Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = magnetic fusion concepts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2520 KiB  
Article
Processing of Bulk MgB2 Superconductors by Coupling Laser Powder Bed Fusion and Spark Plasma Sintering Techniques
by Anastasia Sklyarova, Lionel Presmanes, Vincent Baylac, Geoffroy Chevallier, Claude Estournès, Benjamin Duployer, Jacques Noudem, Pierre Bernstein, Philippe Tailhades and Yohann Thimont
Materials 2025, 18(10), 2367; https://doi.org/10.3390/ma18102367 - 19 May 2025
Viewed by 427
Abstract
This article demonstrates the concept proof to manufacture parts of MgB2 by Laser Powder Bed Fusion (L-PBF) coupled to Spark Plasma Sintering (SPS) by an optimization of the L-PBF and SPS conditions to limit the phase degradation and complete the sintering. Optimal [...] Read more.
This article demonstrates the concept proof to manufacture parts of MgB2 by Laser Powder Bed Fusion (L-PBF) coupled to Spark Plasma Sintering (SPS) by an optimization of the L-PBF and SPS conditions to limit the phase degradation and complete the sintering. Optimal L-PBF parameters were identified in order to obtain the material preforms with a minimal degradation of the MgB2 phase, and then these preforms were sintered by SPS using an inert powder as matrix with a purpose to receive a mechanically more reliable product. Sintered samples show superconductivity state inherent for the raw material and demonstrate superconducting transition around 38 K according to the magnetic moment measurements. Full article
(This article belongs to the Special Issue Additive Manufacturing of Ceramics and Composites)
Show Figures

Figure 1

39 pages, 4052 KiB  
Article
Evaluation of a New Kind of Z-Pinch-Based Space Propulsion Engine: Theoretical Foundations and Design of a Proof-of-Concept Experiment
by S. K. H. Auluck, R. Verma and R. S. Rawat
Plasma 2024, 7(4), 939-977; https://doi.org/10.3390/plasma7040052 - 19 Dec 2024
Viewed by 1772
Abstract
This paper explores a recently proposed scalable z-pinch-based space propulsion engine in greater detail. This concept involves a “modified plasma focus with a tapered anode that transports current from a pulsed power source to a consumable portion of the anode in the form [...] Read more.
This paper explores a recently proposed scalable z-pinch-based space propulsion engine in greater detail. This concept involves a “modified plasma focus with a tapered anode that transports current from a pulsed power source to a consumable portion of the anode in the form of a hypodermic needle tube continuously extruded along the axis of the device”. This tube is filled with a gas at a high pressure and also optionally with an axial magnetic field. The current enters the metal tube through its contact with the anode and returns to the cathode via the plasma sliding over its outer wall. The resulting rapid electrical explosion of the metal tube partially transfers current to a snowplough shock in the fill gas. Both the metal plasma and the fill gas form axisymmetric converging shells. Their interaction forms a hot and dense plasma of the fill gas surrounded by the metal plasma. Its ejection along the axis provides the impulse needed for propulsion. In a nonnuclear version, the fill gas could be xenon or hydrogen. Its unique energy density scaling could potentially lead to a neutron-deficient nuclear fusion drive based on the proton-boron avalanche fusion reaction by lining the tube with solid decaborane. In order to explore the inherent potential of this idea as a scalable space propulsion engine, this paper discusses its theoretical foundations and outlines the first iteration of a conceptual engineering design study for a proof-of-concept experiment based on the UNU-ICTP Plasma Focus facility at the Nanyang Technological University, Singapore. Full article
Show Figures

