
����������
�������

Citation: Suponitsky, V.; Khalzov, I.V.;

Avital, E.J. Magnetohydrodynamics

Solver for a Two-Phase Free Surface

Flow Developed in OpenFOAM.

Fluids 2022, 7, 210. https://doi.org/

10.3390/fluids7070210

Academic Editors: Mario Versaci and

Annunziata Palumbo

Received: 25 April 2022

Accepted: 15 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Magnetohydrodynamics Solver for a Two-Phase Free Surface
Flow Developed in OpenFOAM
Victoria Suponitsky 1,*,†, Ivan V. Khalzov 1,† and Eldad J. Avital 2,†

1 General Fusion Inc., Burnaby, BC V3N 4T5, Canada; ivan.khalzov@generalfusion.com
2 School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK;

e.avital@qmul.ac.uk
* Correspondence: victoria.suponitsky@generalfusion.com
† These authors contributed equally to this work.

Abstract: A magnetohydrodynamics solver (“mhdCompressibleInterFoam”) has been developed for
a compressible two-phase flow with a free surface by extending “compressibleInterFoam” solver
within OpenFOAM suite. The primary goal is to develop a tool to simulate compression of magnetic
fields in vacuum and simplified magnetized plasma targets by imploding rotating liquid metal liners
in the context of a Magnetized Target Fusion (MTF) concept in pursuit by General Fusion Inc. At
present, the solver is limited to axisymmetric problems and the magnetic field evolution is solved in
terms of toroidal field component and poloidal flux functions. The solver has been validated and
verified using a number of test cases for which analytical or other numerical solutions are provided.
Those tests cases include: (i) compression of toroidal and poloidal magnetic fields in vacuum and
cylindrical geometry, (ii) axisymmetric annular Hartmann flow, and (iii) compression of magnetized
target initialized with a Grad–Shafranov equilibrium state in a cylindrical geometry. A methodology
to incorporate conductive solid regions into simulation has also been developed. Capability of the
code is demonstrated by simulating a complex case of compressing a magnetized target, which is
injected during implosion of a rotating liquid metal liner with an initially soaked poloidal magnetic
field. An application of the solver to simulate compression of a magnetized target in a geometry and
parameters relevant to the Fusion Demonstration Plant (FDP) being developed by General Fusion Inc.
is also demonstrated.

Keywords: MHD; OpenFOAM; MTF; free surface; liquid metal; imploding liner

1. Introduction

Development of an MHD solver capable of handling compressible fluids with a
free-surface has been prompted by simulation needs in General Fusion Inc. to advance
development of the Fusion Demonstration Plant (FDP) [1]. The magnetized Target Fu-
sion (MTF) scheme in pursuit by General Fusion Inc. relies on achieving nuclear fusion
conditions during compression of magnetized plasma by imploding rotating liquid metal
liner [1]. A schematic of the system is shown in Figure 1. Magnetized plasma is injected into
a vacuum cavity inside a rotating liquid metal liner. Pistons, driven by high pressure gas,
push on the outer surface of the rotating metal liner causing it to implode and compress a
magnetized plasma target. In the vertical direction, the pistons are arranged into layers, and
the trajectory of pistons can be varied from layer to layer. This allows to shape the liner as it
implodes, starting up from a cylindrical one and ending up with more like a spherical one
during the implosion. Simulating the entire system is challenging, as it requires combining
the dynamics of magnetized plasma, the dynamics of the imploding liquid metal liner, and,
to some extent, of the piston system. One of the main issues in simulating plasma and liner
dynamics simultaneously is that they operate at different times scales; plasma simulations
usually require a much smaller time step (in the order of dt = 1× 10−11 s) compared with
the hydrodynamics of the liner (in the order of dt = 1× 10−8 s).
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Figure 1. A schematic of the Fusion Demonstration Plant (FDP) under development by General
Fusion Inc. Magnetized plasma is compressed to the nuclear fusion conditions by imploding liquid
metal liner. Implosion of the liquid liner is achieved by the system of pneumatic pistons.

