Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = magnetoelastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6660 KiB  
Article
Signal Enhancement in Magnetoelastic Ribbons Through Thermal Annealing: Evaluation of Magnetic Signal Output in Different Metglas Materials
by Georgios Samourgkanidis, Dimitris Kouzoudis, Panagiotis Charalampous and Eyad Adnan
Sensors 2025, 25(12), 3722; https://doi.org/10.3390/s25123722 - 13 Jun 2025
Viewed by 367
Abstract
This study explores the impact of thermal annealing on the magnetic signal enhancement of three distinct Metglas ribbon materials: 2826MB3, 2605SA1, and 2714A. Each material underwent a systematic annealing process under a range of temperatures (50–500 °C) and durations (10–60 [...] Read more.
This study explores the impact of thermal annealing on the magnetic signal enhancement of three distinct Metglas ribbon materials: 2826MB3, 2605SA1, and 2714A. Each material underwent a systematic annealing process under a range of temperatures (50–500 °C) and durations (10–60 min) to evaluate the influence of thermal treatment on their magnetic signal response. The experimental setup applied a constant excitation frequency of 20 kHz, allowing for direct comparison under identical measurement conditions. The results show that while all three alloys benefit from annealing, their responses differ in magnitude, stability, and sensitivity. The 2826MB3 and 2605SA1 ribbons exhibited similar enhancement patterns, with maximum normalized voltage increases of 75.8% and approximately 70%, respectively. However, 2605SA1 displayed a more abrupt signal drop at elevated temperatures, suggesting reduced thermal stability. In contrast, 2714A reached the highest enhancement at 86.8% but also demonstrated extreme sensitivity to over-annealing, losing its magnetic response rapidly at higher temperatures. The findings highlight the critical role of carefully optimized annealing parameters in maximizing sensor performance and offer practical guidance for the development of advanced magnetoelastic sensing systems. Full article
Show Figures

Figure 1

16 pages, 2150 KiB  
Article
Microwire vs. Micro-Ribbon Magnetoelastic Sensors for Vibration-Based Structural Health Monitoring of Rectangular Concrete Beams
by Christos I. Tapeinos, Dimitris Kouzoudis, Kostantis Varvatsoulis, Manuel Vázquez and Georgios Samourgkanidis
Sensors 2025, 25(12), 3590; https://doi.org/10.3390/s25123590 - 7 Jun 2025
Viewed by 2659
Abstract
Two different magnetoelastic Metglas materials with distinct shapes were compared as sensing elements for the structural health monitoring of concrete beams. One had a ribbon shape, while the other had a microwire shape. The sensing elements were attached to different concrete beams, and [...] Read more.
Two different magnetoelastic Metglas materials with distinct shapes were compared as sensing elements for the structural health monitoring of concrete beams. One had a ribbon shape, while the other had a microwire shape. The sensing elements were attached to different concrete beams, and a crack was introduced into each beam. The beams were subjected to flexural vibrations, and their deformations were recorded wirelessly by coils, detecting the magnetic signals emitted due to the magnetoelastic nature of the sensors. Fast Fourier Analysis of the received signal revealed the bending mode frequencies of the beams, which serve as a “signature” of their structural health. In these spectra, the ribbon-shaped sensor exhibited a 1.4-times stronger signal than the microwire sensor. However, the extracted mode frequencies were nearly identical, with differences of less than 1% both before and after damage. This indicates that both sensors can be used equivalently to monitor structural damage in concrete beams. The damage-related relative frequency shifts ranged from −0.01 to −0.03, with similar results for both sensors. Thermal annealing was also studied and appeared to significantly enhance the signal by 10–30%, likely due to the relaxation of internal stresses induced during the rapid solidification synthesis of these materials. This enhancement was more pronounced in the ribbon-shaped sensor. This study is the first to utilize a magnetoelastic microwire sensor for damage detection in concrete beams. Full article
Show Figures

