Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = magnetorheological liquid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4721 KiB  
Article
Evaluation of the Fluid Properties Modification Through Magnetic Fields for Their Application on Tuned Liquid Dampers: An Experimental Approach
by Andrea Vázquez-Greciano, César De Santos-Berbel, Antonio Aznar López and Jesús M. Ortiz Herrera
Appl. Sci. 2025, 15(8), 4194; https://doi.org/10.3390/app15084194 - 10 Apr 2025
Viewed by 428
Abstract
Tuned Liquid Dampers (TLDs) are dissipative devices that mitigate vibrations through the out-of-phase movement of a fluid, typically water, inside a container relative to a main structure. Water’s low density and viscosity have led to modifications to enhance their effectiveness. Fluid properties, such [...] Read more.
Tuned Liquid Dampers (TLDs) are dissipative devices that mitigate vibrations through the out-of-phase movement of a fluid, typically water, inside a container relative to a main structure. Water’s low density and viscosity have led to modifications to enhance their effectiveness. Fluid properties, such as density or viscosity, significantly impact their performance by altering mass and damping, respectively. When magnetorheological fluids are employed, magnetic fields can modify the fluid viscosity, affecting the damping. This study experimentally examines the effect of a magnetic field and ambient parameters on the viscosity of different low-cost, custom-prepared magnetic fluids. A tube filled with magnetic liquids into which diverse non-magnetic spheres are dropped was employed, considering on- and off-states of the magnetic field generated by a pair of Helmholtz coils. The impact on the fluid viscosity variation of different measured variables was statistically analyzed. It was found that in all cases, the variations in ambient temperature and relative humidity had no effect on the results. While the magnetic field had a large effect on the viscosity of the magnetic fluid, for the sunflower oil-based fluids, the spheres used or the concentration of iron filings had a greater effect on the viscosity than the presence of the magnetic field. Full article
Show Figures

Figure 1

13 pages, 4791 KiB  
Communication
Simulating the Structure of Magnetic Fluid Using Dissipative Particle Dynamics Method
by Xiaoxi Tian, Fanian Lai and Yu Ying
Materials 2025, 18(8), 1697; https://doi.org/10.3390/ma18081697 - 8 Apr 2025
Viewed by 493
Abstract
Magnetic fluids (MF), composed of ferromagnetic nanoparticles, surfactants, and a carrier liquid, exhibit tunable physical properties under external magnetic fields due to the formation of chain-like nanoparticle structures. Using dissipative particle dynamics (DPD), we simulate the structural evolution of these fluids and establish [...] Read more.
Magnetic fluids (MF), composed of ferromagnetic nanoparticles, surfactants, and a carrier liquid, exhibit tunable physical properties under external magnetic fields due to the formation of chain-like nanoparticle structures. Using dissipative particle dynamics (DPD), we simulate the structural evolution of these fluids and establish a computational model incorporating magnetic nanoparticles and solvent particles. Our simulations confirm qualitative agreement with the literature results, validating the chosen time integration methods. Through radial distribution function analysis, we further demonstrate how the mass of solvent molecules and magnetic interaction strength govern the fluid’s microstructure. This work provides insights into the design of magnetic fluids for applications such as targeted drug delivery, adaptive dampers, and advanced magneto-rheological devices. Full article
Show Figures

