Rheology of Aqueous Ferrofluids: Transition from a Gel-Like Character to a Liquid Character in High Magnetic Fields
Abstract
:1. Introduction
- k: Boltzmann constant
- T: absolute temperature.
- : share rate.
- n: number of nanoparticles in the chain.
- : volume fraction of the nanoparticles
- .
2. Materials and Methods
2.1. Material
2.2. Rheological Measurements
3. Results
4. Discussion
5. Conclusions
- -
- At low magnetic fields below 200 mT, the ferrofluid behaves similarly to the observation made by other authors. The viscosity increases with the magnetic field, and the ferrofluid exhibits gel-like behaviour with G′ higher than G″;
- -
- At magnetic fields above 200 mT, the viscosity starts to decrease, and the character of ferrofluid is reverted to liquid;
- -
- The increase of the viscosity and a gel-like character can be associated with the formation of a chain-like agglomerate, as predicted in the model by Zubarev;
- -
- The change from gel-like to liquid character can be associated with the transition of chain-like into globular agglomerates and eventual sedimentation of particles;
- -
- Citric acid will not provide a high enough electrostatic charge to prevent agglomeration of nanoparticles at high magnetic fields.
- -
- Rheological behaviour of non-polar ferrofluid with similar nanoparticles coated with fatty acids;
- -
- The influence of ferromagnetic nanoplatelets on rheological properties;
- -
- Another interesting study will be the development of composite material of elastomer and ferromagnetic nanoplatelets.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calarasu, D.; Cotae, C.; Olaru, R. Magnetic fluid brake. J. Magn. Magn. Mater. 1999, 201, 401–403. [Google Scholar] [CrossRef]
- Kim, Y.S.; Nakatsuka, K.; Fujita, T.; Atarashi, T. Application of hydrophilic magnetic fluid to oil seal. J. Magn. Magn. Mater. 1999, 201, 361–363. [Google Scholar] [CrossRef]
- Sankaranarayanan, V.K.; Prakash, O.; Pant, R.P.; Islam, M. Lithium ferrite nanoparticles for ferrofluid applications. J. Magn. Magn. Mater. 2002, 252, 7–9. [Google Scholar] [CrossRef]
- Tangthieng, C.; Finlayson, B.A.; Maulbetsch, J.; Cader, T. Heat transfer enhancement in ferrofluids subjected to steady magnetic fields. J. Magn. Magn. Mater. 1999, 201, 252–255. [Google Scholar] [CrossRef]
- Kole, M.; Khandekar, S. Engineering apllications of ferrofluids: A review. J. Magn. Magn. Mater. 2021, 537, 168222. [Google Scholar] [CrossRef]
- Pattanaik, M.S.; Varma, V.B.; Cheekati, S.K.; Chaudhary, V.; Ramanujan, R.V. Optimal ferrofluids for magnetic cooling devices. Sci. Rep. 2021, 11, 24167. [Google Scholar] [CrossRef]
- Vinod, S.; Philip, J. Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions. Adv. Colloid Interface Sci. 2022, 307, 102729. [Google Scholar] [CrossRef]
- Malekzadeh, A.; Pouranfard, A.R.; Hatami, N.; Kazemnejad Banari, A.; Rahimi, M.R. Experimantal Investigations on the Viscosity of Magnetic Nanofluids under the Infuence of Temperature, Volume Fractions of Nanoparticles and External Magnetic Field. J. Appl. Fluid Mech. 2016, 9, 693–697. [Google Scholar] [CrossRef]
- Phor, L.; Kumar, V. Self-cooling by ferrofluid in magnetic field. SN Appl. Sci. 2019, 1, 1696. [Google Scholar] [CrossRef]
- Bhandari, A. Effect of the diameter of magnetic core and surfactant thickness on the viscosity of ferrofluid. J. Magn. Magn. Mater. 2022, 548, 168975. [Google Scholar] [CrossRef]
- Gu, H.; Tang, X.; Hong, R.Y.; Feng, W.G.; Xie, H.D.; Chen, D.X.; Badami, D. Ubbelohde viscometer measurement of water-based Fe3O4 magnetic fluid prepared by coprecipitation. J. Magn. Magn. Mater. 2013, 348, 88–92. [Google Scholar] [CrossRef]