Graphical abstract

24 pages, 1148 KiB  
Article
Three-Dimensional Magneto-Elastic Analysis of Functionally Graded Plates and Shells
by Salvatore Brischetto and Domenico Cesare
J. Compos. Sci. 2025, 9(5), 214; https://doi.org/10.3390/jcs9050214 - 28 Apr 2025
Viewed by 421
Abstract
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the [...] Read more.
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the three equations of equilibrium in three-dimensional form and the three-dimensional divergence equation for the magnetic induction. Governing equations are written in the orthogonal mixed curvilinear reference system (α, β, z) allowing the analysis of several curved and flat geometries (plates, cylindrical shells and spherical shells) thanks to proper considerations of the radii of curvature. The static cases, actuator and sensor configurations and free vibration investigations are proposed. The resolution method uses the imposition of the Navier’s harmonic forms in the two in-plane directions and the exponential matrix methodology in the transverse normal direction. Single-layered and multilayered simply-supported FGPM structures have been investigated. In order to understand the behavior of FGPM structures, numerical values and trends along the thickness direction for displacements, stresses, magnetic potential, magnetic induction and free vibration modes are proposed. In the results section, a first assessment phase is proposed to demonstrate the validity of the formulation and to fix proper values for the convergence of results. Therefore, a new benchmark section is presented. Different cases are proposed for several material configurations, load boundary conditions and geometries. The possible effects involved in this problem (magneto-elastic coupling and effects related to embedded materials and thickness values of the layers) are discussed in depth for each thickness ratio. The innovative feature proposed in the present paper is the exact 3D study of magneto-elastic coupling effects in FGPM plates and shells for static and free vibration analyses by means of a unique and general formulation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

20 pages, 12305 KiB  
Article
The Effect of Graphene Nanofiller on Electromagnetic-Related Primary Resonance of an Axially Moving Nanocomposite Beam
by Liwen Wang, Jie Wang, Jinyuan Hu, Xiaomalong Pu and Liangfei Gong
Symmetry 2025, 17(5), 651; https://doi.org/10.3390/sym17050651 - 25 Apr 2025
Viewed by 403
Abstract
The primary resonance responses of high-performance nanocomposite materials used in spacecraft components in complex electromagnetic field environments were investigated. Simultaneously considering the interfacial effect, agglomeration effect, and percolation threshold, a theoretical model that can predict Young’s modulus and electrical conductivity of graphene nanocomposites [...] Read more.
The primary resonance responses of high-performance nanocomposite materials used in spacecraft components in complex electromagnetic field environments were investigated. Simultaneously considering the interfacial effect, agglomeration effect, and percolation threshold, a theoretical model that can predict Young’s modulus and electrical conductivity of graphene nanocomposites is developed by the effective medium theory (EMT), shear lag theory, and the Mori-Tanaka method. The magnetoelastic vibration equation for an axially moving graphene nanocomposite current-carrying beam was derived via the Hamilton principle. The amplitude-frequency response equations were obtained for different external loading conditions. The study reveals the significant role of graphene concentration, external force, and magnetic field on the system’s primary resonance, highlighting how electromagnetic forces play a critical role similar to external excitation forces. It is shown that the increase in graphene content could lead the system from period-doubling motion into chaotic behavior. Moreover, an enhanced magnetic field strength may lower the minimum graphene concentration needed for period-doubling motion. This work provides new insights into controlling nonlinear vibrations of such systems through applied electromagnetic fields, emphasizing the importance of designing multifunctional nanocomposites in multi-physics coupled environments. The concentration of graphene filler would significantly affect the primary resonance and bifurcation and chaos behaviors of the system. Full article
(This article belongs to the Special Issue Symmetry in Graphene and Nanomaterials)
Show Figures

Figure 1

15 pages, 3240 KiB  
Article
Optimized Magnetization Distribution in Body-Centered Cubic Lattice-Structured Magnetoelastomer for High-Performance 3D Force–Tactile Sensors
by Hongfei Hou, Ziyin Xiang, Chaonan Zhi, Haodong Hu, Xingyu Zhu, Baoru Bian, Yuanzhao Wu, Yiwei Liu, Xiaohui Yi, Jie Shang and Run-Wei Li
Sensors 2025, 25(7), 2312; https://doi.org/10.3390/s25072312 - 5 Apr 2025
Viewed by 642
Abstract
Flexible magnetic tactile sensors hold transformative potential in robotics and human–computer interactions by enabling precise force detection. However, existing sensors face challenges in balancing sensitivity, detection range, and structural adaptability for sensing force. This study proposed a pre-compressed magnetization method to address these [...] Read more.
Flexible magnetic tactile sensors hold transformative potential in robotics and human–computer interactions by enabling precise force detection. However, existing sensors face challenges in balancing sensitivity, detection range, and structural adaptability for sensing force. This study proposed a pre-compressed magnetization method to address these limitations by amplifying the magnetoelastic effect through optimized magnetization direction distribution of the elastomer. A body-centered cubic lattice-structured magnetoelastomer featuring regular deformation under compression was fabricated via digital light processing (DLP) to validate this method. Finite element simulations and experimental analyses revealed that magnetizing the material under 60% compression strain optimized magnetization direction distribution, enhancing force–magnetic coupling. Integrating the magnetic elastomer with a hall sensor, the prepared tactile sensor demonstrated a low detection limit (1 mN), wide detection range (0.001–10 N), rapid response/recovery times (40 ms/50 ms), and durability (>1500 cycles). By using machine learning, the sensor enabled accurate 3D force prediction. Full article
(This article belongs to the Special Issue Flexible Pressure/Force Sensors and Their Applications)
Show Figures