A great amount of work has been performed by simulating plasma evolution and
hydrodynamics of liner implosion independently. Plasma evolution during formation
and its stability during compression has been studied by dedicated plasma codes such
as Versatile Advection Code (VAC) [2], NIMROD [3] and CORSICA [4] and DCON [5],
whereas the shape and trajectory of the imploding liner have been provided as an input.
Dynamics and stability of the rotating imploding liquid metal liner has been extensively
simulated using the hydrodynamic “compressibleInterFoam” solver, which is part of the
open source C++ libraries of OpenFOAM [6]. Simulating plasma evolution and liner hydro-
dynamics separately has its limitations, as some degree of coupling between magnetized
plasma and liquid metal liner is expected during compression. This coupling is case depen-
dent and it is difficult to predict in prior how significant it is in order to reliably simulate
compression process. Current research focuses on investigating how significant the effect
of magnetic field is on the liner dynamics during implosion. As the vacuum magnetic
field (or magnetic target) gets compressed, the shape and trajectory of the liner may be
affected by: (i) diffusion of magnetic field into the liner and the surrounding electrically
conductive structure and (ii) the magnetic pressure pushing back from the compressed
magnetic field. The effect of the magnetic field on the evolution of surface perturbations at
the inner liner surface during implosion can be also studied by the including MHD effects
into the simulations. More complex issues of how, for example, the stability of the plasma
is affected by interaction of the magnetic field with the liquid metal liner is out of scope for
this study.

Several concurrent approaches have been persuaded in General Fusion to achieve
coupling between the magnetic field/plasma evolution and the liquid metal liner implosion
dynamics. One of them is to simulate the plasma and liquid liner by separately dedicated
codes and couple at the interface, i.e., VAC-OF coupling [7]. Another one, is to simulate the
liner dynamics with a hydro code and then add part of the liner (along with velocity field)
as an additional layer surrounding the plasma domain in the VAC plasma code [2]. With
this approach, it is assumed that the liner trajectory is not affected by the plasma evolution,
but the diffusion of the magnetic field into the liner is captured during compression.

The current approach is to extend the multiphase hydrodynamic solver, which we
extensively use to simulate imploding liquid liner dynamics (“compressibleInterFoam”
within OpenFOAM) to include the evolution of the magnetic fields, i.e., to obtain a two-
phase MHD solver. “compressibleInterFoam” is a multiphase solver which uses VOF
(Volume of Fluid) phase-fraction-based interface-capturing approach and is suitable for
modeling two compressible immiscible fluids [8]. It has been successfully used in General
Fusion to simulate imploding liners dynamics and study interface instabilities and means
of their suppression [9–11]. Number of recent studies attempted to extend different hy-
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drodynamic solvers within OpenFOAM to MHD solvers [12–20] or coupling OpenFOAM
with another software such as Elmer [21,22] to tackle various problems requiring to take
into account MHD effects. One of the main messages coming out of those works is that
the approach of extending existing solvers within OpenFOAM toward MHD solvers is
promising. We also hope that the new solver has a potential in the future to be applied and
complement other theoretical and reduced-order studies which include magentic fields,
such as in recent works [23,24], for example. The rest of the paper is organized as follows.
The model equations for the newly developed solver (“mhdCompressibleInterFoam”) are
summarized in Section 2. Results are presented and discussed in Section 3, which is subdi-
vided into Sections 3.1–3.3 describing verification and validation cases, current capabilities
of the code, and application to problems of interest, respectively. The verification and
validation tests section is further subdivided into Sections 3.1.1–3.1.3 to discuss cylindrical
compression of magnetic fields in vacuum, Hartmann annular flow, and compression of
magnetic target in a cylindrical geometry, respectively. A brief summary and conclusions
are provided in Section 4.

