Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = magneto-active elastomers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3660 KiB  
Article
The Effect of Particle–Matrix Interface on the Local Mechanical Properties of Filled Polymer Composites: Simulations and Theoretical Analysis
by Timur A. Nadzharyan and Elena Yu. Kramarenko
Polymers 2025, 17(1), 111; https://doi.org/10.3390/polym17010111 - 3 Jan 2025
Viewed by 1081
Abstract
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or [...] Read more.
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or several anisometric filler particles surrounded by interface shells are considered. The dependence of the mechanical response of the cells to external deformation on the interface thickness and stiffness is studied. The use of the particle–matrix interface as a damping tool in mesoscopic polymer-composite problems with large deformations is discussed. The influence of the interface on the anisotropy of the composite response is considered. Full article
(This article belongs to the Special Issue Polymer-Based Composite Structures and Mechanical Metamaterials)
Show Figures

Figure 1

12 pages, 1121 KiB  
Article
Modeling the Bending of a Bi-Layer Cantilever with Shape Memory Controlled by Magnetic Field and Temperature
by Olga S. Stolbova and Oleg V. Stolbov
Modelling 2024, 5(4), 1924-1935; https://doi.org/10.3390/modelling5040100 - 5 Dec 2024
Cited by 1 | Viewed by 939
Abstract
This paper presents a model of the bending behavior of a bi-layer cantilever composed of titanium nickelide and a magnetoactive elastomer embedded with magnetically hard particles. The cantilever is initially subjected to an external magnetic field in its high-temperature state, followed by cooling [...] Read more.
This paper presents a model of the bending behavior of a bi-layer cantilever composed of titanium nickelide and a magnetoactive elastomer embedded with magnetically hard particles. The cantilever is initially subjected to an external magnetic field in its high-temperature state, followed by cooling to a low-temperature state before the magnetic field is removed. This sequence results in residual bending deformation. Basic relations describing the material behavior of titanium nickelide and the magnetoactive elastomer are presented. A variational formulation for the problem under consideration is written down. The problem is solved numerically using the finite element method. The influence of the applied magnetic field magnitude and the thickness of the titanium nickelide layer on the cantilever deflection magnitude is studied. The dependence of the residual cantilever deflection on the applied magnetic field is obtained. The possibility of this structure as a controllable gripping element for applications in robotics and micro-manipulation is demonstrated. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Figure 1

15 pages, 12494 KiB  
Article
Development of High-Aspect-Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding
by Da Seul Shin, Jin Wook Park, Chang Woo Gal, Jina Kim, Woo Seok Yang, Seon Yeong Yang, Min Jik Kim, Ho Jae Kwak, Sang Min Park and Jong Hyun Kim
Polymers 2024, 16(21), 3003; https://doi.org/10.3390/polym16213003 - 25 Oct 2024
Cited by 1 | Viewed by 1284
Abstract
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined [...] Read more.
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined advantages of excellent flexibility and precise controllability in a magnetic system. Here, we present the development of magnetically programmable soft magnetic microarray actuators through field-induced injection molding using MREs, which consist of styrene-ethylene/butylene styrene (SEBS) elastomer and carbonyl iron powder (CIP). The ratio of the CIP/SEBS matrix was designed to maximize the CIP fraction based on a critical solids loading. Further, as part of the design of the magnetization distribution in micropillar arrays, the magnetorheological response of the molten composites was analyzed using the static and dynamic viscosity results for both the on and off magnetic states, which reflected the particle dipole interaction and subsequent particle alignment during the field-induced injection molding process. To develop a high-aspect-ratio soft magnetic microarray, X-ray lithography was applied to prepare the sacrificial molds with a height-to-width ratio of 10. The alignment of the CIP was designed to achieve a parallel magnetic direction along the micropillar columns, and consequently, the micropillar arrays successfully achieved the uniform and large bending actuation of up to approximately 81° with an applied magnetic field. This study suggests that the injection molding process offers a promising manufacturing approach to build a programmable soft magnetic microarray actuator. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Figure 1