Figure 1

14 pages, 4860 KiB  
Article
Structural Design and Static Stiffness Optimization of Magnetorheological Suspension for Automotive Engine
by Zhi Rao, Lingfeng Tang and Yifang Shi
Appl. Sci. 2024, 14(16), 6975; https://doi.org/10.3390/app14166975 - 8 Aug 2024
Viewed by 1404
Abstract
In light of the limitation that passive suspension can only provide vibration isolation within a specific range, a magnetorheological suspension in extrusion mode was developed. The reliability of structural parameters was ensured through theoretical analysis and numerical simulation, building upon traditional hydraulic suspension. [...] Read more.
In light of the limitation that passive suspension can only provide vibration isolation within a specific range, a magnetorheological suspension in extrusion mode was developed. The reliability of structural parameters was ensured through theoretical analysis and numerical simulation, building upon traditional hydraulic suspension. A model linking static stiffness to the diameter of the upper extrusion plate, as well as the heights of the upper and lower liquid chambers, was established using Simulink as an evaluation index. The static stiffness performance of the magnetorheological suspension was then optimized using this model. Results indicate that while meeting the static stiffness requirements, the optimized Magnetorheological Suspension demonstrated a 29.22% increase in static stiffness (approximately 57.71 N/mm) compared to its previous state, validating the effectiveness of stiffness optimization for this system. Full article
(This article belongs to the Special Issue Structural Optimization Methods and Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
The Actuating Characteristics of Magnetorheological Fluids Subjected to Particle Sedimentation and Temperature Variation
by Elliza Tri Maharani, Dong-Hoon Lee, Young-Jun Kim, Jong-Seok Oh and Seung-Bok Choi
Actuators 2024, 13(8), 277; https://doi.org/10.3390/act13080277 - 24 Jul 2024
Cited by 1 | Viewed by 2013
Abstract
Magnetorheological (MR) fluids are known for their controllable characteristics under the influence of magnetic fields and, hence, widely used as semi-active actuators for vibration control. Regardless of advantages such as fast response time and reversible property, MR fluids inevitably experience sedimentation caused by [...] Read more.
Magnetorheological (MR) fluids are known for their controllable characteristics under the influence of magnetic fields and, hence, widely used as semi-active actuators for vibration control. Regardless of advantages such as fast response time and reversible property, MR fluids inevitably experience sedimentation caused by significant density mismatches between magnetic particles and carrier liquids. Moreover, the effect of the temperature on actuating characteristics is also one of the problems to be resolved for practical implementation. This study experimentally investigates the sedimentation behavior under various temperatures ranging from 25 to 70 °C using a multiguide-arm magnetic device that generates a uniform magnetic flux density across MR fluids. The sedimentation stability is then observed after 168 h at current inputs of 0, 1, and 2 A, respectively. Subsequently, the field-dependent rheological properties of MR fluids are evaluated using a rheometer and discussed, showing actuating capability, which depends on the viscosity, shear stress, and yield stress before (initial state) and after the sedimentation (sedimentation state). The field-dependent yield stresses, which directly represent the actuating force of the semi-active actuator, are specifically evaluated. Under the on-state condition (2 A) at a temperature of 70 °C, the yield stress decreased from 2.747 kPa (initial state) to 2.352 kPa (sedimentation state). By using this yield stress, the field-dependent damping force was evaluated, showing a decrement from 1672 N (initial state) to 1623 N (sedimentation state) at a velocity of 0.8 m/s. It is shown that the temperature causes the reduction of the actuating properties after the long-term operation. The insightful findings achieved in this work will provide useful information for the evaluation of actuating characteristics of smart MR fluids and the design of MR application systems subjected to particle sedimentation and temperature variation. Full article
(This article belongs to the Special Issue Magnetorheological Actuators and Dampers)
Show Figures

Figure 1

31 pages, 773 KiB  
Review
Thermal Conductivity and Temperature Dependency of Magnetorheological Fluids and Application Systems—A Chronological Review
by Seung-Bok Choi
Micromachines 2023, 14(11), 2096; https://doi.org/10.3390/mi14112096 - 13 Nov 2023
Cited by 10 | Viewed by 2828
Abstract
Many studies on magnetorheological fluid (MRF) have been carried out over the last three decades, highlighting several salient advantages, such as a fast phase change, easy control of the yield stress, and so forth. In particular, several review articles of MRF technology have [...] Read more.
Many studies on magnetorheological fluid (MRF) have been carried out over the last three decades, highlighting several salient advantages, such as a fast phase change, easy control of the yield stress, and so forth. In particular, several review articles of MRF technology have been reported over the last two decades, summarizing the development of MRFs and their applications. As specific examples, review articles have been published that include the optimization of the particles and carrier liquid to achieve minimum off-state viscosity and maximum yield stress at on-state, the formulation of many constitutive models including the Casson model and the Herschel–Bulkley (H–B) model, sedimentation enhancement using additives and nanosized particles, many types of dampers for automotive suspension and civil structures, medical and rehabilitation devices, MRF polishing technology, the methods of magnetic circuit design, and the synthesis of various controllers. More recently, the effect of the temperature and thermal conductivity on the properties of MRFs and application systems are actively being investigated by several works. However, there is no review article on this issue so far, despite the fact that the thermal problem is one of the most crucial factors to be seriously considered for the development of advanced MRFs and commercial products of application systems. In this work, studies on the thermal conductivity and temperature in MRFs themselves and their temperature-dependent application systems are reviewed, respectively, and principal results are summarized, emphasizing the following: how to reduce the temperature effect on the field-dependent properties of MRFs and how to design an application system that minimizes the thermal effect. It is noted here that the review summary is organized in a chronological format using tables. Full article
Show Figures