2. Governing Equations

The evolution of a magnetic field B of an electrically conductive fluid is described by
an induction equation, Equation (1). The Induction Equation (1) is derived from Maxwell’s
equations (Faraday’s and Ampere’s laws) combined with with Ohm’s law and eliminating
electric field and the electric current from the equations. For details, see [25]

∂B
∂t

= ∇× (v× B)−∇× (η∇× B), ∇ · B = 0, (1)

where η [m2/s] is the magnetic diffusivity (η = η
′
/µo; η

′− resistivity and µo− vacuum
permeability). At present, the extension of the hydrosolver is limited to the axisymmetric
problems. In this case, magnetic field can be presented in a form such that divergence-free
condition is satisfied by construction. This approach is called poloidal–toroidal decom-
position, and the details can be found in [26,27]. Solenoidal magnetic field B can be then
written as Equation (2) in terms of toroidal function F(r, z) = rBφ (Bφ = Btor) and poloidal
flux (per radian) function ψ(r, z) (e.g., [28]):

B = ∇ψ×∇φ︸ ︷︷ ︸
Bpol

+ F∇φ︸ ︷︷ ︸
Btor

, (2)

where φ is a polar angle. Components of the magnetic field for axisymmetric problems are
shown in Figure 2.

Figure 2. An illustration of toroidal Btor and poloidal Bpol magnetic field components for axisymmet-
ric configurations.
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Induction Equation (1) is reduced to two scalar equations (Equations (3) and (4))
describing the evolutions of F(r, z) and ψ(r, z) (see [28] for details).

1
r2

∂F
∂t

+
[
∇ ·

( v
r2 F

)
−∇ ·

( η

r2∇F
)]
−∇ ·

(
ωBpol

)
= 0, (3)

where ω = Vφ/r is the fluid angular velocity.

∂ψ

∂t
+ v · ∇ψ− η

[
r2∇ ·

(
1
r2∇ψ

)]
︸ ︷︷ ︸

∆∗ψ

= 0. (4)

The current density J (Ampere’s law), Lorentz force, and Ohmic heating (Joule heating)
Pohm can be then expressed in terms of F and ψ as in Equations (5)–(7), respectively (see [28]
for details).

J =
1
µo
∇× B =

1
µo

(−∆∗ψ∇φ +∇F×∇φ), (5)

Lorentz force = J× B =−
∇
(

F2)
2µor2 −

1
µor2 ∆∗ψ∇ψ +

1
µo

(
Bpol · ∇F

)
∇φ,

∆∗ψ = r2∇ ·
(

1
r2∇ψ

)
.

(6)

Pohm =
η

µo

(
|∇F|2

r2 +
(∆∗ψ)2

r2

)
. (7)

Equations (3) and (4) were added to the set of the governing equations of the “com-
pressibleInterFoam” solver, which itself is an extension (to account for compressibility) of
the extensively validated solver ’interFoam’ [6]. Governing equations (conservation laws)
implemented in the “compressibleInterFoam” solver are listed below. Momentum and
energy equations have been modified to include Lorentz force (Equation (6)) and Ohmic
heating (Equation (7)), respectively. Those terms can be activated separately in gas and
liquid regions. For description of conservation laws (Equations (8)–(10)) and details of their
implementation in OpenFOAM, see the recent book by Greenshields and Weller [29].

The mass continuity equation is:

∂ρ

∂t
+∇ · (ρv) = 0. (8)

The momentum equation is:

∂(ρv)
∂t

+∇ · (ρvv) =−∇
(

p +
2
3

µ∇ · v
)
+ [∇ · (µ∇v) +∇v · ∇µ] + ρg

+ surface tension + J× B︸ ︷︷ ︸
Lorentz force (Equation (6))

(9)

The energy equation is:

∂
(
ρCpT

)
∂t

+∇ ·
(
ρvCpT

)
= ∇ · (k∇T) + ST︸︷︷︸

source terms

+ Pohm︸︷︷︸
Ohmic heating (Equation (7))

(10)

In Equations (8)–(10), ρ, µ, and g are density, viscosity, and gravity acceleration,
respectively; Cp and k are the heat capacity and thermal conductivity.