- Hewlin, R.L., Jr.; Edwards, M.; Schultz, C. Design and Development of a Traveling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid. Micromachines 2023, 14, 889. [Google Scholar] [CrossRef] [PubMed]
- Baraton, M.-I. Synthesis, Functionalization and Surface Treatment of Nanoparticles; American Scientific Publishers: Stevenson Ranch, CA, USA, 2003. [Google Scholar]
- Berry, C.C.; Curtis, A.S.G. Functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R198–R206. [Google Scholar] [CrossRef]
- Caruso, F. Nanoengineering of particles surfaces. Adv. Mater. 2001, 13, 11–22. [Google Scholar] [CrossRef]
- Fortin, J.-P.; Wilhelm, C.; Servais, J.; Ménager, C.; Bacri, J.-C.; Gazeau, F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 2007, 129, 2628–2635. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Ito, A.; Shinaki, M.; Honda, H.; Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005, 100, 1–11. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connoly, J.; Jones, S.K.; Dobson, J. Application of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef]
- Tartaj, P.; del Puerto Morales, M.; Veintemillas-Verdaguer, S.; González-Carreno, T.; Serna, C.J. The preparation of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R182–R197. [Google Scholar] [CrossRef]
- Thanh, N.T.K. Magnetic Nanoparticles: From Fabrication to Clinical Applications; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Veish, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Del. Rev. 2010, 62, 284–304. [Google Scholar] [CrossRef]
- Zhang, C.; Wängler, B.; Morgenstern, B.; Zentgraf, H.; Eisenhut, M.; Untenecker, H.; Krüger, R.; Huss, R.; Seliger, C.; Semmler, W.; et al. Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: A promising tool to label cells for magnetic resonance imaging. Langmuir 2007, 23, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Rosensweig, R.E. Ferrohydrodynamics; Dover Publications: Mineloa, NY, USA, 1985. [Google Scholar]
- Tadros, T.F. Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv. Colloid Interf. Sci. 1996, 68, 97–200. [Google Scholar] [CrossRef]
- Vinod, S.; Camp, P.J.; Philip, J. Observation of soft glassy behavior in a magnetic colloid exposed to an external magnetic field. Soft Matter 2020, 16, 7126–7136. [Google Scholar] [CrossRef] [PubMed]
- Ryapolov, P.A.; Shel’deshova, E.V.; Postnikov, E.B. Temperature and field dependences of magnetic fluid’s shear viscosity: Decoupling inputs from a carrier fluid and magnetic nanoparticles. J. Mol. Liq. 2023, 382, 121887. [Google Scholar] [CrossRef]
- Craciunescu, I.; Chitanu, E.; Codescu, M.M.; Iacob, N.; Kuncser, V.; Socoliuc, V.; Susan-Resiga, D.; Balanean, F.; Ispas, G.; Borbath, I.; et al. High performance magnetorheological fluids: Very high magnetization FeCO-Fe3O4 nanoclusters in a ferrofluid carrier. Soft Matter 2022, 18, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.M.; Razak, K.A.; Tan, S.C.; Noordin, R. Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugted antibody for lateral flow immunoassay application. J. Alloys Compd. 2012, 538, 100–106. [Google Scholar] [CrossRef]
- Čampelj, S.; Makovec, D.; Drofenik, M. Preparation of water-based ferrofluids with citric acid as a surfactant. J. Phys. Condens. Matter 2008, 20, 204101. [Google Scholar] [CrossRef]
- Mikelashvili, V.; Kekutia, S.; Markhulia, J.; Saneblidze, L.; Maisuradze, N.; Kriechbaum, M.; Almasy, L. Synthesis and Characterization of Citric Acis-Modified Iron Oxide Nanoparticles Prepared with Electrohydraulic Discharge Treatment. Materials 2023, 16, 746. [Google Scholar] [CrossRef]