Figure 1

11 pages, 3562 KiB  
Article
Rheology of Aqueous Ferrofluids: Transition from a Gel-Like Character to a Liquid Character in High Magnetic Fields
by Stanislav Čampelj
ChemEngineering 2023, 7(5), 81; https://doi.org/10.3390/chemengineering7050081 - 7 Sep 2023
Cited by 1 | Viewed by 2071
Abstract
Rheological measurements under an applied magnetic field were used to investigate the changes to the internal structure and stability of an aqueous ferrofluid. The ferrofluid was prepared by dispersing 1.8 wt.% of maghemite nanoparticles with a size of d = 14 ± 3 [...] Read more.
Rheological measurements under an applied magnetic field were used to investigate the changes to the internal structure and stability of an aqueous ferrofluid. The ferrofluid was prepared by dispersing 1.8 wt.% of maghemite nanoparticles with a size of d = 14 ± 3 nm and a saturation magnetization MS = 68 emu/g in water using citric acid as the surfactant. In this study, oscillatory tests were used to investigate the internal structural changes and the stability of ferrofluid under the influence of the magnetic field B. In a magnetic field of approximately 50 mT, the G′ became higher than the loss modulus G″ as the ferrofluid exhibited a gel-like character. However, at a magnetic field of approximately 200 mT, the character of the ferrofluid reverted to that of a liquid. The change in the character of the ferrofluid in this high magnetic field was associated with a gradual change from chain agglomerates to the energetically more favourable globular agglomerates, using a calculation based on a model described in a separate work. The globular agglomerates impeded the flow to a much lesser degree than the chains, causing a reduction in the viscosity. Further increase of the magnetic field resulted in sedimentation of agglomerates and loss of magneto-rheological effect. Full article
Show Figures

Figure 1

20 pages, 3659 KiB  
Article
Using SMART Magnetic Fluids and Gels for Prevention and Destruction of Bacterial Biofilms
by Jarosƚaw E. Król and Garth D. Ehrlich
Microorganisms 2023, 11(6), 1515; https://doi.org/10.3390/microorganisms11061515 - 7 Jun 2023
Cited by 1 | Viewed by 2318
Abstract
Biofouling is a major problem in all natural and artificial settings where solid surfaces meet liquids in the presence of living microorganisms. Microbes attach to the surface and form a multidimensional slime that protects them from unfavorable environments. These structures, known as biofilms, [...] Read more.
Biofouling is a major problem in all natural and artificial settings where solid surfaces meet liquids in the presence of living microorganisms. Microbes attach to the surface and form a multidimensional slime that protects them from unfavorable environments. These structures, known as biofilms, are detrimental and very hard to remove. Here, we used SMART magnetic fluids [ferrofluids (FFs), magnetorheological fluids (MRFs), and ferrogels (FGs) containing iron oxide nano/microparticles] and magnetic fields to remove bacterial biofilms from culture tubes, glass slides, multiwell plates, flow cells, and catheters. We compared the ability of different SMART fluids to remove biofilms and found that commercially available, as well as homemade, FFs, MRFs, and FGs can successfully remove biofilm more efficiently than traditional mechanical methods, especially from textured surfaces. In tested conditions, SMARTFs reduced bacterial biofilms by five orders of magnitude. The ability to remove biofilm increased with the amount of magnetic particles; therefore, MRFs, FG, and homemade FFs with high amounts of iron oxide were the most efficient. We showed also that SMART fluid deposition can protect a surface from bacterial attachment and biofilm formation. Possible applications of these technologies are discussed. Full article
(This article belongs to the Special Issue Bacterial Biofilm Formation and Eradication)
Show Figures