Figure 1

21 pages, 4710 KiB  
Article
An Amplitude Analysis-Based Magnetoelastic Biosensing Method for Quantifying Blood Coagulation
by Xi Chen, Qiong Wang, Jinan Deng, Ning Hu, Yanjian Liao and Jun Yang
Biosensors 2025, 15(4), 219; https://doi.org/10.3390/bios15040219 - 29 Mar 2025
Viewed by 615
Abstract
Blood coagulation tests are crucial in the clinical management of cardiovascular diseases and preoperative diagnostics. However, the widespread adoption of existing detection devices, such as thromboelastography (TEG) instruments, is hindered by their bulky size, prohibitive cost, and lengthy detection times. In contrast, magnetoelastic [...] Read more.
Blood coagulation tests are crucial in the clinical management of cardiovascular diseases and preoperative diagnostics. However, the widespread adoption of existing detection devices, such as thromboelastography (TEG) instruments, is hindered by their bulky size, prohibitive cost, and lengthy detection times. In contrast, magnetoelastic sensors, known for their low cost and rapid response, have garnered attention for their potential application in various coagulation tests. These sensors function by detecting resonant frequency shifts in response to changes in blood viscosity during coagulation. Nevertheless, the frequency-based detection approach necessitates continuous and precise frequency scanning, imposing stringent demands on equipment design, processing, and analytical techniques. In contrast, amplitude-based detection methods offer superior applicability in many sensing scenarios. This paper presents a comprehensive study on signal acquisition from magnetoelastic sensors. We elucidate the mathematical relationship between the resonant amplitude of the response signal and liquid viscosity, propose a quantitative viscosity measurement method based on the maximum amplitude of the signal, and construct a corresponding sensing device. The proposed method was validated using glycerol solutions, demonstrating a sensitivity of 13.83 V−1/Pa0.5s0.5Kg0.5m−1.5 and a detection limit of 0.0817 Pa0.5s0.5Kg0.5m−1.5. When applied to real-time monitoring of the coagulation process, the resulting coagulation curves and maximum amplitude (MA) parameters exhibited excellent consistency with standard TEG results (R2 values of 0.9552 and 0.9615, respectively). Additionally, other TEG parameters, such as R-time, K-time, and α-angle, were successfully obtained, effectively reflecting viscosity changes during blood coagulation. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

23 pages, 8944 KiB  
Review
Stress-Induced Magnetic Anisotropy in Fe-Based Amorphous/Nanocrystalline Alloys: Mechanisms, Advances and Challenges
by Jianqiang Zhang, Yanjun Qin, Xiaobin Liu, Yuxiang Zhao, Wenqiang Dang, Xiaozhen Fan, Xinyi Chen, Yuanrong Yu, Zixuan Yang, Shipeng Gao, Duanqiang Wu and Yunzhang Fang
Materials 2025, 18(7), 1499; https://doi.org/10.3390/ma18071499 - 27 Mar 2025
Viewed by 894
Abstract
Fe-based amorphous and nanocrystalline alloys, such as FINEMET and its improved variants, are highly valued as green energy-saving materials due to their unique magnetic properties, including high permeability, low coercivity, and near-zero saturation magnetostriction. These characteristics have enabled their extensive use in power [...] Read more.
Fe-based amorphous and nanocrystalline alloys, such as FINEMET and its improved variants, are highly valued as green energy-saving materials due to their unique magnetic properties, including high permeability, low coercivity, and near-zero saturation magnetostriction. These characteristics have enabled their extensive use in power electronics and information technology. However, the full potential of these alloys remains unfulfilled due to insufficient understanding of their stress sensitivity. This study focuses on the development history, heat treatment, annealing processes, chemical composition, and underlying mechanisms of Fe-based amorphous and nanocrystalline alloys, aiming to provide insights into stress-induced magnetic anisotropy and guide the development of greener and more efficient soft magnetic materials. Full article
Show Figures