- Hong, R.Y.; Ren, Z.Q.; Han, Y.P.; Li, H.Z.; Zheng, Y.; Ding, J. Rheological properties of water-based Fe3O4 ferrofluids. Chem. Eng. Sci. 2007, 62, 5912–5924. [Google Scholar] [CrossRef]
- Susan-Resiga, D.; Malaescu, I.; Marinica, O.; Marin, C.N. Magnetorheological properties of a kerosene-based ferrofluid with magnetite particles hydrophobized in the absence of the dispersion medium. Phys. B Condens. 2020, 587, 412150. [Google Scholar] [CrossRef]
- Odenbach, S. Magnetoviscous Effects in Ferrofluids; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Zubarev, A.Y.; Iskakova, L.Y. To the theory of rheological properties of ferrofluids: Influence of drop-like agglomerates. Phys. A 2004, 343, 65–80. [Google Scholar] [CrossRef]
- Chantrell, R.W.; Bradbury, A.; Poppewell, J.; Charles, S.W. Agglomerate formation in a magnetic fluid. J. Appl. Phys. 1982, 53, 2742–2744. [Google Scholar] [CrossRef]
- Ilg, P.; Kröger, M.; Hess, S. Magnetoviscosity and orientational order parameters of dilute ferrofluids. J. Chem. Phys. 2002, 116, 9078–9088. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Zubarey, A.Y. Non-linear evolution of system of elongated droplike aggregates in a metastable magnetic fluid. Phys. A 1998, 251, 348–367. [Google Scholar] [CrossRef]
- Mendelev, V.; Ivanov, A. Magnetic properties of ferrofluids: An influence of chain agglomerates. J. Magn. Magn. Mater. 2005, 289, 211–214. [Google Scholar] [CrossRef]
- Pshenichnikov, A.F.; Mekhonoshin, V.V. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: Numerical simulation. J. Magn. Magn. Mater. 2000, 213, 357–369. [Google Scholar] [CrossRef]
- Satoh, A.; Chantrell, R.W.; Kamiyama, S.-I.; Coverdale, G.N. Three dimensional Monte Carlo simulation of thick chainlike clusters composed of ferromagnetic fine particles. J. Colloid Interface Sci. 1996, 181, 422–428. [Google Scholar] [CrossRef]
- Zubarev, A.Y.; Fleischer, J.; Odenbach, S. Towards a theory of dynamical properties of polydispersed magnetic fluid: Effect of chain-like agglomerates. Phys. A 2005, 358, 475–491. [Google Scholar] [CrossRef]
- Zubarev, A.Y.; Iskakova, L.Y. Condensation phase transition in ferrofluids. Phys. A 2004, 335, 325–338. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Jiles, D. Introduction to Magnetism and Magnetic Materials; Champman & Hall: London, UK, 1998. [Google Scholar]
- Odenbach, S.; Störk, H. Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates. J. Magn. Magn. Mater. 1998, 183, 188–194. [Google Scholar] [CrossRef]
- Odenbach, S. Ferrofluids: Magnetically Controllable Fluids and Their Applications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Jagodič, M.; Gyergyek, S.; Jagličić, Z.; Makovec, D.; Trontelj, Z. Detection of magnetic nanoparticles fusion by magnetic measurements. J. Appl. Phys. 2008, 104, 074319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čampelj, S. Rheology of Aqueous Ferrofluids: Transition from a Gel-Like Character to a Liquid Character in High Magnetic Fields. ChemEngineering 2023, 7, 81. https://doi.org/10.3390/chemengineering7050081
Čampelj S. Rheology of Aqueous Ferrofluids: Transition from a Gel-Like Character to a Liquid Character in High Magnetic Fields. ChemEngineering. 2023; 7(5):81. https://doi.org/10.3390/chemengineering7050081
Chicago/Turabian StyleČampelj, Stanislav. 2023. "Rheology of Aqueous Ferrofluids: Transition from a Gel-Like Character to a Liquid Character in High Magnetic Fields" ChemEngineering 7, no. 5: 81. https://doi.org/10.3390/chemengineering7050081
APA StyleČampelj, S. (2023). Rheology of Aqueous Ferrofluids: Transition from a Gel-Like Character to a Liquid Character in High Magnetic Fields. ChemEngineering, 7(5), 81. https://doi.org/10.3390/chemengineering7050081