17 pages, 2821 KiB  
Article
On the Piezomagnetism of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields: Height Modulation in the Vicinity of an Operating Point by Time-Harmonic Fields
by Gašper Glavan, Inna A. Belyaeva and Mikhail Shamonin
Polymers 2024, 16(19), 2706; https://doi.org/10.3390/polym16192706 - 25 Sep 2024
Viewed by 6269
Abstract
Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio [...] Read more.
Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio of the time-harmonic strain amplitude to the corresponding magnetic field strength. Herein, the dynamic strain response of a family of MAE cylinders to the time-harmonic (frequency of 0.1–2.5 Hz) magnetic fields of varying amplitude (12.5 kA/m–62.5 kA/m), superimposed on different bias magnetic fields (25–127 kA/m), is systematically investigated for the first time. Strain measurements are based on optical imaging with sub-pixel resolution. It is found that the dynamic strain response of MAEs is considerably different from that in conventional magnetostrictive polymer composites (MPCs), and it cannot be described by the effective piezomagnetic constant from the quasi-static measurements. The obtained maximum values of the piezomagnetic strain coefficient (∼102 nm/A) are one to two orders of magnitude higher than in conventional MPCs, but there is a significant phase lag (35–60°) in the magnetostrictive response with respect to an alternating magnetic field. The experimental dependencies of the characteristics of the alternating strain on the amplitude of the alternating field, bias field, oscillation frequency, and aspect ratio of cylinders are given for several representative examples. It is hypothesized that the main cause of observed peculiarities is the non-linear viscoelasticity of these composite materials. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

12 pages, 29166 KiB  
Article
Surface Modification of Magnetoactive Elastomers by Laser Micromachining
by Izidor Straus, Gaia Kravanja, Luka Hribar, Raphael Kriegl, Matija Jezeršek, Mikhail Shamonin, Irena Drevensek-Olenik and Gašper Kokot
Materials 2024, 17(7), 1550; https://doi.org/10.3390/ma17071550 - 28 Mar 2024
Cited by 3 | Viewed by 1611
Abstract
It has been recently demonstrated that laser micromachining of magnetoactive elastomers is a very convenient method for fabricating dynamic surface microstructures with magnetically tunable properties, such as wettability and surface reflectivity. In this study, we investigate the impact of the micromachining process on [...] Read more.
It has been recently demonstrated that laser micromachining of magnetoactive elastomers is a very convenient method for fabricating dynamic surface microstructures with magnetically tunable properties, such as wettability and surface reflectivity. In this study, we investigate the impact of the micromachining process on the fabricated material’s structural properties and its chemical composition. By employing scanning electron microscopy, we investigate changes in size distribution and spatial arrangement of carbonyl iron microparticles dispersed in the polydimethylsiloxane (PDMS) matrix as a function of laser irradiation. Based on the images obtained by a low vacuum secondary electron detector, we analyze modifications of the surface topography. The results show that most profound modifications occur during the low-exposure (8 J/cm2) treatment of the surface with the laser beam. Our findings provide important insights for developing theoretical models of functional properties of laser-sculptured microstructures from magnetoactive elastomers. Full article
(This article belongs to the Special Issue Advanced Rubber Composites (3rd Edition))
Show Figures

Graphical abstract

13 pages, 2788 KiB  
Article
Low-Frequency Resonant Magnetoelectric Effect in a Piezopolymer-Magnetoactive Elastomer Layered Structure at Different Magnetization Geometries
by Dmitrii V. Savelev, Dmitri A. Burdin, Leonid Y. Fetisov, Yuri K. Fetisov, Nikolai S. Perov and Liudmila A. Makarova
Polymers 2024, 16(7), 928; https://doi.org/10.3390/polym16070928 - 28 Mar 2024
Cited by 1 | Viewed by 1422
Abstract
The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a [...] Read more.
The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a piezopolymer layer and a magnetic elastomer layer was investigated. The study focused on investigating the dynamic magnetoelectric effect in various configurations of external alternating and constant homogeneous magnetic fields (L-T and T-T configurations). The T-T geometry exhibited a two orders of magnitude higher coefficient of the magnetoelectric effect compared to the L-T geometry. Mechanisms of structure bending in both geometries were proposed and discussed. A theory was put forward to explain the change in the resonance frequency in a uniform external field. A giant value of frequency tuning in a magnetic field of up to 362% was demonstrated; one of the highest values of the magnetoelectric effect yet recorded in polymer multiferroics was observed, reaching up to 134.3 V/(Oe∙cm). Full article
(This article belongs to the Special Issue Magnetic Polymer Materials)
Show Figures

