Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = magnetic micromotors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11669 KiB  
Article
Design and Electromagnetic Performance Optimization of a MEMS Miniature Outer-Rotor Permanent Magnet Motor
by Kaibo Lei, Haiwang Li, Shijia Li and Tiantong Xu
Micromachines 2025, 16(7), 815; https://doi.org/10.3390/mi16070815 - 16 Jul 2025
Viewed by 317
Abstract
In this study, we present the design and electromagnetic performance optimization of a micro-electromechanical system (MEMS) miniature outer-rotor permanent magnet motor. With increased attention towards higher torque density and lower torque pulsations in MEMS micromotor designs, an adaptation of an external rotor can [...] Read more.
In this study, we present the design and electromagnetic performance optimization of a micro-electromechanical system (MEMS) miniature outer-rotor permanent magnet motor. With increased attention towards higher torque density and lower torque pulsations in MEMS micromotor designs, an adaptation of an external rotor can be highly attractive. However, with the design complexity involved in such high-performance MEMS outer-rotor motor designs, the ultra-miniature 3D coil structures and the thin-film topology surrounding the air gap have been one of the main challenges. In this study, an ultra-thin outer-rotor motor with 3D MEMS silicon-based coils and a MEMS-compatible manufacturing method for the 3D coils is presented. Additionally, finite element simulations are conducted for the thin-film topology around the air gap to optimize performance characteristics such as torque developed, torque pulsations, and back electromotive force amplitude. Ultimately, the average magnetic flux density increased by 37.1%, from 0.361 T to 0.495 T. The root mean square (RMS) value of the back EMF per phase rises by 14.4%. Notably, the average torque is improved by 11.3%, while the torque ripple is significantly reduced from 1.281 mNm to 0.74 mNm, corresponding to a reduction of 49.9% in torque ripple percentage. Full article
Show Figures

Figure 1

21 pages, 5410 KiB  
Article
Design and Control of the Manipulator of Magnetic Surgical Forceps with Cable Transmission
by Jingwu Li and Zhijun Sun
Micromachines 2025, 16(6), 650; https://doi.org/10.3390/mi16060650 - 29 May 2025
Viewed by 459
Abstract
Magnetically actuated medical robots have attracted growing research interest because magnetic force can transmit power in a non-contact manner to fix magnetic surgical instruments onto the inner wall of the abdominal cavity. In this paper, we present magnetic and cable-driven surgical forceps with [...] Read more.
Magnetically actuated medical robots have attracted growing research interest because magnetic force can transmit power in a non-contact manner to fix magnetic surgical instruments onto the inner wall of the abdominal cavity. In this paper, we present magnetic and cable-driven surgical forceps with cable transmission. The design achieves significant diameter reduction in the manipulator by separating the power sources (micro-motors) from the manipulator through cable transmission, consequently improving surgical maneuverability. The manipulator adopting cable transmission mechanism has the problem of joint motion coupling. Additionally, due to the compact space within the magnetic surgical forceps, it is difficult to install pre-tightening or decoupling mechanisms. To address these technical challenges, we designed a pair of miniature pre-tensioning buckles for connecting and pre-tensioning the driving cables. A mathematical model was established to characterize the length changes of the coupled joint-driving cables with the angles of moving joints and was integrated into the control program of the manipulator. Joint motion decoupling was achieved through real-time compensation of the length changes of the coupled joint-driving cables. The decoupling and control effects of the manipulator have been verified experimentally. While one joint moves, the angle changes of the coupled joints are within 2°. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