Figure 1

12 pages, 3506 KiB  
Article
Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications
by Giacomo Russo and Antonio Morandi
Energies 2023, 16(21), 7244; https://doi.org/10.3390/en16217244 - 25 Oct 2023
Cited by 3 | Viewed by 2102
Abstract
High Temperature Superconducting (HTS) dynamo flux pumps are a promising alternative to metal current leads for energization and the persistent current mode operation of high current DC superconducting magnet systems for applications in rotating machines, such as Magnetic Resonance Imaging (MRI) or fusion [...] Read more.
High Temperature Superconducting (HTS) dynamo flux pumps are a promising alternative to metal current leads for energization and the persistent current mode operation of high current DC superconducting magnet systems for applications in rotating machines, such as Magnetic Resonance Imaging (MRI) or fusion systems. The viability of the flux pump concept has been widely proven by laboratory experiments and research is now in progress for the design and optimization of flux pump devices for practical applications. It has been widely established that the dependence of the critical current density (Jc) on the temperature (T), the magnetic field magnitude (B), and the orientation (θ), has a substantial impact on the overall DC voltage obtained at the terminals, as well as on the current limit and the loss of the flux pump. Since HTS tapes produced by different manufacturers, they show different dependencies of Jc with the amplitude and the orientation of the magnetic field. They also give rise to different outputs when employed in flux pumps. In this paper, we evaluate and compare the performance of several commercial HTS tapes used for flux pumping purposes through numerical simulation. We also investigate the dependence of the flux pump ‘s performance on the operating temperatures. A 2D finite element numerical model is first developed and validated against experimental data at 77 K. Afterward, the same HTS dynamo apparatus used for validation is exploited for the comparison. The Jc(B,θ,T) and n(B,θ,T) relations, which characterize each different tape in the model, are reconstructed via artificial intelligence techniques based on the open-access database of the Robinson Research Institute. It is shown in the paper that certain tapes are more suitable than others for flux pump applications and that the best overall operating temperature is in the vicinity of 77 K. Full article
Show Figures

Figure 1

19 pages, 3371 KiB  
Article
Statistical Machine Learning Strategy and Data Fusion for Detecting Incipient ITSC Faults in IM
by Arturo Yosimar Jaen-Cuellar, David Alejandro Elvira-Ortiz and Juan Jose Saucedo-Dorantes
Machines 2023, 11(7), 720; https://doi.org/10.3390/machines11070720 - 7 Jul 2023
Cited by 12 | Viewed by 2381
Abstract
The new technological developments have allowed the evolution of the industrial process to this new concept called Industry 4.0, which integrates power machines, robotics, smart sensors, communication systems, and the Internet of Things to have more reliable automation systems. However, electrical rotating machines [...] Read more.
The new technological developments have allowed the evolution of the industrial process to this new concept called Industry 4.0, which integrates power machines, robotics, smart sensors, communication systems, and the Internet of Things to have more reliable automation systems. However, electrical rotating machines like the Induction Motor (IM) are still widely used in several industrial applications because of their robust elements, high efficiency, and versatility in industrial applications. Nevertheless, the occurrence of faults in IMs is inherent to their operating conditions; hence, Inter-turn short-circuit (ITSC) is one of the most common failures that affect IMs, and its appearance is due to electrical stresses leading to the degradation of the stator winding insulation. In this regard, this work proposes a diagnosis methodology capable of performing the assessment and automatic detection of incipient electric faults like ITSC in IMs; the proposed method is supported through the processing of different physical magnitudes such as vibration, stator currents and magnetic stray-flux and their fusion of information. Certainly, the novelty and contribution include the characterization of different physical magnitudes by estimating a set of statistical time domain features, as well as their fusion following a feature-level fusion approach and their reduction through the Linear discriminant Analysis technique. Furthermore, the fusion and reduction of information from different physical magnitudes lead to performing automatic fault detection and identification by a simple Neural-Network (NN) structure since all considered conditions can be represented in a 2D plane. The proposed method is evaluated under a complete set of experimental data, and the obtained results demonstrate that the fusion of information from different sources (physical magnitudes) can lead to achieving a global classification ratio of up to 99.4% during the detection of ITSC in IMs and an improvement higher than 30% in comparison with classical approaches that consider the analysis of a unique physical magnitude. Additionally, the results make this proposal feasible to be incorporated as a part of condition-based maintenance programs in the industry. Full article
Show Figures