Figure 1

17 pages, 3738 KiB  
Article
Transient Response of Macroscopic Deformation of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields
by Gašper Glavan, Inna A. Belyaeva and Mikhail Shamonin
Polymers 2024, 16(5), 586; https://doi.org/10.3390/polym16050586 - 21 Feb 2024
Cited by 3 | Viewed by 1413
Abstract
Significant deformations of bodies made from compliant magnetoactive elastomers (MAE) in magnetic fields make these materials promising for applications in magnetically controlled actuators for soft robotics. Reported experimental research in this context was devoted to the behaviour in the quasi-static magnetic field, but [...] Read more.
Significant deformations of bodies made from compliant magnetoactive elastomers (MAE) in magnetic fields make these materials promising for applications in magnetically controlled actuators for soft robotics. Reported experimental research in this context was devoted to the behaviour in the quasi-static magnetic field, but the transient dynamics are of great practical importance. This paper presents an experimental study of the transient response of apparent longitudinal and transverse strains of a family of isotropic and anisotropic MAE cylinders with six different aspect ratios in time-varying uniform magnetic fields. The time dependence of the magnetic field has a trapezoidal form, where the rate of both legs is varied between 52 and 757 kA/(s·m) and the maximum magnetic field takes three values between 153 and 505 kA/m. It is proposed to introduce four characteristic times: two for the delay of the transient response during increasing and decreasing magnetic field, as well as two for rise and fall times. To facilitate the comparison between different magnetic field rates, these characteristic times are further normalized on the rise time of the magnetic field ramp. The dependence of the normalized characteristic times on the aspect ratio, the magnetic field slew rate, maximum magnetic field values, initial internal structure (isotropic versus anisotropic specimens) and weight fraction of the soft-magnetic filler are obtained and discussed in detail. The normalized magnetostrictive hysteresis loop is introduced, and used to explain why the normalized delay times vary with changing experimental parameters. Full article
(This article belongs to the Special Issue Magnetic Polymer Composites: Design and Application II)
Show Figures

Figure 1

27 pages, 6886 KiB  
Article
Effects of Filler Anisometry on the Mechanical Response of a Magnetoactive Elastomer Cell: A Single-Inclusion Modeling Approach
by Timur A. Nadzharyan and Elena Yu. Kramarenko
Polymers 2024, 16(1), 118; https://doi.org/10.3390/polym16010118 - 29 Dec 2023
Cited by 5 | Viewed by 1188
Abstract
A finite-element model of the mechanical response of a magnetoactive elastomer (MAE) volume element is presented. Unit cells containing a single ferromagnetic inclusion with geometric and magnetic anisotropy are considered. The equilibrium state of the cell is calculated using the finite-element method and [...] Read more.
A finite-element model of the mechanical response of a magnetoactive elastomer (MAE) volume element is presented. Unit cells containing a single ferromagnetic inclusion with geometric and magnetic anisotropy are considered. The equilibrium state of the cell is calculated using the finite-element method and cell energy minimization. The response of the cell to three different excitation modes is studied: inclusion rotation, inclusion translation, and uniaxial cell stress. The influence of the magnetic properties of the filler particles on the equilibrium state of the MAE cell is considered. The dependence of the mechanical response of the cell on the filler concentration and inclusion anisometry is calculated and analyzed. Optimal filler shapes for maximizing the magnetic response of the MAE are discussed. Full article
(This article belongs to the Special Issue Magnetic Polymer Materials)
Show Figures