In VOF-like methods, in addition to the conservation equations for mass, momentum,
and energy (Equarions (8)–(10)), an equation for the phase fraction (Equation (11)) is also to
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be solved [30]. Additional details of implementation of the volume-of-fluid (VOF) method
in OpenFOAM can be found in the Ph.D. Thesis of Rushe [31]. A detailed description of
the interFoam solver can be found in Deshande et al. [32].
The phase fraction continuity equation is:

(ραi)

∂t
+∇ · (ραiv) = 0, (11)

where subscript i denotes the phase and α is the phase fraction.
There are several variants of the VOF approach; see, for example, Ferziger and Per-

icć [30]. In OpenFOAM, both fluids are treated as a single fluid “mixture” whose properties
vary in space according to the volume fraction of each phase (Equation (12)). With this
approach, the interface is not treated as a boundary and no boundary conditions are
prescribed to it; instead, it is treated as a discontinuity in fluid properties [30].

ρ = α1ρ1 + α2ρ2, µ = α1µ1 + α2µ2, k = α1k1 + α2k2, η = α1η1 + α2η2, (12)

where subscripts 1 and 2 denote the two fluids (e.g., liquid and gas) and α1 + α2 = 1.
It is worth noting, that “mixture” is an important methodological approach that is partic-
ularly useful for applications. One of the areas where the “mixture” approach, assisted
by extended irreversible thermodynamic frameworks, leads to the promising results with
significantly lower computational loads is that of magnetorheological fluids [33,34].

Finally, the equation of state (Equation (13)) for each phase has to be provided to close
the system:

ρi = ρi(p, T), (13)

where several options are available for each phase depending on the application of interest.
Equations (3)–(13) are the governing equations for the new “mhdCompressibleIn-

terFoam” solver. At present, constant fluid properties (viscosity, thermal conductivity,
magnetic diffusivity) are used in simulations.

3. Results
3.1. Verification Tests
3.1.1. Compression of Toroidal and Uniform Vertical Poloidal Vacuum Magnetic Fields

In this section, two verification tests for cylindrical compression of vacuum magnetic
fields by imploding liquid liner are considered. In the first test, a compression of a toroidal
magnetic field introduced into a vacuum (gas) region at the start of simulation is discussed,
while in the second test, the uniform vertical (poloidal) magnetic field is added in addition
to the toroidal one. One should note that with the way VOF approach is implemented, it is
not possible to simulate real vacuum (or low density plasma), as density ratio ρliquid/ρgas
should not be too extreme for VOF to work properly. Using low density values in the
gas also leads to a decrease in the time step, which, in turn, increases computational cost.
Therefore, to mimic the vacuum from electromagnetic point of view, the following is done:
(i) the initial hydrodynamic pressure in the gas region is set to a sufficiently low value such
that its effect on liner trajectory is negligible, and (ii) the magnetic field in the gas region is
prescribed by an external procedure or by using a high value of magnetic diffusivity (the
magnetic diffusivity of vacuum is infinite).

In the first verification test, a toroidal field in the vacuum (gas) region is instanta-
neously produced by the electrical current Io (driven by the external power supply) that
runs through the conducting shaft placed in the center of the cylinder. The external power
source is then disconnected. With such a setup, a total toroidal flux in the system (vacuum
and liquid liner) remains constant. At the start of the simulation, a toroidal magnetic field
is present only in the vacuum (gas) region, starting then to diffuse into the liquid liner.
The exact amount of the initial toroidal flux that diffuses into the liner during implosion
depends on the compression time and trajectory. During the implosion, the toroidal field
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also gets compressed, leading to the increase in the magnetic pressure acting on the liner,
which in turn alters the compression trajectory.