20 pages, 13413 KiB  
Article
Uncertainty Optimization of Vibration Characteristics of Automotive Micro-Motors Based on Pareto Elliptic Algorithm
by Hao Hu, Deping Wang, Yudong Wu, Jianjiao Deng, Xi Chen and Weiping Ding
Machines 2024, 12(8), 566; https://doi.org/10.3390/machines12080566 - 18 Aug 2024
Cited by 2 | Viewed by 1235
Abstract
The NVH (Noise, Vibration, and Harshness) characteristics of micro-motors used in vehicles directly affect the comfort of drivers and passengers. However, various factors influence the motor’s structural parameters, leading to uncertainties in its NVH performance. To improve the motor’s NVH characteristics, we propose [...] Read more.
The NVH (Noise, Vibration, and Harshness) characteristics of micro-motors used in vehicles directly affect the comfort of drivers and passengers. However, various factors influence the motor’s structural parameters, leading to uncertainties in its NVH performance. To improve the motor’s NVH characteristics, we propose a method for optimizing the structural parameters of automotive micro-motors under uncertain conditions. This method uses the motor’s maximum magnetic flux as a constraint and aims to reduce vibration at the commutation frequency. Firstly, we introduce the Pareto ellipsoid parameter method, which converts the uncertainty problem into a deterministic one, enabling the use of traditional optimization methods. To increase efficiency and reduce computational cost, we employed a data-driven method that uses the one-dimensional Inception module as the foundational model, replacing both numerical models and physical experiments. Simultaneously, the module’s underlying architecture was improved, increasing the surrogate model’s accuracy. Additionally, we propose an improved NSGA-III (Non-dominated Sorting Genetic Algorithm III) method that utilizes adaptive reference point updating, dividing the optimization process into exploration and refinement phases based on population matching error. Comparative experiments with traditional models demonstrate that this method enhances the overall quality of the solution set, effectively addresses parameter uncertainties in practical engineering scenarios, and significantly improves the vibration characteristics of the motor. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

15 pages, 9105 KiB  
Article
Integration of Sm2Co17 Micromagnets in a Ferromagnetic Multipolar Microrotor to Enhance MEMS and Micromotor Performance
by Efren Diez-Jimenez, Alberto Bollero, Ignacio Valiente-Blanco, Ester M. Palmero, Miguel Fernandez-Munoz, Diego Lopez-Pascual and Gabriel Villalba-Alumbreros
Micromachines 2024, 15(7), 875; https://doi.org/10.3390/mi15070875 - 1 Jul 2024
Viewed by 1374
Abstract
MEMS and micromotors may benefit from the increasing complexity of rotors by integrating a larger number of magnetic dipoles. In this article, a new microassembly and bonding process to integrate multiple Sm2Co17 micromagnets in a ferromagnetic core is presented. We [...] Read more.
MEMS and micromotors may benefit from the increasing complexity of rotors by integrating a larger number of magnetic dipoles. In this article, a new microassembly and bonding process to integrate multiple Sm2Co17 micromagnets in a ferromagnetic core is presented. We experimentally demonstrate the feasibility of a multipolar micrometric magnetic rotor with 11 magnetic dipoles made of N35 Sm2Co17 micromagnets (length below 250 μm and thickness of 65 μm), integrated on a ferromagnetic core. We explain the micromanufacturing methods and the multistep microassembly process. The core is manufactured on ferromagnetic alloy Fe49Co49V2 and has an external diameter of 800 μm and a thickness of 200 μm. Magnetic and geometric measurements show good geometric fitting and planarity. The manufactured microrotor also shows good agreement among the magnetic measurements and the magnetic simulations which means that there is no magnetic degradation of the permanent magnet during the manufacturing and assembly process. This technique enables new design possibilities to significantly increase the performance of micromotors or MEMS. Full article
(This article belongs to the Special Issue Emerging Smart Materials for Microelectromechanical Systems)
Show Figures

Figure 1

19 pages, 3355 KiB  
Article
Iron-Reduced Graphene Oxide Core–Shell Micromotors Designed for Magnetic Guidance and Photothermal Therapy under Second Near-Infrared Light
by Orlando Donoso-González, Ana L. Riveros, José F. Marco, Diego Venegas-Yazigi, Verónica Paredes-García, Camila F. Olguín, Cristina Mayorga-Lobos, Lorena Lobos-González, Felipe Franco-Campos, Joseph Wang, Marcelo J. Kogan, Soledad Bollo, Claudia Yañez and Daniela F. Báez
Pharmaceutics 2024, 16(7), 856; https://doi.org/10.3390/pharmaceutics16070856 - 25 Jun 2024
Cited by 2 | Viewed by 2478
Abstract
Core–shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. [...] Read more.
Core–shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core–shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core–shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL−1. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core–shell micromotors could hold great potential for combined photothermal therapy. Full article
Show Figures