Figure 1

14 pages, 3393 KiB  
Article
Programming and Reprogramming the Viscoelasticity and Magnetic Response of Magnetoactive Thermoplastic Elastomers
by Sergei A. Kostrov, Josiah H. Marshall, Mitchell Maw, Sergei S. Sheiko and Elena Yu. Kramarenko
Polymers 2023, 15(23), 4607; https://doi.org/10.3390/polym15234607 - 3 Dec 2023
Cited by 4 | Viewed by 1643
Abstract
We present a novel type of magnetorheological material that allows one to restructure the magnetic particles inside the finished composite, tuning in situ the viscoelasticity and magnetic response of the material in a wide range using temperature and an applied magnetic field. The [...] Read more.
We present a novel type of magnetorheological material that allows one to restructure the magnetic particles inside the finished composite, tuning in situ the viscoelasticity and magnetic response of the material in a wide range using temperature and an applied magnetic field. The polymer medium is an A-g-B bottlebrush graft copolymer with side chains of two types: polydimethylsiloxane and polystyrene. At room temperature, the brush-like architecture provides the tissue mimetic softness and strain stiffening of the elastomeric matrix, which is formed through the aggregation of polystyrene side chains into aggregates that play the role of physical cross-links. The aggregates partially dissociate and the matrix softens at elevated temperatures, allowing for the effective rearrangement of magnetic particles by applying a magnetic field in the desired direction. Magnetoactive thermoplastic elastomers (MATEs) based on A-g-B bottlebrush graft copolymers with different amounts of aggregating side chains filled with different amounts of carbonyl iron microparticles were prepared. The in situ restructuring of magnetic particles in MATEs was shown to significantly alter their viscoelasticity and magnetic response. In particular, the induced anisotropy led to an order-of-magnitude enhancement of the magnetorheological properties of the composites. Full article
(This article belongs to the Special Issue Magnetic Polymer Composites: Design and Application II)
Show Figures

Figure 1

19 pages, 6426 KiB  
Article
Development of a Novel Magneto-Rheological Elastomer-Based Semi-Active Seat Suspension System
by Yimei Wang, Hossein Vatandoost and Ramin Sedaghati
Vibration 2023, 6(4), 777-795; https://doi.org/10.3390/vibration6040048 - 29 Sep 2023
Cited by 2 | Viewed by 1952
Abstract
Human operators in the transportation sector are exposed to whole-body vibration (WBV) while driving. Occupational exposure to WBV, predominant at low frequencies (<20 Hz), has been linked to spinal injuries and reduced functioning. This study aims at the design development of a novel [...] Read more.
Human operators in the transportation sector are exposed to whole-body vibration (WBV) while driving. Occupational exposure to WBV, predominant at low frequencies (<20 Hz), has been linked to spinal injuries and reduced functioning. This study aims at the design development of a novel semi-active seat suspension system featuring magneto-rheological elastomers (MREs) to mitigate the WBV. The proposed suspension system allows a greater range of strokes, while ensuring the MRE remains within an acceptable level of deformation. Several MRE samples were fabricated and characterized under shear mode. Afterward, a field- and frequency-dependent phenomenological model was developed to predict the viscoelastic properties of MREs as functions of both the excitation frequency and applied magnetic field. The MRE material model was subsequently used to design and optimize an adaptive seat suspension system incorporating a C-shaped MRE-based isolator in parallel and series with passive springs. The proposed adaptive seat suspension system demonstrated a frequency shift of 29% by increasing the applied current from 0 to 2 A. Finally, a 6-DOF lumped parameter model of a seated human subject combined with the proposed semi-active suspension system featuring the MRE isolator has been formulated to investigate the vibration transmissibility from the floor to the subject’s head. Full article
Show Figures

Figure 1

11 pages, 2498 KiB  
Article
Dynamic Magnetoelectric Effect of Soft Layered Composites with a Magnetic Elastomer
by Liudmila A. Makarova, Iuliia A. Alekhina, Marat F. Khairullin, Rodion A. Makarin and Nikolai S. Perov
Polymers 2023, 15(10), 2262; https://doi.org/10.3390/polym15102262 - 10 May 2023
Cited by 6 | Viewed by 1957
Abstract
Multilayered magnetoelectric materials are of great interest for investigations due to their unique tuneable properties and giant values of magnetoelectric effect. The flexible layered structures consisting of soft components can reveal lower values of the resonant frequency for the dynamic magnetoelectric effect appearing [...] Read more.
Multilayered magnetoelectric materials are of great interest for investigations due to their unique tuneable properties and giant values of magnetoelectric effect. The flexible layered structures consisting of soft components can reveal lower values of the resonant frequency for the dynamic magnetoelectric effect appearing in bending deformation mode. The double-layered structure based on the piezoelectric polymer polyvinylidene fluoride and a magnetoactive elastomer (MAE) with carbonyl iron particles in a cantilever configuration was investigated in this work. The gradient AC magnetic field was applied to the structure, causing the bending of the sample due to the attraction acting on the magnetic component. The resonant enhancement of the magnetoelectric effect was observed. The main resonant frequency for the samples depended on the MAE properties, namely, their thickness and concentration of iron particles, and was 156–163 Hz for a 0.3 mm MAE layer and 50–72 Hz for a 3 mm MAE layer; the resonant frequency depended on bias DC magnetic field as well. The results obtained can extend the application area of these devices for energy harvesting. Full article
(This article belongs to the Special Issue Advanced Multi-Functional Polymer Composites II)
Show Figures