Figure 1

14 pages, 7041 KiB  
Article
Characteristics for Gallium-Based Liquid Alloys of Low Melting Temperature
by Jianfei Shentu, Jiatong Pan, Hao Chen, Chunlin He, Youbin Wang, Gjergj Dodbiba and Toyohisa Fujita
Metals 2023, 13(3), 615; https://doi.org/10.3390/met13030615 - 19 Mar 2023
Cited by 20 | Viewed by 8976
Abstract
Gallium alloys are ideal base carriers for temperature-sensitive ferrofluids, which can be used for energy convection, soft robotics, microchannels, magnetorheological devices, etc. In this study, gallium was mixed with different substances (In, Sn, Zn, Ge, and Al) to obtain a low melting point, [...] Read more.
Gallium alloys are ideal base carriers for temperature-sensitive ferrofluids, which can be used for energy convection, soft robotics, microchannels, magnetorheological devices, etc. In this study, gallium was mixed with different substances (In, Sn, Zn, Ge, and Al) to obtain a low melting point, reduce the wetness and adhesion of its alloys, and realize low viscosity. The melting point, contact angle on certain solid plates, viscosity, and viscoelasticity of the gallium alloys were measured, and some useful gallium alloys were obtained. The experimental results showed that Ga80In10Sn10 had lower wettability at a larger contact angle of 148.6° on the Teflon plate. Here, (Ga80In10Sn10)97Zn3 with a melting point of 8.2 °C, lower than the melting point of Galinstan, was developed. It had a viscosity about three times that of water at room temperature and an elastic response from 0.1 to 100 Hz at a 1% strain amplitude for the viscoelasticity. It was expected that a kind of temperature-sensitive magnetic fluid with a gallium-based liquid alloy as the base carrier liquid would be prepared in the future with Teflon as the container to achieve energy conversion under the drive of the magnetic field. Full article
(This article belongs to the Special Issue Advances in Characterization of Heterogeneous Metals/Alloys)
Show Figures

Graphical abstract

16 pages, 4331 KiB  
Article
Upcycling of Acid-Leaching Solutions from Li-Ion Battery Waste Treatment through the Facile Synthesis of Magnetorheological Fluid
by Magdalena Abramowicz, Magdalena Osial, Weronika Urbańska, Mikołaj Walicki, Sławomir Wilczewski, Agnieszka Pregowska, Katarzyna Skórczewska, Piotr Jenczyk, Magdalena Warczak, Marcin Pisarek and Michael Giersig
Molecules 2023, 28(6), 2558; https://doi.org/10.3390/molecules28062558 - 11 Mar 2023
Cited by 3 | Viewed by 2914
Abstract
The rapidly growing production and usage of lithium-ion batteries (LIBs) dramatically raises the number of harmful wastes. Consequently, the LIBs waste management processes, taking into account reliability, efficiency, and sustainability criteria, became a hot issue in the context of environmental protection as well [...] Read more.
The rapidly growing production and usage of lithium-ion batteries (LIBs) dramatically raises the number of harmful wastes. Consequently, the LIBs waste management processes, taking into account reliability, efficiency, and sustainability criteria, became a hot issue in the context of environmental protection as well as the scarcity of metal resources. In this paper, we propose for the first time a functional material—a magnetorheological fluid (MRF) from the LIBs-based liquid waste containing heavy metal ions. At first, the spent battery waste powder was treated with acid-leaching, where the post-treatment acid-leaching solution (ALS) contained heavy metal ions including cobalt. Then, ALS was used during wet co-precipitation to obtain cobalt-doped superparamagnetic iron oxide nanoparticles (SPIONs) and as an effect, the harmful liquid waste was purified from cobalt. The obtained nanoparticles were characterized with SEM, TEM, XPS, and magnetometry. Subsequently, superparamagnetic nanoparticles sized 15 nm average in diameter and magnetization saturation of about 91 emu g−1 doped with Co were used to prepare the MRF that increases the viscosity by about 300% in the presence of the 100 mT magnetic fields. We propose a facile and cost-effective way to utilize harmful ALS waste and use them in the preparation of superparamagnetic particles to be used in the magnetorheological fluid. This work describes for the first time the second life of the battery waste in the MRF and a facile way to remove the harmful ingredients from the solutions obtained after the acid leaching of LIBs as an effective end-of-life option for hydrometallurgical waste utilization. Full article
Show Figures