Figure 1

20 pages, 24844 KiB  
Article
A Programmable Hybrid Energy Harvester: Leveraging Buckling and Magnetic Multistability
by Azam Arefi, Abhilash Sreekumar and Dimitrios Chronopoulos
Micromachines 2025, 16(4), 359; https://doi.org/10.3390/mi16040359 - 21 Mar 2025
Cited by 1 | Viewed by 488
Abstract
Growing demands for self-powered, low-maintenance devices—especially in sensor networks, wearables, and the Internet of Things—have intensified interest in capturing ultra-low-frequency ambient vibrations. This paper introduces a hybrid energy harvester that combines elastic buckling with magnetically induced forces, enabling programmable transitions among monostable, bistable, [...] Read more.
Growing demands for self-powered, low-maintenance devices—especially in sensor networks, wearables, and the Internet of Things—have intensified interest in capturing ultra-low-frequency ambient vibrations. This paper introduces a hybrid energy harvester that combines elastic buckling with magnetically induced forces, enabling programmable transitions among monostable, bistable, and multistable regimes. By tuning three key parameters—buckling amplitude, magnet spacing, and polarity offset—the system’s potential energy landscape can be selectively shaped, allowing the depth and number of potential wells to be tailored for enhanced vibrational response and broadened operating bandwidths. An energy-based modeling framework implemented via an in-house MATLAB® R2024B code is presented to characterize how these parameters govern well depths, barrier heights, and snap-through transitions, while an inverse design approach demonstrates the practical feasibility of matching industrially relevant target force–displacement profiles within a constrained design space. Although the present work focuses on systematically mapping the static potential landscape, these insights form a crucial foundation for subsequent dynamic analyses and prototype validation, paving the way for advanced investigations into basins of attraction, chaotic transitions, and time-domain power output. The proposed architecture demonstrates modularity and tunability, holding promise for low-frequency energy harvesting, adaptive vibration isolation, and other nonlinear applications requiring reconfigurable mechanical stability. Full article
(This article belongs to the Special Issue Linear and Nonlinear Vibrations for Sensing and Energy Harvesting)
Show Figures

Figure 1

14 pages, 2541 KiB  
Article
Magnetoelastic Effect in Ni-Zn Ferrite Under Torque Operation
by Jacek Salach, Maciej Kachniarz, Dorota Jackiewicz and Adam Bieńkowski
Materials 2024, 17(24), 6239; https://doi.org/10.3390/ma17246239 - 20 Dec 2024
Viewed by 771
Abstract
The magnetoelastic effect is known as the dependence between the magnetic properties of the material and applied mechanical stress. The stress might not be applied directly but rather generated by the applied torque. This creates the possibility of developing a torque-sensing device based [...] Read more.
The magnetoelastic effect is known as the dependence between the magnetic properties of the material and applied mechanical stress. The stress might not be applied directly but rather generated by the applied torque. This creates the possibility of developing a torque-sensing device based on the magnetoelastic effect. In this paper, the concept of an axially twisted toroidal magnetic core as a torque-sensing element is considered. Most known works in this field consider the utilization of an amorphous ribbon as the core material. However, Ni-Zn ferrites, exhibiting relatively high magnetostriction, also seem to be promising materials for magnetoelastic torque sensors. This paper introduces a theoretical description of the magnetoelastic effect under torque operation on the basis of total free energy analysis. The methodology of torque application to the toroidal core, utilized previously for coiled cores of amorphous ribbons, was successfully adapted for the bulk ferrite core. For the first time, the influence of torque on the magnetic properties of Ni-Zn ferrite was investigated in a wide range of magnetizing fields. The obtained magnetoelastic characteristics allowed the specification of the magnetoelastic torque sensitivity of the material and the determination of the optimal amplitude of the magnetizing field to maximize this parameter. High sensitivity, in comparison with previously studied amorphous alloys, and monotonic magnetoelastic characteristics indicate that the investigated Ni-Zn ferrite can be utilized in magnetoelastic torque sensors. As such, it can be used in torque-sensing applications required in mechanical engineering or civil engineering, like the evaluation of structural elements exposed to torsion. Full article
(This article belongs to the Collection Magnetoelastic Materials)
Show Figures