Figure 1

14 pages, 1471 KiB  
Article
Radiation Limit for the Energy Gain of the p–11B Reaction
by Alexei Yu. Chirkov and Kirill D. Kazakov
Plasma 2023, 6(3), 379-392; https://doi.org/10.3390/plasma6030026 - 30 Jun 2023
Cited by 7 | Viewed by 2594
Abstract
The feasibility of positive energy yield in systems with the p–11B reaction is considered here by considering refined (optimistic) data on the reaction rate. The analysis was carried out within the traditional framework for magnetic confinement systems, but without taking into [...] Read more.
The feasibility of positive energy yield in systems with the p–11B reaction is considered here by considering refined (optimistic) data on the reaction rate. The analysis was carried out within the traditional framework for magnetic confinement systems, but without taking into account a particular type of plasma configuration. The energy balance was considered both for the ions and electrons. The balance of particles includes all species as well as the products of fusion (alpha particles). Calculations have shown that accounting for the content of thermalized reaction products (alpha particles) leads to an increase in radiation losses and a decrease in gain to Q < 1. In the steady-state scenario, the energy gain Q~5–10 can be obtained in p–11B plasma, if only the fast (high-energy) population of fusion alpha particles is considered. For pulsed modes, the gain value is proportional to the content of alpha particles, and it is limited by the complete burn of one of the fuel components (boron), so it does not exceed unity. In the analysis we did not rely on any assumptions about the theoretically predicted mechanisms for increasing the cross section and the reaction rate, and only radiation losses (primarily bremsstrahlung) dramatically affect the gain Q. Thus, the regimes found can be considered as limiting in the framework of the classical concepts of processes in hot fusion plasma. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

13 pages, 291 KiB  
Review
Magneto-Inertial Fusion and Powerful Plasma Installations (A Review)
by Sergei V. Ryzhkov
Appl. Sci. 2023, 13(11), 6658; https://doi.org/10.3390/app13116658 - 30 May 2023
Cited by 31 | Viewed by 4584
Abstract
A review of theoretical and experimental studies in the field of compression and heating of a plasma target in an external magnetic field, which has recently been called magneto-inertial fusion (MIF), has been carried out. MIF is a concept of magnetically driven inertial [...] Read more.
A review of theoretical and experimental studies in the field of compression and heating of a plasma target in an external magnetic field, which has recently been called magneto-inertial fusion (MIF), has been carried out. MIF is a concept of magnetically driven inertial fusion that involves the magnetization of fuel, laser pre-heating, and magnetic implosion to create fusion conditions. An analysis of the current state of work on the implosion of magnetized targets and the effect of an external magnetic field on the main plasma parameters and system characteristics is presented. Questions regarding the numerical simulation of experiments on the magnetic-inertial confinement of plasma are touched upon. Particular attention is paid to two promising areas of MIF—with plasma jets and with a laser driver (laser beams). Full article
(This article belongs to the Special Issue Advances in Fusion Engineering and Design)
15 pages, 4352 KiB  
Opinion
Ultrasound Fusion: Applications in Musculoskeletal Imaging
by Jordan Scott Gross, Andrew Yaeger, Hisham Tchelepi and George R. Matcuk
Life 2023, 13(6), 1278; https://doi.org/10.3390/life13061278 - 29 May 2023
Cited by 4 | Viewed by 4481
Abstract
Ultrasound fusion is an established technique that pairs real time B-scan ultrasound (US) with other forms of cross-sectional imaging, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). Each of these imaging modalities has distinct advantages. CT provides superior [...] Read more.
Ultrasound fusion is an established technique that pairs real time B-scan ultrasound (US) with other forms of cross-sectional imaging, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). Each of these imaging modalities has distinct advantages. CT provides superior anatomic resolution, with improved imaging of bone and calcified structures; MRI has superior contrast resolution; and PET provides physiologic information, identifying processes that are metabolically active (i.e., tumor, inflammatory conditions). However, these modalities are static. A key highlight of ultrasound is its capability of dynamic, real-time scanning. The ability to pair CT, MRI or PET with ultrasound can have significant advantages, both in diagnostic evaluation and when performing difficult or challenging image-guided interventions. Percutaneous interventions using ultrasound fusion have been described in the abdominal imaging literature; however, there have been very few musculoskeletal applications detailed in the literature. The purpose of this article is to review the basic concepts of real-time ultrasound fusion, and to detail, through the use of multiple case examples, its potential use as a safe and effective method for performing image-guided musculoskeletal interventions. Full article
(This article belongs to the Special Issue Diagnostic and Interventional Imaging of the Skeletal System)
Show Figures