A cross-section of the computational setup used for the cylindrical compression of
vacuum magnetic fields test cases is shown in Figure 3. To simulate 2-dimensional axisym-
metric cases in OpenFOAM, the geometry is specified as a wedge of small angle (5◦ in
this work) and 1 cell thick running along the plane of symmetry. Front and back wedge
planes must be specified as separate patches of wedge type (see OpenFOAM documenta-
tion [6] and reference [29] for more details). Position of the central shaft and direction of
the electrical current Isha f t = Io~z are shown in the figure (Figure 3a) along with a direction
of generated by the shaft current toroidal magnetic field Btor. Direction of the uniform
vertical magnetic field Bpol = Bo~z (for the poloidal field compression test case discussed
later) is also shown in Figure 3a). The initial position and geometry of the liquid liner and
vacuum (gas) cavity are shown by red and blue colors, respectively, in Figure 3a. Inner
boundary of the computational domain marked by number “3”, corresponds to the central
shaft with radius Rsha f t. No-slip wall boundary condition is imposed at this boundary. At
top and bottom boundaries, marked by “1” in Figure 3a, a slip wall boundary condition is
used. At the outer boundary (marked by number “2”), a pressurized pushing gas causing
liner implosion is prescribed as pressure profile Pout(t), that is constant for this test case.
Zero-gradient boundary condition is specified for toroidal function F at all boundaries.
Physically, this corresponds to boundaries with perfect electric conductivity and results in
conservation of total toroidal magnetic flux inside computational domain.The instant when
the toroidal magnetic field is highly compressed and the liquid liner is near its turnaround
point is shown in Figure 3b. As mentioned earlier, a low pressure gas is also initially present
in the cavity (in addition to the toroidal magnetic field), but the parameters are chosen in
such a way that the effect of the magnetic field on the liner trajectory is a dominant one.

(a) (b)

Figure 3. Computational setup for the cylindrical compression of magnetic fields (toroidal and
poloidal) in the vacuum that is used in verification tests is presented in Section 3.1.1. Parame-
ters: initial radius of the inner liner surface Rin = 0.9 m, initial radius of the outer liner surface
Rout = 1.3 m, cylinder height H = 2 m, central shaft radius Rshaft = 0.2 m, constant pushing pres-
sure Pout = 1× 106 Pa, initial gas cavity pressure Pin = 1× 104 Pa, and constant liner density of
ρliquid = 1000 kg/m3. (a) initial state t = 0. (b) deep into compression t ≈ tmax comp.

For this first verification case, the toroidal magnetic field (represented by the toroidal
function F(r, z)) is calculated by an external procedure using conservation of the total
toroidal flux. Hence, the toroidal function F in the gas region is overwritten at each time
step, while Equation (3) is solved in the liquid. The test case parameters are also chosen to
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ensure that the magnetic field is not diffused through the entire thickness of the liquid liner
during the implosion such that no magnetic flux exiting through the outer liner surface.

The procedure for calculating the toroidal function Fgas(t) in the gas cavity is detailed
below. The initial toroidal flux Φ0 is given by:

Φo = Io · Lo; Lo =
µo

(2π)2

∫
Vgas

1
r2 dV, (14)

where Io is the initial shaft current, Lo is the initial inductance of the gas cavity, and
µo = 4π × 10−7 H/m is the vacuum permeability. The relation between the initial shaft
current and the initial value of toroidal function in the gas cavity is given by (according to
the Biot–Savart law):

Fgas(t = 0) = µo/(2π) · Io. (15)

Using Equations (14) and (15), the initial toroidal flux Φo can be calculated as:

Φo =
1

2π
· Fgas(t = 0) ·

∫
Vgas

1
r2 dV. (16)

Once the magnetic field starts diffusing into a liquid liner, the total conserved toroidal
flux consists of that in the gas cavity and that in the liquid liner:

Φo = Φtotal(t) =
1

2π
Fgas(t) ·

∫
Vgas

1
r2 dV︸ ︷︷ ︸

flux in gas

+
1

2π

∫
Vliquid

F(t)
r2 dV︸ ︷︷ ︸

flux in liquid

, (17)

where the first integral is calculated over the volume occupied by the gas cavity and the
second one is over the volume of the liquid liner. Thus, the value of Fgas at any given time t
can be calculated from Equation (17) as:

Fgas(t) =

(
Φo −

1
2π

∫
Vliquid

F(t)
r2 dV

)
� 1

2π

∫
Vgas

1
r2 dV. (18)

The simulation procedure can be summarized as follows:

• Step 1: For a given initial shaft current Io and size of the gas cavity, calculate the initial
value of the toroidal function in the gas Fgas(t = 0) by Equation (15) and the initial
toroidal flux Φo by Equation (16).