Figure 1

20 pages, 8135 KiB  
Article
Optimizing Contact-Less Magnetoelastic Sensor Design for Detecting Substances Accumulating in Constrained Environments
by Ioannis Kalyvas and Dimitrios Dimogianopoulos
Designs 2024, 8(6), 112; https://doi.org/10.3390/designs8060112 - 31 Oct 2024
Viewed by 1166
Abstract
The optimization of a contact-less magnetoelastic sensing setup designed to detect substances/agents accumulating in its environment is presented. The setup is intended as a custom-built, low-cost yet effective magnetoelastic sensor for pest/bug detection in constrained places (small museums, labs, etc.). It involves a [...] Read more.
The optimization of a contact-less magnetoelastic sensing setup designed to detect substances/agents accumulating in its environment is presented. The setup is intended as a custom-built, low-cost yet effective magnetoelastic sensor for pest/bug detection in constrained places (small museums, labs, etc.). It involves a short, thin, and flexible polymer slab in a cantilever arrangement, with a short Metglas® 2826 MB magnetoelastic ribbon attached on part of its surface. A mobile phone both supports and supplies low-amplitude vibration to the slab’s free end. When vibrating, the magnetoelastic ribbon generates variable magnetic flux, thus inducing voltage in a contact-less manner into a pick-up coil suspended above the ribbon. This voltage carries specific characteristic frequencies of the slab’s vibration. If substances/agents accumulate on parts of the (suitably coated) slab surface, its mass distribution and, hence, characteristic frequencies change. Then, simply monitoring shifts of such frequencies in the recorded voltage enables the detection of accumulating substances/agents. The current work uses extensive testing via various vibration profiles and load positions on the slab, for statistically evaluating the sensitivity of the mass detection of the setup. It is shown that, although this custom-built substance/agent detector involves limited (low-cost) hardware and a simplified design, it achieves promising results with respect to its cost. Full article
Show Figures

Figure 1

9 pages, 1415 KiB  
Article
The Interplay of Core Diameter and Diameter Ratio on the Magnetic Properties of Bistable Glass-Coated Microwires
by Valeria Kolesnikova, Irina Baraban, Alexander Omelyanchik, Larissa Panina and Valeria Rodionova
Micromachines 2024, 15(11), 1284; https://doi.org/10.3390/mi15111284 - 22 Oct 2024
Viewed by 1012
Abstract
Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter d, encased in a glass coating, with a total diameter D [...] Read more.
Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter d, encased in a glass coating, with a total diameter D. In this study, we investigated how the dimensions of both components and their ratio (d/D) influence the magnetization reversal behavior of Fe-based microwires. While previous studies have focused on either d or d/D individually, our research uniquely considered the combined effect of both parameters to provide a comprehensive understanding of their impact on magnetic properties. The metallic core diameter d varied from 10 to 19 µm and the d/D ratio was in the range of 0.48–0.68. To assess the magnetic properties of these microwires, including the shape of the hysteresis loop, coercivity, remanent magnetization, and the critical length of bistability, we employed vibrating sample magnetometry in conjunction with FORC-analysis. Additionally, to determine the critical length of bistability, magnetic measurements were conducted on microwires with various lengths, ranging from 1.5 cm down to 0.05 cm. Our findings reveal that coercivity is primarily dependent on the d/D parameter. These observations are effectively explained through an analysis that considers the competition between magnetostatic and magnetoelastic anisotropy energies. This comprehensive study paves the way for the tailored design of glass-coated microwires for diverse wireless sensing applications. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