Figure 1

32 pages, 15537 KiB  
Review
Advances, Challenges, and Future Perspectives of Microwave Reflectometry for Plasma Position and Shape Control on Future Nuclear Fusion Devices
by Bruno Gonçalves, Paulo Varela, António Silva, Filipe Silva, Jorge Santos, Emanuel Ricardo, Alberto Vale, Raúl Luís, Yohanes Nietiadi, Artur Malaquias, Jorge Belo, José Dias, Jorge Ferreira, Thomas Franke, Wolfgang Biel, Stéphane Heuraux, Tiago Ribeiro, Gianluca De Masi, Onofrio Tudisco, Roberto Cavazzana, Giuseppe Marchiori and Ocleto D’Arcangeloadd Show full author list remove Hide full author list
Sensors 2023, 23(8), 3926; https://doi.org/10.3390/s23083926 - 12 Apr 2023
Cited by 10 | Viewed by 4407
Abstract
Providing energy from fusion and finding ways to scale up the fusion process to commercial proportions in an efficient, economical, and environmentally benign way is one of the grand challenges for engineering. Controlling the burning plasma in real-time is one of the critical [...] Read more.
Providing energy from fusion and finding ways to scale up the fusion process to commercial proportions in an efficient, economical, and environmentally benign way is one of the grand challenges for engineering. Controlling the burning plasma in real-time is one of the critical issues that need to be addressed. Plasma Position Reflectometry (PPR) is expected to have an important role in next-generation fusion machines, such as DEMO, as a diagnostic to monitor the position and shape of the plasma continuously, complementing magnetic diagnostics. The reflectometry diagnostic uses radar science methods in the microwave and millimetre wave frequency ranges and is envisaged to measure the radial edge density profile at several poloidal angles providing data for the feedback control of the plasma position and shape. While significant steps have already been given to accomplish that goal, with proof of concept tested first in ASDEX-Upgrade and afterward in COMPASS, important, ground-breaking work is still ongoing. The Divertor Test Tokamak (DTT) facility presents itself as the appropriate future fusion device to implement, develop, and test a PPR system, thus contributing to building a knowledge database in plasma position reflectometry required for its application in DEMO. At DEMO, the PPR diagnostic’s in-vessel antennas and waveguides, as well as the magnetic diagnostics, may be exposed to neutron irradiation fluences 5 to 50 times greater than those experienced by ITER. In the event of failure of either the magnetic or microwave diagnostics, the equilibrium control of the DEMO plasma may be jeopardized. It is, therefore, imperative to ensure that these systems are designed in such a way that they can be replaced if necessary. To perform reflectometry measurements at the 16 envisaged poloidal locations in DEMO, plasma-facing antennas and waveguides are needed to route the microwaves between the plasma through the DEMO upper ports (UPs) to the diagnostic hall. The main integration approach for this diagnostic is to incorporate these groups of antennas and waveguides into a diagnostics slim cassette (DSC), which is a dedicated complete poloidal segment specifically designed to be integrated with the water-cooled lithium lead (WCLL) breeding blanket system. This contribution presents the multiple engineering and physics challenges addressed while designing reflectometry diagnostics using radio science techniques. Namely, short-range dedicated radars for plasma position and shape control in future fusion experiments, the advances enabled by the designs for ITER and DEMO, and the future perspectives. One key development is in electronics, aiming at an advanced compact coherent fast frequency sweeping RF back-end [23–100 GHz in few μs] that is being developed at IPFN-IST using commercial Monolithic Microwave Integrated Circuits (MMIC). The compactness of this back-end design is crucial for the successful integration of many measurement channels in the reduced space available in future fusion machines. Prototype tests of these devices are foreseen to be performed in current nuclear fusion machines. Full article
(This article belongs to the Special Issue Plasma Diagnostics)
Show Figures