Figure 1

23 pages, 10517 KiB  
Article
GRU-ESO Strategy for a Distributed Coil Magnetically Levitated Planar Micromotor
by Chaofan Du, Zhengfeng Ming, Yue Ming, Ding Liu, Yongzheng Li and Yuhu Zhao
Micromachines 2024, 15(6), 740; https://doi.org/10.3390/mi15060740 - 31 May 2024
Viewed by 1040
Abstract
Traditional magnetic levitation planar micromotors suffer from poor controllability, short travel range, low interference resistance, and low precision. To address these issues, a distributed coil magnetically levitated planar micromotor with a gated recurrent unit (GRU)-extended state observer (ESO) control strategy is proposed in [...] Read more.
Traditional magnetic levitation planar micromotors suffer from poor controllability, short travel range, low interference resistance, and low precision. To address these issues, a distributed coil magnetically levitated planar micromotor with a gated recurrent unit (GRU)-extended state observer (ESO) control strategy is proposed in this paper. First, the structural design of the distributed coil magnetically levitated planar micromotor employs a separation of levitation and displacement, reducing system coupling and increasing controllability and displacement range. Then, theoretical analysis and model establishment of the system are conducted based on the designed distributed coil magnetically levitated planar micromotor and its working principles, followed by simulation verification. Finally, based on the established system model, a GRU-ESO controller is designed. An ESO feedback control term is introduced to enhance the system’s anti-interference capability, and the GRU feedforward compensation control term is used to improve the system’s tracking control accuracy. The experimental results demonstrate the reliability of the designed distributed coil magnetic levitation planar micromotor and the effectiveness of the controller. Full article
(This article belongs to the Special Issue Magnetic Actuation for Micromachines)
Show Figures

Figure 1

16 pages, 4301 KiB  
Article
The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction
by Kang Xiong and Leilei Xu
Nanomaterials 2024, 14(10), 865; https://doi.org/10.3390/nano14100865 - 16 May 2024
Viewed by 1861
Abstract
Gastric perforation refers to the complete rupture of the gastric wall, leading to the extravasation of gastric contents into the thoracic cavity or peritoneum. Without timely intervention, the expulsion of gastric contents may culminate in profound discomfort, exacerbating the inflammatory process and potentially [...] Read more.
Gastric perforation refers to the complete rupture of the gastric wall, leading to the extravasation of gastric contents into the thoracic cavity or peritoneum. Without timely intervention, the expulsion of gastric contents may culminate in profound discomfort, exacerbating the inflammatory process and potentially triggering perilous sepsis. In clinical practice, surgical suturing or endoscopic closure procedures are commonly employed. Magnetic-driven microswarms have also been employed for sealing gastrointestinal perforation. However, surgical intervention entails significant risk of bleeding, while endoscopic closure poses risks of inadequate closure and the need for subsequent removal of closure clips. Moreover, the efficacy of microswarms is limited as they merely adhere to the perforated area, and their sealing effect diminishes upon removal of the magnetic field. Herein, we present a Fe&Mg@Lard-Paraffin micromotor (LPM) constructed from a mixture of lard and paraffin coated with magnesium (Mg) microspheres and iron (Fe) nanospheres for sutureless sealing gastric perforations. Under the control of a rotating magnetic field, this micromotor demonstrates precise control over its movement on gastric mucosal folds and accurately targets the gastric perforation area. The phase transition induced by the high-frequency magnetothermal effect causes the micromotor composed of a mixed oil phase of lard and paraffin to change from a solid to a liquid phase. The coated Mg microspheres are subsequently exposed to the acidic gastric acid environment to produce a magnesium protonation reaction, which in turn generates hydrogen (H2) bubble recoil. Through a Mg-based micropower traction, part of the oil phase could be pushed into the gastric perforation, and it would then solidify to seal the gastric perforation area. Experimental results show that this can achieve long-term (>2 h) gastric perforation sealing. This innovative approach holds potential for improving outcomes in gastric perforation management. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 2nd Edition)
Show Figures