Figure 1

15 pages, 2180 KiB  
Article
Magnetostriction Enhancement in Midrange Modulus Magnetorheological Elastomers for Sensor Applications
by Muhammad Asyraf Tasin, Siti Aishah Abdul Aziz, Saiful Amri Mazlan, Mohd Aidy Faizal Johari, Nur Azmah Nordin, Shahir Yasin Mohd Yusuf, Seung-Bok Choi and Irfan Bahiuddin
Micromachines 2023, 14(4), 767; https://doi.org/10.3390/mi14040767 - 29 Mar 2023
Cited by 13 | Viewed by 2525
Abstract
Magnetorheological elastomer (MRE), which is capable of exhibiting magnetostriction in the presence of a magnetic field, has a great potential to be used for the development of sensor devices. Unfortunately, to date, many works focused on studying low modulus of MRE (less than [...] Read more.
Magnetorheological elastomer (MRE), which is capable of exhibiting magnetostriction in the presence of a magnetic field, has a great potential to be used for the development of sensor devices. Unfortunately, to date, many works focused on studying low modulus of MRE (less than 100 kPa) which can hamper their potential application in sensors due to short lifespan and low durability. Thus, in this work, MRE with storage modulus above 300 kPa is to be developed to enhance magnetostriction magnitude and reaction force (normal force). To achieve this goal, MREs are prepared with various compositions of carbonyl iron particles (CIPs), in particular, MRE with 60, 70 and 80 wt.% of CIP. It is shown that both the magnetostriction percentage and normal force increment are achieved as the concentration of CIPs increases. The highest magnetostriction magnitude of 0.075% is obtained with 80 wt.% of CIP, and this increment is higher than that of moderate stiffness MRE developed in the previous works. Therefore, the midrange range modulus MRE developed in this work can copiously produce the required magnetostriction value and potentially be implemented for the design of forefront sensor technology. Full article
(This article belongs to the Special Issue Magnetic and Spin Devices, Volume II)
Show Figures

Figure 1

17 pages, 6628 KiB  
Article
Free and Forced Vibration Behaviors of Magnetodielectric Effect in Magnetorheological Elastomers
by Hamid Jafari and Ramin Sedaghati
Vibration 2023, 6(1), 269-285; https://doi.org/10.3390/vibration6010017 - 3 Mar 2023
Cited by 5 | Viewed by 3088
Abstract
This paper is concerned with the free and forced vibration responses of a magneto/electroactive dielectric elastomer, emphasizing the chaotic phenomena. The dielectric elastomers under external magnetic and electrical excitations undergo large elastic deformation. The magnetodielectric elastomer is modeled based on the Gent–Gent strain [...] Read more.
This paper is concerned with the free and forced vibration responses of a magneto/electroactive dielectric elastomer, emphasizing the chaotic phenomena. The dielectric elastomers under external magnetic and electrical excitations undergo large elastic deformation. The magnetodielectric elastomer is modeled based on the Gent–Gent strain energy function to incorporate the influence of the second invariant and the strain stiffening. The viscoelasticity of the active polymer is also considered in the form of Rayleigh’s dissipation function. The equation of motion is governed with the aid of the Lagrangian equation in terms of a physical quantity, namely, the stretch of the elastomer. An energy-based approach is utilized to re-evaluate the static and DC voltage instabilities of the resonator. Time-stretch response (time history behavior), phase plane diagram, Poincaré map, and fast Fourier transform are numerically obtained and presented to explore the chaotic oscillation behavior of the active polymer actuators. The results reveal that the magnetic field may tune the stability and instability regions of the active polymeric membrane. It has also been shown that the applied magnetic field may lead to chaotic vibration responses when a sinusoidal voltage is applied simultaneously to the system. The results presented in this paper can be effectively used to design magnetic and electrical soft robotic actuators and elastomer membranes under electrical and magnetic stimulants. Full article
Show Figures