Graphical abstract

22 pages, 2075 KiB  
Review
Sedimentation Stability of Magnetorheological Fluids: The State of the Art and Challenging Issues
by Seung-Bok Choi
Micromachines 2022, 13(11), 1904; https://doi.org/10.3390/mi13111904 - 3 Nov 2022
Cited by 33 | Viewed by 3530
Abstract
Among the many factors causing particle sedimentation, three principal ingredients are heavily involved: magnetic particles, a carrier liquid (base oil), and additives (surfactant). Therefore, many works have been carried out to improve the sedimentation stability of magnetorheological fluids (MRFs) by adopting the three [...] Read more.
Among the many factors causing particle sedimentation, three principal ingredients are heavily involved: magnetic particles, a carrier liquid (base oil), and additives (surfactant). Therefore, many works have been carried out to improve the sedimentation stability of magnetorheological fluids (MRFs) by adopting the three methods. In the particle modification stage, the weight concentration, size distribution, particle shape, coated materials, and combinations of different sizes of the particles have been proposed, while for the modification of the carrier liquid, several works on the density increment, wettability control, and the use of natural oils, lubricant oil, grease, and ethyl- and butyl-acetate oils have been undertaken. Recently, in certain recipes to improve sedimentation stability, some additives such as aluminum stearate were used to increase the redispersibility of the aggregated particles. In addition, several works using more than two recipes modifying both the particles and base oils are being actively carried out to achieve higher sedimentation stability. This review article comprehensively introduces and discuses the recipes to improve sedimentation stability from the aspects of the three ingredients. A few conceptual methodologies to prevent the sedimentation occurring via a bottle’s storage on the shelves of the application systems are also presented, since, to the author’s knowledge, there has not been a report on this issue. These are challenging works to be explored and developed for successful application systems’ MRFs. Full article
(This article belongs to the Special Issue Micro/Nanofluids in Magnetic/Electric Fields)
Show Figures

Figure 1

18 pages, 3940 KiB  
Article
Towards 4D Printing of Very Soft Heterogeneous Magnetoactive Layers for Morphing Surface Applications via Liquid Additive Manufacturing
by Lucas Brusa da Costa Linn, Kostas Danas and Laurence Bodelot
Polymers 2022, 14(9), 1684; https://doi.org/10.3390/polym14091684 - 21 Apr 2022
Cited by 14 | Viewed by 3020
Abstract
This work explores the use of liquid additive manufacturing (LAM) to print heterogeneous magnetoactive layers. A general method is proposed where, by studying the printing of pure silicone lines, the successful printing of closed shapes, open shapes, and a combination thereof, can be [...] Read more.
This work explores the use of liquid additive manufacturing (LAM) to print heterogeneous magnetoactive layers. A general method is proposed where, by studying the printing of pure silicone lines, the successful printing of closed shapes, open shapes, and a combination thereof, can be achieved while accounting for the continuous deposition that is specific to LAM. The results of this characterization are subsequently exploited for the printing of a heterogeneous layer composed of four magnetoactive discs embedded in a pure silicone square. Such a layer, when affixed to a softer silicone substrate, yields a system that produces truly three-dimensional surface patterns upon application of a magnetic field. Hence, this work demonstrates that LAM is a promising approach for the rapid 4D printing of morphing surfaces exhibiting 3D surface patterns that can be actuated remotely and reversibly via a magnetic field. Such heterogenous layers have a wide range of applications, ranging from haptics to camouflage to differential cell growth. Full article
(This article belongs to the Special Issue Frontier in Magneto-/ Electro-Active Elastomers)
Show Figures