Figure 1

17 pages, 2738 KiB  
Article
Multi-Functional Nano-Doped Hollow Fiber from Microfluidics for Sensors and Micromotors
by Yanpeng Wang, Zhaoyang Wang, Haotian Sun, Tong Lyu, Xing Ma, Jinhong Guo and Ye Tian
Biosensors 2024, 14(4), 186; https://doi.org/10.3390/bios14040186 - 10 Apr 2024
Cited by 8 | Viewed by 2559
Abstract
Nano-doped hollow fiber is currently receiving extensive attention due to its multifunctionality and booming development. However, the microfluidic fabrication of nano-doped hollow fiber in a simple, smooth, stable, continuous, well-controlled manner without system blockage remains challenging. In this study, we employ a microfluidic [...] Read more.
Nano-doped hollow fiber is currently receiving extensive attention due to its multifunctionality and booming development. However, the microfluidic fabrication of nano-doped hollow fiber in a simple, smooth, stable, continuous, well-controlled manner without system blockage remains challenging. In this study, we employ a microfluidic method to fabricate nano-doped hollow fiber, which not only makes the preparation process continuous, controllable, and efficient, but also improves the dispersion uniformity of nanoparticles. Hydrogel hollow fiber doped with carbon nanotubes is fabricated and exhibits superior electrical conductivity (15.8 S m−1), strong flexibility (342.9%), and versatility as wearable sensors for monitoring human motions and collecting physiological electrical signals. Furthermore, we incorporate iron tetroxide nanoparticles into fibers to create magnetic-driven micromotors, which provide trajectory-controlled motion and the ability to move through narrow channels due to their small size. In addition, manganese dioxide nanoparticles are embedded into the fiber walls to create self-propelled micromotors. When placed in a hydrogen peroxide environment, the micromotors can reach a top speed of 615 μm s−1 and navigate hard-to-reach areas. Our nano-doped hollow fiber offers a broad range of applications in wearable electronics and self-propelled machines and creates promising opportunities for sensors and actuators. Full article
(This article belongs to the Special Issue Application of Microfluidics in Cell Manipulation and Biosensing)
Show Figures

Figure 1

27 pages, 3951 KiB  
Review
A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation
by Ruomeng Xu and Qingsong Xu
Micromachines 2024, 15(4), 468; https://doi.org/10.3390/mi15040468 - 29 Mar 2024
Cited by 17 | Viewed by 6084
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview [...] Read more.
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields. Full article
(This article belongs to the Special Issue Advanced Micro-/Nano-Manipulation and Positioning Techniques)
Show Figures

Figure 1

24 pages, 11452 KiB  
Review
Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility
by Jiahuan Zheng, Rui Huang, Zhexuan Lin, Shaoqi Chen and Kaisong Yuan
Pharmaceutics 2024, 16(1), 44; https://doi.org/10.3390/pharmaceutics16010044 - 27 Dec 2023
Cited by 6 | Viewed by 3533
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such “tiny robots” show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the [...] Read more.
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such “tiny robots” show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described. Full article
Show Figures