Figure 1

12 pages, 1906 KiB  
Article
The Role of Empirical Formulae in the Design of Complex Systems
by Alessandro Curcio, Giuseppe Dattoli and Emanuele Di Palma
Symmetry 2023, 15(2), 515; https://doi.org/10.3390/sym15020515 - 15 Feb 2023
Viewed by 1707
Abstract
We discuss the general concepts underlying the design strategies of complex devices like Tokamaks and Free Electron Lasers (FEL). Regarding the FEL, starting from the desired output performances, the key parameters are embedded to get a set of semi-analytical/empirical equations yielding straightforward and [...] Read more.
We discuss the general concepts underlying the design strategies of complex devices like Tokamaks and Free Electron Lasers (FEL). Regarding the FEL, starting from the desired output performances, the key parameters are embedded to get a set of semi-analytical/empirical equations yielding straightforward and reliable estimates of gain and power. In a similar way, the guiding elements of a fusion reactor, to reach the prescribed fusion gain Q and power, are defined in terms of scaling relations involving pivotal quantities like radius and magnetic field. General formulae characterizing a physical system may be the consequence of an unknown symmetry. The onset of specific instabilities represent the breaking of a symmetry characterizing given equilibrium conditions. In this article, we comment on the analogy between two different physical devices, and even though we do not specify any underlying symmetry, we aim to stimulate further research in this direction. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 6834 KiB  
Article
Blanket Cooling of a Fusion Reactor
by Robert Beaufait and Ludger Fischer
Energies 2023, 16(4), 1890; https://doi.org/10.3390/en16041890 - 14 Feb 2023
Cited by 2 | Viewed by 5598
Abstract
Nuclear fusion is the gateway to a whole new paradigm of energy and is a strong candidate for the decarbonization of electricity generation on a global scale. With recent developments in high-temperature super-conducting magnets, the race is on to develop sub-systems which will [...] Read more.
Nuclear fusion is the gateway to a whole new paradigm of energy and is a strong candidate for the decarbonization of electricity generation on a global scale. With recent developments in high-temperature super-conducting magnets, the race is on to develop sub-systems which will support a commercially viable fusion reactor for use as a thermal power plant. The fusion of lighter elements creates an enormous amount of heat which must be transferred away from the reactor core. These intense conditions require novel approaches to efficiently transfer very high heat loads into useable thermal energy without compromising the structural integrity of the reactor core and the surrounding components. This report outlines the concept of a fundamental approach to solve the heat transfer problem as proposed by Commonwealth Fusion System’s design for a fusion reactor. A literature review was conducted for other applications that could serve as inspirations, as well as material properties and machining methods for the proposed power exhaust system. A dive into the theoretical thermodynamic and fluid dynamic characteristics of plate heat exchangers and finned surfaces was conducted from a fundamental perspective. A laminar flow regime was studied for the purpose of setting the floor for energy needed to pump coolant while simultaneously representing the least favorable heat transfer regime between a solid surface and a fluid. The results served as a basis for dimensioning and executing numerical simulations as a means for a first look into a solution of this heat transfer problem. The results were compared with the theoretical conclusions and judged based on constraints of the system. Recommendations were made for the continued development of a corresponding system. Full article
(This article belongs to the Special Issue Volume II: Heat Transfer and Heat Recovery Systems)
Show Figures