Graphical abstract

12 pages, 22867 KiB  
Article
Effect of Time and Frequency of Magnetic Field Application on MRF Pressure Performance
by Purwadi Joko Widodo, Eko Prasetya Budiana, Ubaidillah Ubaidillah, Fitrian Imaduddin and Seung-Bok Choi
Micromachines 2022, 13(2), 222; https://doi.org/10.3390/mi13020222 - 29 Jan 2022
Cited by 4 | Viewed by 2683
Abstract
This research was conducted to determine the effect of the time and frequency of magnetic field application on MRF pressure performance. It was carried out by placing magnetorheological fluid (MRF) in a U-shaped, glass tube and then repeatedly applying a magnetic field to [...] Read more.
This research was conducted to determine the effect of the time and frequency of magnetic field application on MRF pressure performance. It was carried out by placing magnetorheological fluid (MRF) in a U-shaped, glass tube and then repeatedly applying a magnetic field to it for a certain time period with a particular frequency set by the generator frequency. The length of the application period of the magnetic field, the frequency of the application of the magnetic field, and the magnitude of changes in fluid pressure that occurred and changes in pressure in the MRF were recorded with a data logger for a specific time, which was 60 s. From the field tests that were carried out, it was found that during the application of a continuous magnetic field, there was pressure on the MRF until it reached the maximum pressure; then, there was a gradual decrease in pressure when the magnetic field was turned off, but the pressure was intense. It was shown that the pressure decreased rapidly as the magnetism disappeared, even causing the pressure to drop below the initial pressure, which, in turn, gradually rose again toward the equilibrium pressure. Meanwhile, during the repeated application of a magnetic field, it appeared that the MRF effectively produced pressure in response to the presence of a magnetic field up to a frequency of 5 Hz. The higher the applied magnetic field frequency, the smaller the pressure change that occurred. Starting at a frequency of 10 Hz, the application of a magnetic field produced more minor pressure changes, and the resulting pressure continued to decrease as the liquid level decreased toward the initial equilibrium position. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

12 pages, 3894 KiB  
Article
The Influence of Angstrom-Scale Roughness on the Laser-Induced Damage Threshold of Single-Crystal ZnGeP2
by Nikolai Yudin, Andrei Khudoley, Mikhail Zinoviev, Sergey Podzvalov, Elena Slyunko, Elena Zhuravleva, Maxim Kulesh, Gennadij Gorodkin, Pavel Kumeysha and Oleg Antipov
Crystals 2022, 12(1), 83; https://doi.org/10.3390/cryst12010083 - 8 Jan 2022
Cited by 8 | Viewed by 2309
Abstract
Magnetorheological processing was applied to polish the working surfaces of single-crystal ZnGeP2, in which a non-aqueous liquid with the magnetic particles of carbonyl iron with the addition of nanodiamonds was used. Samples of a single-crystal ZnGeP2 with an Angstrom level [...] Read more.
Magnetorheological processing was applied to polish the working surfaces of single-crystal ZnGeP2, in which a non-aqueous liquid with the magnetic particles of carbonyl iron with the addition of nanodiamonds was used. Samples of a single-crystal ZnGeP2 with an Angstrom level of surface roughness were received. The use of magnetorheological polish allowed the more accurate characterization of the possible structural defects that emerged on the surface of a single crystal and had a size of ~0.5–1.5 μm. The laser-induced damage threshold (LIDT) value at the indicated orders of magnitude of the surface roughness parameters was determined not by the quality of polishing, but by the number of point depressions caused by the physical limitations of the structural configuration of the crystal volume. These results are in good agreement with the assumption made about a significant effect of the concentration of dislocations in a ZnGeP2 crystal on LIDT. Full article
(This article belongs to the Special Issue Advances in Middle Infrared Laser Crystals and Its Applications)
Show Figures

