels, a surface operation such as plasma cutting applied in the automated Computer Numerical Control (CNC) version can provide technical and economic benefits to the cut components, but the impact on health and [...] Read more.
When processing widely used materials in welded structures such as steels, a surface operation such as plasma cutting applied in the automated Computer Numerical Control (CNC) version can provide technical and economic benefits to the cut components, but the impact on health and environment must be addressed accordingly. In this paper, a plate with a base material made of S355J2 + AR structural steel is cut in 10 pieces with plasma in a water-bed designed and manufactured by the authors in order to mitigate such risks. The surfaces cut in the water-bed are compared to surfaces cut in open air by macroscopic analyses of the edge cut, by microscopic analyses of the cut parts—base material, heat-affected zone, and cut area—and by hardness determinations. The results reveal improvements as a result of plasma cutting in the water-bed: slag reduction, preservation of granulation, transformations in the austenitic temperature zone, and hardness in the heat-affected zone. Compared to a classical cutting procedure such as oxygen flame cutting, the proposed procedure offers a clean alternative and also requires low maintenance. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

24 pages, 6353 KiB  
Article
Dynamic Response and Residual Bearing Capacity of Corroded RC Piers Under Rockfall Impact
by Jieqiong Wu, Feiyang Ye, Jian Yang and Jianchao Xu
Buildings 2025, 15(15), 2592; https://doi.org/10.3390/buildings15152592 - 22 Jul 2025
Viewed by 286
Abstract
RC piers in mountainous coastal or saline areas face the dual threats of rockfall impacts and chloride-induced steel corrosion, but their combined effects on dynamic response and residual bearing capacity remain unquantified. This study aims to investigate these combined effects over a 90-year [...] Read more.
RC piers in mountainous coastal or saline areas face the dual threats of rockfall impacts and chloride-induced steel corrosion, but their combined effects on dynamic response and residual bearing capacity remain unquantified. This study aims to investigate these combined effects over a 90-year service time and propose a damage assessment formula. A validated numerical model (relative error ≤14.7%) of corroded RC columns under impact is developed using ABAQUS, based on which the dynamic response and residual bearing capacity of an actual RC pier subjected to rockfall impacts during the service time of 90 years incorporating corrosion initiation (via Life-365 software 2.2) and propagation are analyzed, with the consideration of various impact energies (1–5 t mass, 5–15 m/s velocity). Results show that (1) increasing impact mass/velocity expands damage and increases displacement (e.g., the velocity of increases peak displacement by 33.41 mm in comparison to 5 m/s); (2) a 90-year service time leads to >50% severe surface damage and 47.1% residual capacity loss; and (3) the proposed and validated damage formula assessment formula for the residual bearing capacity enables lifecycle maintenance guidance. This work provides a validated framework for assessing combined corrosion-rockfall effects, aiding design and maintenance of structures. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

Back to TopTop