Figure 1

21 pages, 7539 KiB  
Article
Status of Scoping Nuclear Analyses for the Evolving Design of ITER TBM Port Cells
by Moataz Harb, Dieter Leichtle, Byoung-Yoon Kim, Jean-Pierre Martins, Eduard Polunovskiy, Jayant Somvanshi and Jaap G. van der Laan
J. Nucl. Eng. 2023, 4(1), 28-48; https://doi.org/10.3390/jne4010003 - 23 Dec 2022
Viewed by 2207
Abstract
ITER is an international collaborative effort towards the realization of fusion energy via the magnetic confinement concept. Two of the equatorial ports in the facility are dedicated to the testing of tritium breeding concepts, which is essential for the tritium self-sufficiency of future [...] Read more.
ITER is an international collaborative effort towards the realization of fusion energy via the magnetic confinement concept. Two of the equatorial ports in the facility are dedicated to the testing of tritium breeding concepts, which is essential for the tritium self-sufficiency of future fusion reactors. The concerned Test Blanket System (TBS) consists of a Test Blanket Module (TBM) residing inside the TBM–Port Plug (TBM-PP) and its associated ancillary systems in the Tokamak facility. In this paper, the results of a full suite of nuclear analyses concerning the shielding performance of the Pipe Forest (PF) and Bioshield Plug (BP), to reflect on the evolution of their designs, are discussed. On the BP side, the design of the peripheral part has been reviewed considering the ventilation openings and butterfly doors, to assure the design compliance with the Radiation Map (RadMap) requirements for the neutron flux in the Port Cell (PC), behind the BP. On the PF side, the pipes routing and maintenance corridor door have been redesigned, by taking into account results from previously concluded nuclear analyses. The neutronics model was developed from CAD and was used to perform transport simulations in two plasma modes: on and off. For plasma-on mode, the plasma neutron field in the Port Interspace (PI) as well as behind the BP was assessed and few shielding options were explored. The responses due to decay neutrons from 17N in activated cooling water were also considered. For the plasma-off mode, the focus was shifted to further refine the ShutDown Dose Rate (SDDR) maps, which is of importance for maintenance operations that are foreseen to take place at various stages of ITER operation, in particular following the FPO-1, FPO-2, and Short operation scenarios. In addition, detailed activation analyses were carried out to provide a provisional waste classification. Full article
Show Figures

Figure 1

21 pages, 2678 KiB  
Review
A Review: Research Progress of Neural Probes for Brain Research and Brain–Computer Interface
by Jiahui Luo, Ning Xue and Jiamin Chen
Biosensors 2022, 12(12), 1167; https://doi.org/10.3390/bios12121167 - 14 Dec 2022
Cited by 25 | Viewed by 5446
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, [...] Read more.
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

36 pages, 4901 KiB  
Article
Magnetohydrodynamics Solver for a Two-Phase Free Surface Flow Developed in OpenFOAM
by Victoria Suponitsky, Ivan V. Khalzov and Eldad J. Avital
Fluids 2022, 7(7), 210; https://doi.org/10.3390/fluids7070210 - 21 Jun 2022
Cited by 5 | Viewed by 5155
Abstract
A magnetohydrodynamics solver (“mhdCompressibleInterFoam”) has been developed for a compressible two-phase flow with a free surface by extending “compressibleInterFoam” solver within OpenFOAM suite. The primary goal is to develop a tool to simulate compression of magnetic fields in vacuum and simplified magnetized plasma [...] Read more.
A magnetohydrodynamics solver (“mhdCompressibleInterFoam”) has been developed for a compressible two-phase flow with a free surface by extending “compressibleInterFoam” solver within OpenFOAM suite. The primary goal is to develop a tool to simulate compression of magnetic fields in vacuum and simplified magnetized plasma targets by imploding rotating liquid metal liners in the context of a Magnetized Target Fusion (MTF) concept in pursuit by General Fusion Inc. At present, the solver is limited to axisymmetric problems and the magnetic field evolution is solved in terms of toroidal field component and poloidal flux functions. The solver has been validated and verified using a number of test cases for which analytical or other numerical solutions are provided. Those tests cases include: (i) compression of toroidal and poloidal magnetic fields in vacuum and cylindrical geometry, (ii) axisymmetric annular Hartmann flow, and (iii) compression of magnetized target initialized with a Grad–Shafranov equilibrium state in a cylindrical geometry. A methodology to incorporate conductive solid regions into simulation has also been developed. Capability of the code is demonstrated by simulating a complex case of compressing a magnetized target, which is injected during implosion of a rotating liquid metal liner with an initially soaked poloidal magnetic field. An application of the solver to simulate compression of a magnetized target in a geometry and parameters relevant to the Fusion Demonstration Plant (FDP) being developed by General Fusion Inc. is also demonstrated. Full article
(This article belongs to the Special Issue The Recent Advances in Magnetorheological Fluids)
Show Figures