Figure 1

14 pages, 3390 KiB  
Article
Multifunctional Biotemplated Micromotors for In Situ Decontamination of Antibiotics and Heavy Metals in Soil and Groundwater
by Haohao Cui, Ke Wang, Enhui Ma and Hong Wang
Nanomaterials 2023, 13(19), 2710; https://doi.org/10.3390/nano13192710 - 6 Oct 2023
Cited by 6 | Viewed by 2311
Abstract
The ubiquitous pollution by antibiotics and heavy metal ions has posed great threats to human health and the ecological environment. Therefore, we developed a self-propelled tubular micromotor based on natural fibers as an active heterogeneous catalyst for antibiotic degradation and adsorbent for heavy [...] Read more.
The ubiquitous pollution by antibiotics and heavy metal ions has posed great threats to human health and the ecological environment. Therefore, we developed a self-propelled tubular micromotor based on natural fibers as an active heterogeneous catalyst for antibiotic degradation and adsorbent for heavy metal ions in soil/water. The prepared micromotors can move in the presence of hydrogen peroxide (H2O2) through a bubble recoil mechanism. The MnO2 NPs and MnFe2O4 NPs loaded on the hollow fibers not only enabled self-driven motion and magnetic control but also served as activators of peroxymononsulfate (PMS) and H2O2 to produce active free radicals SO4•− and •OH. Benefiting from the self-propulsion and bubble generation, the micromotors can effectively overcome the disadvantage of low diffusivity of traditional heterogeneous catalysts, achieving the degradation of more than 90% TC in soil within 30 min. Meanwhile, due to the large specific surface area, abundant active sites, and strong negative zeta potential, the micromotors can effectively adsorb heavy metal ions in the water environment. In 120 min, self-propelled micromotors removed more than 94% of lead ions, an increase of 47% compared to static micromotors, illustrating the advantages of on-the-fly capture. The prepared micromotors with excellent catalytic performance and adsorption capacity can simultaneously degrade antibiotics and adsorb heavy metal ions. Moreover, the magnetic response enabled the micromotors to be effectively separated from the system after completion of the task, avoiding the problem of secondary pollution. Overall, the proposed micromotors provide a new approach to the utilization of natural materials in environmental applications. Full article
(This article belongs to the Special Issue Advances in Micro-/Nanorobotics)
Show Figures

Figure 1

14 pages, 3063 KiB  
Article
Static Torque Analysis of Micro Claw-Pole Stepper Motor Based on Field-Circuit Combination
by Yuanxu Xin, Yan Sun, Xudong Wang, Xiaofei Xi, Yabin Su and Yong Yang
Micromachines 2022, 13(9), 1517; https://doi.org/10.3390/mi13091517 - 13 Sep 2022
Cited by 2 | Viewed by 2532
Abstract
Because of the complexity of the structure and magnetic circuit of the micro claw-pole stepper motor, it is difficult to analyze this kind of motor quickly and accurately. Therefore, it takes a lot of time to accurately model and use the three-dimensional finite [...] Read more.
Because of the complexity of the structure and magnetic circuit of the micro claw-pole stepper motor, it is difficult to analyze this kind of motor quickly and accurately. Therefore, it takes a lot of time to accurately model and use the three-dimensional finite element analysis method to accurately analyze the motor. Regarding the three-dimensional finite element method, the equivalent magnetic circuit method analysis is fast, but the accuracy is not high. In order to better study the performance of this kind of micro claw-pole motor and reduce the cost of optimization time, this paper adopts the method of combining the equivalent magnetic circuit method and three-dimensional finite element analysis to analyze the static torque characteristics of the micro permanent magnet claw-pole stepper motor. Firstly, the equivalent magnetic circuit method is used for theoretical analysis, the air-gap flux equation is deduced, and the relationship between the electromagnetic torque and the geometric parameters of the motor is deduced. Then, the three-dimensional finite element simulation results are substituted into the relevant formulas defined by the equivalent magnetic circuit method to obtain a more accurate electromagnetic torque. Finally, through the comparison and analysis of the experimental data, simulation data, and theoretical calculation values, the error rate of the derived motor torque is within 8.5%. The micromotor studied in this paper is optimized, and the holding torque is increased by 12.5% under the premise that the braking torque does not change much. The simulation calculation time is effectively shortened, the analysis difficulty is reduced, and the calculation accuracy is high. It is shown that the method combining the equivalent magnetic circuit method and the three-dimensional finite element analysis method is suitable for preliminary design research and optimization calculation of the micro claw-pole stepper motor. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Graphical abstract

18 pages, 3652 KiB  
Review
Nano/Micromotors in Active Matter
by Chenglin Lv, Yuguang Yang and Bo Li
Micromachines 2022, 13(2), 307; https://doi.org/10.3390/mi13020307 - 17 Feb 2022
Cited by 7 | Viewed by 3768
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving [...] Read more.
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems. Full article
(This article belongs to the Special Issue Dream Nanomachines: Recent Advances in Nano/Micromotors)
Show Figures