Figure 1

20 pages, 6649 KiB  
Article
Analysis of an Adaptive Periodic Low-Frequency Wave Filter Featuring Magnetorheological Elastomers
by Hamid Jafari and Ramin Sedaghati
Polymers 2023, 15(3), 735; https://doi.org/10.3390/polym15030735 - 31 Jan 2023
Cited by 8 | Viewed by 1917
Abstract
This study aims to enhance and tune wave-propagation properties (Bandgaps) of periodic structures featuring magnetorheological elastomers (MREs). For this purpose, first, a basic model of periodic structures (square unit cell with cross-shaped arms), which does not possess noise filtering properties in the conventional [...] Read more.
This study aims to enhance and tune wave-propagation properties (Bandgaps) of periodic structures featuring magnetorheological elastomers (MREs). For this purpose, first, a basic model of periodic structures (square unit cell with cross-shaped arms), which does not possess noise filtering properties in the conventional configuration, is considered. A passive attenuation zone is then proposed by adding a cylindrical core mass to the center of the conventional geometry and changing arm angles, which permitted new bandgap areas. It was shown that better wave-filtering performance may be achieved by introducing a large radius of the cylindrical core as well as low negative cross-arm angles. The modified configuration of the unit cell was subsequently utilized as the basic model for the development of magnetoactive metamaterial using a MRE capable of varying the bandgaps areas upon application of an external magnetic field. The finite element model of the proposed MRE-based periodic unit cell was developed, and the Bloch theorem was employed to systematically investigate the ability of the proposed adaptive periotic structure to attenuate low-frequency noise and vibration. Results show that the proposed MRE-based periodic wave filter can provide wide bandgap areas which can be adaptively changed and tuned using the applied magnetic field. The findings in this study can provide an essential guide for the development of novel adaptive periodic structures to filter low-frequency noises in the wide frequency band. Full article
(This article belongs to the Special Issue Advanced Polymer-Based Composites as Smart Materials)
Show Figures

Figure 1

12 pages, 4715 KiB  
Article
Magnetically Tunable Adhesion of Magnetoactive Elastomers’ Surface Covered with Two-Level Newt-Inspired Microstructures
by Shiwei Chen, Ziyuan Qian, Xiaojiao Fu and Xuan Wu
Biomimetics 2022, 7(4), 245; https://doi.org/10.3390/biomimetics7040245 - 16 Dec 2022
Cited by 6 | Viewed by 2467
Abstract
As one of the new intelligent materials, controllable bionic adhesive materials have great application prospects in many fields, such as wearable electronic devices, wall climbing robot systems, and biomedical engineering. Inspired by the microstructure of the newt pad’s surface, this paper reports a [...] Read more.
As one of the new intelligent materials, controllable bionic adhesive materials have great application prospects in many fields, such as wearable electronic devices, wall climbing robot systems, and biomedical engineering. Inspired by the microstructure of the newt pad’s surface, this paper reports a bionic adhesive surface material with controllable adhesion on dry, wet acrylic, and iron sheet surfaces. The material is prepared by mixing the PDMS matrix with micron carbonyl iron powders (CIPs) and then pouring the mixture into a female mold prepared by Photo-curing 3D Printing for curing. As the mold interior is designed with a two-level microstructure array, the material’s surface not only coated a regular hexagonal column array with a side length of 250 μm and a height of 100 μm but also covered seven dome structures with a diameter of 70 μm on each column. In what follows, the adhesion force of the proposed materials contacted three different surfaces are tested with/without magnetic fields. The experimental results show that the MAEs covered with two-level bionic structures(2L-MAE) reported in this paper exhibit a stronger initial adhesion in the three types of surfaces compared to the normal one. Besides, we also found that the magnetic field will noticeably affect their adhesion performance. Generally, the 2L-MAE’s adhesion will increase with the external magnetic field. When the contact surface is an iron sheet, the material adhesion will be reduced by the magnetic field. Full article
(This article belongs to the Special Issue Biological Adhesives: From Biology to Biomimetics)
Show Figures

Figure 1

Back to TopTop