Figure 1

20 pages, 10534 KiB  
Article
A Combined Electromagnetic and Mechanical Approach for EU-DEMO Toroidal Field Coils
by Lorenzo Giannini, Daniela P. Boso and Valentina Corato
Appl. Sci. 2022, 12(6), 2766; https://doi.org/10.3390/app12062766 - 8 Mar 2022
Cited by 11 | Viewed by 3696
Abstract
The roadmap to fusion electricity of the European scientific program aims at the realization of the future DEMOnstration (DEMO) fusion power plant. In 2020, the pre-concept design phase of DEMO was completed, defining the concept and characteristics of the main magnets and structures [...] Read more.
The roadmap to fusion electricity of the European scientific program aims at the realization of the future DEMOnstration (DEMO) fusion power plant. In 2020, the pre-concept design phase of DEMO was completed, defining the concept and characteristics of the main magnets and structures of the machine. Sixteen toroidal D-shaped magnets, six poloidal annular coils and a central solenoid constitute the functioning system core. The reactor is subjected to huge mechanical loads, mainly due to the Lorentz force produced by the combination of the high magnetic fields and operative currents. As a consequence, the loading conditions are extremely demanding for the structural components, and it is crucial to complete a comprehensive static and fatigue assessment before proceeding with the next design iteration. This work focuses on the electromagnetic and structural analyses performed on the toroidal field coil system and its support structures to present the methodological approach developed. Exploiting the finite element method, a three-dimensional model has been defined to obtain the electromagnetic loads on the main time points of the reference plasma scenario and then transfer them to a related 3D structural model, corresponding to the discretization of the electromagnetic one. The structural model was used to obtain the displacement and stress fields at the various time points to perform the mechanical evaluation as well as the fatigue assessment. Full article
(This article belongs to the Special Issue Structural and Thermo-Mechanical Analyses in Nuclear Fusion Reactors)
Show Figures

Figure 1

37 pages, 4830 KiB  
Article
MHD R&D Activities for Liquid Metal Blankets
by Chiara Mistrangelo, Leo Bühler, Ciro Alberghi, Serena Bassini, Luigi Candido, Cyril Courtessole, Alessandro Tassone, Fernando R. Urgorri and Oleg Zikanov
Energies 2021, 14(20), 6640; https://doi.org/10.3390/en14206640 - 14 Oct 2021
Cited by 28 | Viewed by 4095
Abstract
According to the most recently revised European design strategy for DEMO breeding blankets, mature concepts have been identified that require a reduced technological extrapolation towards DEMO and will be tested in ITER. In order to optimize and finalize the design of test blanket [...] Read more.
According to the most recently revised European design strategy for DEMO breeding blankets, mature concepts have been identified that require a reduced technological extrapolation towards DEMO and will be tested in ITER. In order to optimize and finalize the design of test blanket modules, a number of issues have to be better understood that are related to the magnetohydrodynamic (MHD) interactions of the liquid breeder with the strong magnetic field that confines the fusion plasma. The aim of the present paper is to describe the state of the art of the study of MHD effects coupled with other physical phenomena, such as tritium transport, corrosion and heat transfer. Both numerical and experimental approaches are discussed, as well as future requirements to achieve a reliable prediction of these processes in liquid metal blankets. Full article
(This article belongs to the Special Issue Thermal-Hydraulics in Nuclear Fusion Technology: R&D and Applications)
Show Figures

Figure 1

Back to TopTop