14 pages, 2057 KiB  
Article
Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect
by Yan Xu, Xinchun Shang and Ke Xu
Sensors 2024, 24(16), 5390; https://doi.org/10.3390/s24165390 - 21 Aug 2024
Viewed by 3945
Abstract
Taking the nonlocal effect into account, the vibration governing differential equation and boundary conditions of a magnetostrictive composite cantilever resonator were established based on the Euler magnetoelastic beam theory. The frequency equation and vibration mode function of the composite cantilever were obtained by [...] Read more.
Taking the nonlocal effect into account, the vibration governing differential equation and boundary conditions of a magnetostrictive composite cantilever resonator were established based on the Euler magnetoelastic beam theory. The frequency equation and vibration mode function of the composite cantilever were obtained by means of the separation of variables method and the analytic solution of ordinary differential equations. The lateral deflection, vibration governing equations, and boundary conditions were nondimensionalized. Furthermore, the natural frequency and modal function of the composite beam were quantitatively analyzed with different nonlocal parameters and transverse geometry dimensions using numerical examples. Compared with the results without considering the nonlocal effect, the influence of the nonlocal effect on the vibration characteristics was analyzed. The numerical results show that the frequency shift and frequency band narrowing of the magnetostrictive cantilever resonator are induced by nonlocal effects. In particular, the high-frequency vibration characteristics, such as vibration amplitude and modal node of the composite beam, are significantly affected. These analysis results can provide a reference for the functional design and optimization of magnetostrictive resonators. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 5480 KiB  
Article
Energy and Structure of the Terbium Domain Wall
by Marcos F. de Campos, Kaio S. T. de Souza, Ingrid R. de Lima, Charle C. da Silva and Jose A. de Castro
Metals 2024, 14(8), 866; https://doi.org/10.3390/met14080866 - 28 Jul 2024
Viewed by 1249
Abstract
The domain wall energy is calculated by the balance between exchange, magnetocrystalline anisotropy and magnetoelastic energy contributions. The described method is theoretical and is based on experimental measurements of neutron inelastic scattering. The domain wall energy is determined by both finding the minimum [...] Read more.
The domain wall energy is calculated by the balance between exchange, magnetocrystalline anisotropy and magnetoelastic energy contributions. The described method is theoretical and is based on experimental measurements of neutron inelastic scattering. The domain wall energy is determined by both finding the minimum of energy and deriving the energy and setting it to zero. The determination was undertaken for the discrete case, and this means that the calculation was performed for each plane or atomic layer. This is in contrast with the Bloch wall, which assumes continuum mean. The energy of the Lilley domain wall was discussed. Most of the energy of the Bloch wall was comprised inside the Lilley distance (above 99.9% of the energy). Antiferromagnetic interactions strongly decreased the domain wall energy. The negative terms due to antiferromagnetism must be considered in the Hamiltonian describing the exchange energy terms. The domain wall energy and width of terbium were reassessed. The values varied between 83.7 and 95.2 Kelvin (10.3 to 11.2 ergs/cm2). The domain width was estimated to be 57 Angstroms. It was found that a significant part of the total domain wall energy was concentrated on the planes at the center of the domain wall. Full article
Show Figures

Figure 1

21 pages, 24722 KiB  
Article
The Estimation of the Stress State of the Iron Alloy Strip Material by the Barkhausen Noise Method
by Janusz Krawczyk, Bartosz Sułek, Adam Kokosza, Marcin Lijewski, Nikolaos Kuźniar, Marcin Majewski and Marcin Goły
Crystals 2024, 14(6), 495; https://doi.org/10.3390/cryst14060495 - 24 May 2024
Cited by 1 | Viewed by 1241
Abstract
This paper presents the effect of the complex strain state resulting from the asymmetric rolling of TRB products on the changes and distribution of the stress state in the material. The evaluation of the stress state in the material was based on measurements [...] Read more.
This paper presents the effect of the complex strain state resulting from the asymmetric rolling of TRB products on the changes and distribution of the stress state in the material. The evaluation of the stress state in the material was based on measurements of the magnetoelastic parameter (MP) using the Barkhausen magnetic noise method. The key characteristics of the material under study that enabled the use of changes in the MP parameter to assess the stress state were ferromagnetism and a lack of texture. The first of these enabled the detection of the magnetic signals produced when a magnetic field is applied to the material, causing magnetic domains to align and sudden changes in magnetization. On the other hand, the absence of texture in the material precluded the occurrence of magnetocrystalline anisotropy, which could disturb the results of measurements of the magnetoelastic parameter in the material. In order to determine these features in the material under study, its chemical composition was determined, and a phase analysis was carried out using the X-ray diffraction method. The results of these tests showed the possibility of determining the stress state of the material by means of changes in the values of the MP parameter. On this basis, it was shown that in the TRB strips studied, there is a complex state of stress, the values of which and the nature of the changes depending on the direction of the measurements carried out, as well as on the amount of rolling reduction in the studied area of the strip. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

42 pages, 101951 KiB  
Review
Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials
by Weikang Xian, You-Shu Zhan, Amitesh Maiti, Andrew P. Saab and Ying Li
Polymers 2024, 16(10), 1387; https://doi.org/10.3390/polym16101387 - 13 May 2024
Cited by 6 | Viewed by 3490
Abstract
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need [...] Read more.
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer–particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer–particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

Back to TopTop