Graphical abstract

13 pages, 9273 KiB  
Article
Droplet-Based Microfluidic Preparation of Shape-Variable Alginate Hydrogel Magnetic Micromotors
by Cheng Zhang, Yong Wang, Yuduo Chen, Xing Ma and Wenjun Chen
Nanomaterials 2022, 12(1), 115; https://doi.org/10.3390/nano12010115 - 30 Dec 2021
Cited by 7 | Viewed by 3214
Abstract
This article introduces a facile droplet-based microfluidic method for the preparation of Fe3O4-incorporated alginate hydrogel magnetic micromotors with variable shapes. By using droplet-based microfluidics and water diffusion, monodisperse (quasi-)spherical microparticles of sodium alginate and Fe3O4 (Na-Alg/Fe [...] Read more.
This article introduces a facile droplet-based microfluidic method for the preparation of Fe3O4-incorporated alginate hydrogel magnetic micromotors with variable shapes. By using droplet-based microfluidics and water diffusion, monodisperse (quasi-)spherical microparticles of sodium alginate and Fe3O4 (Na-Alg/Fe3O4) are obtained. The diameter varies from 31.9 to 102.7 µm with the initial concentration of Na-Alginate in dispersed fluid ranging from 0.09 to 9 mg/mL. Calcium chloride (CaCl2) is used for gelation, immediately transforming Na-Alg/Fe3O4 microparticles into Ca-Alginate hydrogel microparticles incorporating Fe3O4 nanoparticles, i.e., Ca-Alg/Fe3O4 micromotors. Spherical, droplet-like, and worm-like shapes are yielded depending on the concentration of CaCl2, which is explained by crosslinking and anisotropic swelling during the gelation. The locomotion of Ca-Alg/Fe3O4 micromotors is activated by applying external magnetic fields. Under the rotating magnetic field (5 mT, 1–15 Hz), spherical Ca-Alg/Fe3O4 micromotors exhibit an average advancing velocity up to 158.2 ± 8.6 µm/s, whereas worm-like Ca-Alg/Fe3O4 micromotors could be rotated for potential advancing. Under the magnetic field gradient (3 T/m), droplet-like Ca-Alg/Fe3O4 micromotors are pulled forward with the average velocity of 70.7 ± 2.8 µm/s. This article provides an inspiring and timesaving approach for the preparation of shape-variable hydrogel micromotors without using complex patterns or sophisticated facilities, which holds potential for biomedical applications such as targeted drug delivery. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials)
Show Figures

Figure 1

13 pages, 6562 KiB  
Article
Investigation of an Interior Micro Permanent Magnet Synchronous Motor
by Da-Chen Pang, Zhen-Jia Shi, Young-Ho Chang, Hua-Chih Huang and Gia-Thinh Bui
Energies 2021, 14(14), 4172; https://doi.org/10.3390/en14144172 - 10 Jul 2021
Cited by 4 | Viewed by 2845
Abstract
This study describes the development of the world’s smallest interior permanent magnet synchronous motor (IPMSM) to increase the torque density of micromotors. The research evaluates the feasibility of the miniaturization of IPMSM since recent studies in this area focus on medium to large [...] Read more.
This study describes the development of the world’s smallest interior permanent magnet synchronous motor (IPMSM) to increase the torque density of micromotors. The research evaluates the feasibility of the miniaturization of IPMSM since recent studies in this area focus on medium to large size compressor and traction motor applications. The standard-type and spoke-type IPMSM were selected for ease of micro machining. In order to surpass the performance of an inset motor of the same size used in previous research, the interior motors were designed with a different slot pole number, permanent magnet shape and rotor structure. Two types of interior motors were manufactured and tested to compare their performance. It was shown that the spoke-type interior motor had a better output torque, while the standard-type interior motor had a lower torque ripple, and both motors matched the specifications of commercially available motors. To achieve a higher torque density, the IPMSM designs increased the slot pole number from 6 slots 4 poles to 9 slots 6 poles. The torque density of the spoke-type motor was increased by 48% compared to the inset motor. The disadvantage is that the new design has a greater number of parts and smaller size, resulting in difficulties in manufacturing and assembly. Full article
(This article belongs to the Special Issue New Insights into Permanent Magnet Motors)
Show Figures

Figure 1

Back to TopTop