Simulating the Structure of Magnetic Fluid Using Dissipative Particle Dynamics Method
Abstract
:1. Introduction
2. Methods and Frameworks
2.1. Dissipative Particle Dynamics Models
2.2. Magnetic Particle Model
3. Modeling and Simulation of Magnetic Fluids
4. Computational Findings and Analysis
4.1. Effect of the Molecular Mass of Carrier Liquid on the Structure of Magnetic Fluid
4.2. Effect of the Magnetic Particle Interaction Strength on the Structure of Magnetic Fluids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Wu, D.; Lv, R.-Q.; Ying, Y. Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field. IEEE Trans. Magn. 2014, 50, 4600205. [Google Scholar] [CrossRef]
- Suriyanto; Ng, E.Y.K.; Kumar, S.D. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: A review. Biomed. Eng. Online 2017, 16, 36. [Google Scholar]
- Ren, B.; Song, X.; Zhao, L.; Jin, Y.; Bai, S.; Cui, C.; Wang, J. Water-based Fe3O4 magnetic fluid-coated Aspergillus niger spores for treating liquid contaminated with Cr(VI). Environ. Res. 2022, 212, 113327. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, S.; Ying, L.Y.; Azmi, A.A.A.R.; Razali, N.A.; Hairom, N.H.H.; Mohamad, N.A.; Harun, M.H.C. Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater. J. Environ. Chem. Eng. 2021, 9, 105894. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Q.; Yang, W.; Guo, B.; Chen, L. Analysis of Adjustable Magnetic Fluid Damper in DC Magnetic Field for Spacecraft Applications. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Li, X.; Fan, X.; Li, Z.; Zhu, M. Failure mechanism of magnetic fluid seal for sealing liquids. Tribol. Int. 2023, 187, 108700. [Google Scholar] [CrossRef]
- Munshi, M.M.; Patel, A.R.; Deheri, G.M. Lubrication of rough short bearing on shliomis model by ferrofluid considering viscosity variation effect. Int. J. Math. Eng. Manag. Sci. 2019, 4, 982–997. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Wu, X.; Bian, Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef]
- Yan, L.; Wang, Q.; Yin, B.; Xiao, S.; Li, H.; Wang, M.; Liu, X.; Wu, S. Research on Simultaneous Measurement of Magnetic Field and Temperature Based on Petaloid Photonic Crystal Fiber Sensor. Sensors 2023, 23, 7940. [Google Scholar] [CrossRef]
- Yu, Q.; Li, X.-G.; Zhou, X.; Chen, N.; Wang, S.; Li, F.; Lv, R.-Q.; Nguyen, L.V.; Warren-Smith, S.C.; Zhao, Y. Temperature compensated magnetic field sensor using magnetic fluid filled exposed core microstructure fiber. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Abdullah, H.; Mitu, S.A.; Ahmed, K. Magnetic fluid-injected ring-core-based micro-structured optical fiber for temperature sensing in broad wavelength spectrum. J. Electron. Mater. 2020, 49, 4969–4976. [Google Scholar] [CrossRef]
- Farzinpour, M.; Toghraie, D.; Mehmandoust, B.; Aghadavoudi, F.; Karimipour, A. Molecular dynamics study of barrier effects on Ferro-nanofluid flow in the presence of constant and time-dependent external magnetic fields. J. Mol. Liq. 2020, 308, 113152. [Google Scholar] [CrossRef]
- Satoh, A.; Chantrell, R.W.; Kamiyama, S.-I.; Coverdale, G.N. Two-dimensional Monte Carlo simulations to capture thick chainlike clusters of ferromagnetic particles in colloidal dispersions. J. Colloid Interface Sci. 1996, 178, 620–627. [Google Scholar] [CrossRef]
- Hao, L.; Xinhua, L.; Yongzhi, L. The lattice Boltzmann simulation of magnetic fluid. Procedia Eng. 2011, 15, 3948–3953. [Google Scholar] [CrossRef]
- Zhao, Z.; Torres-Díaz, I.; Vélez, C.; Arnold, D.; Rinaldi, C. Brownian dynamics simulations of magnetic nanoparticles captured in strong magnetic field gradients. J. Phys. Chem. C 2016, 121, 801–810. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, Z.; Zhou, J.; Mao, A.; Bian, D. Modification of magnetorheological fluid and its compatibility with metal skeleton: Insights from multi-body dissipative particle dynamics simulations and experimental study. Phys. Fluids 2024, 36, 032020. [Google Scholar] [CrossRef]
- Lv, R.-Q.; Zhao, Y.; Xu, N.; Li, H. Research on the microstructure and transmission characteristics of magnetic fluids film based on the Monte Carlo method. J. Magn. Magn. Mater. 2013, 337–338, 23–28. [Google Scholar] [CrossRef]
- Li, W.; Ouyang, J.; Zhuang, X. Dissipative particle dynamics simulation for the microstructures of ferromagnetic fluids. Soft Mater. 2016, 14, 87–95. [Google Scholar] [CrossRef]
- Moghadam, M.G.E.; Shahmardan, M.M.; Norouzi, M. Dissipative particle dynamics modeling of a mini-MR damper focus on magnetic fluid. J. Mol. Liq. 2019, 283, 736–747. [Google Scholar] [CrossRef]
- Xu, Z.-D.; Sun, C.-L. Single-double chains micromechanical model and experimental verification of MR fluids with MWCNTs/GO composites coated ferromagnetic particles. J. Intell. Mater. Syst. Struct. 2021, 32, 1523–1536. [Google Scholar] [CrossRef]
- Hoogerbrugge, P.J.; Koelman, J.M.V.A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. (EPL) 1992, 19, 155–160. [Google Scholar] [CrossRef]
- Satoh, A. Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Satoh, A.; Chantrell, R.W. Application of the dissipative particle dynamics method to magnetic colloidal dispersions. Mol. Phys. 2006, 104, 3287–3302. [Google Scholar] [CrossRef]
- Espanol, P.; Warren, P. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 1995, 30, 191. [Google Scholar] [CrossRef]
- Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 1967, 159, 98–103. [Google Scholar] [CrossRef]
- Phan-Thien, N.; Mai-Duy, N.; Khoo, B.C. A spring model for suspended particles in dissipative particle dynamics. J. Rheol. 2014, 58, 839–867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Lai, F.; Ying, Y. Simulating the Structure of Magnetic Fluid Using Dissipative Particle Dynamics Method. Materials 2025, 18, 1697. https://doi.org/10.3390/ma18081697
Tian X, Lai F, Ying Y. Simulating the Structure of Magnetic Fluid Using Dissipative Particle Dynamics Method. Materials. 2025; 18(8):1697. https://doi.org/10.3390/ma18081697
Chicago/Turabian StyleTian, Xiaoxi, Fanian Lai, and Yu Ying. 2025. "Simulating the Structure of Magnetic Fluid Using Dissipative Particle Dynamics Method" Materials 18, no. 8: 1697. https://doi.org/10.3390/ma18081697
APA StyleTian, X., Lai, F., & Ying, Y. (2025). Simulating the Structure of Magnetic Fluid Using Dissipative Particle Dynamics Method. Materials, 18(8), 1697. https://doi.org/10.3390/ma18081697