Figure 1

15 pages, 3904 KiB  
Article
Dual Properties of Polyvinyl Alcohol-Based Magnetorheological Plastomer with Different Ratio of DMSO/Water
by Norhiwani Mohd Hapipi, Saiful Amri Mazlan, Ubaidillah Ubaidillah, Siti Aishah Abdul Aziz, Seung-Bok Choi, Nur Azmah Nordin, Nurhazimah Nazmi, Zhengbin Pang and Shahir Mohd Yusuf
Sensors 2021, 21(22), 7758; https://doi.org/10.3390/s21227758 - 22 Nov 2021
Cited by 2 | Viewed by 3031
Abstract
Polyvinyl alcohol (PVA)-based magnetorheological plastomer (MRP) possesses excellent magnetically dependent mechanical properties such as the magnetorheological effect (MR effect) when exposed to an external magnetic field. PVA-based MRP also shows a shear stiffening (ST) effect, which is very beneficial in fabricating pressure sensor. [...] Read more.
Polyvinyl alcohol (PVA)-based magnetorheological plastomer (MRP) possesses excellent magnetically dependent mechanical properties such as the magnetorheological effect (MR effect) when exposed to an external magnetic field. PVA-based MRP also shows a shear stiffening (ST) effect, which is very beneficial in fabricating pressure sensor. Thus, it can automatically respond to external stimuli such as shear force without the magnetic field. The dual properties of PVA-based MRP mainly on the ST and MR effect are rarely reported. Therefore, this work empirically investigates the dual properties of this smart material under the influence of different solvent compositions (20:80, 40:60, 60:40, and 80:20) by varying the ratios of binary solvent mixture (dimethyl sulfoxide (DMSO) to water). Upon applying a shear stress with excitation frequencies from 0.01 to 10 Hz, the storage modulus (G′) for PVA-based MRP with DMSO to water ratio of 20:40 increases from 6.62 × 10−5 to 0.035 MPa. This result demonstrates an excellent ST effect with the relative shear stiffening effect (RSTE) up to 52,827%. In addition, both the ST and MR effect show a downward trend with increasing DMSO content to water. Notably, the physical state of hydrogel MRP could be changed with different solvent ratios either in the liquid-like or solid-like state. On the other hand, a transient stepwise experiment showed that the solvent’s composition had a positive effect on the arrangement of CIPs within the matrix as a function of the external magnetic field. Therefore, the solvent ratio (DMSO/water) can influence both ST and MR effects of hydrogel MRP, which need to be emphasized in the fabrication of hydrogel MRP for appropriate applications primarily with soft sensors and actuators for dynamic motion control. Full article
Show Figures

Figure 1

15 pages, 2752 KiB  
Article
Extensional Magnetorheology of Viscoelastic Human Blood Analogues Loaded with Magnetic Particles
by João M. Nunes, Francisco J. Galindo-Rosales and Laura Campo-Deaño
Materials 2021, 14(22), 6930; https://doi.org/10.3390/ma14226930 - 16 Nov 2021
Cited by 8 | Viewed by 2142
Abstract
This study represents a pioneering work on the extensional magnetorheological properties of human blood analogue fluids loaded with magnetic microparticles. Dynabeads M-270 particles were dispersed in Newtonian and viscoelastic blood analogue fluids at 5% wt. Capillary breakup experiments were performed, with and without [...] Read more.
This study represents a pioneering work on the extensional magnetorheological properties of human blood analogue fluids loaded with magnetic microparticles. Dynabeads M-270 particles were dispersed in Newtonian and viscoelastic blood analogue fluids at 5% wt. Capillary breakup experiments were performed, with and without the influence of an external magnetic field aligned with the flow direction. The presence of the particles increased the viscosity of the fluid, and that increment was larger when embedded within a polymeric matrix. The application of an external magnetic field led to an even larger increment of the viscosity of the working fluids, as the formation of small aggregates induced an increment in the effective volume fraction of particles. Regarding the liquid bridge stability, the Newtonian blood analogue fluid remained as a Newtonian liquid exhibiting a pinch-off at the breakup time in any circumstance. However, in the case of the viscoelastic blood analogue fluid, the presence of the particles and the simultaneous application of the magnetic field enhanced the formation of the beads-on-a-string structure, as the Ohnesorge number remained basically unaltered, whereas the time of the experiment increased due to its larger viscosity, which resulted in a decrease in the Deborah Number. This result was confirmed with fluids containing larger concentrations of xanthan gum. Full article
(This article belongs to the Special Issue Biorheology at Micro- and Macro-Scales)
Show Figures

Figure 1

Back to TopTop