• Step 2: Perform one iteration with “mhdCompressibleInterFoam”.
• Step 3: Calculate an updated value of the toroidal function in the gas Fgas(t) by

Equation (18).
• Step 4: Overwrite the toroidal function F for all the grid cells inside the gas cavity

with the value calculated in Step 3.
• Step 5: Repeat steps 2 to 4 for the duration of the simulation.

Examples of inner liner surface trajectories obtained with the above prescribed pro-
cedure are given in Figure 4. The following set of parameters has been used for those
simulations: initial radius of the inner liner surface Rin = 0.9 m, initial radius of the outer
liner surface Rout = 1.3 m, cylinder height H = 2 m, central shaft radius Rshaft = 0.2 m,
constant pushing pressure Pout = 1× 106 Pa, initial gas cavity pressure Pin = 1× 104 Pa,
and constant liner density of ρliquid = 1000 kg/m3. Structured orthogonal mesh has been
used with a uniform 1 mm grid resolution in the radial direction. In the azimuthal direc-
tion, 1 mm grid resolution has been imposed at the radius of the initial inner liner surface.
Isothermal calculation has been run, i.e., all liquid phase properties (including magnetic
diffusivity) have been held constant throughout the simulation. For the gas phase, this
implies isothermal compression. Here, it is worth reiterating that for this test case, the
dynamics of the gas is not of an interest, provided that gas has a negligible effect on the
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liner trajectory. What is of interest is the effect of the toroidal magnetic field on the liner
trajectory and the amount of the magnetic flux diffused into the liner during implosion.
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0.6
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1
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, 
m

I=0 1D

I=0 OF

I=2MAmp, =0.4 m
2
/s 1D

I=2MAmp, =0.4 m
2
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I=2MAmp, =0 m
2
/s 1D

I=2MAmp, =0 m
2
/s OF

(a) Initial shaft current Io = 2 MA.

0 0.005 0.01 0.015 0.02 0.025 0.03
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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m
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I=3MAmp, =0.4 m 2/s 1D

I=3MAmp, =0.4 m 2/s OF

I=3MAmp, =0 m 2/s 1D

I=3MAmp, =0 m 2/s OF

(b) Initial shaft current Io = 3 MA.

Figure 4. Trajectory of a cylindrical liner inner surface compressing vacuum toroidal magnetic field
for a computational setup shown in Figure 3. Comparison between new“mhdCompressibleInterFoam”
solver (red lines) and in-house 1D code (black lines) (see Appendix A for details of 1D code). In
those simulations, evolution of toroidal magnetic field during compression has been calculated using
procedure given by Equations (14)–(18). Results are shown for two different values of the initial
shaft current Io, parts (a,b), and for two different values of magnetic diffusivity (ηliquid = 0 and
ηliquid = 0.4 m/s). Trajectories for compression of low pressure gas target without magnetic field are
also added for reference. The parameters are: Rin = 0.9 m, Rout = 1.3 m, Rshaft = 0.2 m, H = 2 m,
Pout = 1× 106 Pa, Pin = 1× 104 Pa and ρliquid = 1000 kg/m3.

In Figure 4a,b, results are shown for the initial shaft currents of Io = 2 MA and 3 MA,
respectively. Two sets of curves (dashed and dash dot) corresponding to the two values
of magnetic diffusivity (ηliquid = 0.4 m2/s and ηliquid = 0) are plotted for each value of
the initial shaft current. Also plotted by the solid line is a trajectory obtained in a pure
hydrodynamic simulation, i.e., for a zero value of the shaft current (Io = 0). Results obtained
with the newly developed solver “mhdCompressibleInterFoam” are shown by the red lines
and the ones obtained with in-house 1D code are shown by the black lines. (Description
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of the in-house 1D code is provided in Appendix A. Equations describe only dynamics
of the liner with pushing pressure and cavity pressure are used as boundary conditions.
Gas cavity pressure is recalculated based on the inner liner surface position assuming
adiabatic (or isothermal) compression. Toroidal function in the gas Fgas is calculated from
total toroidal flux conservation the same way is in “mhdCompressibleInterFoam”).

One can see that with no magnetic pressure acting on the liner (solid lines in Figure 4),
it implodes faster, goes deeper into compression, and is characterized by a sharp rebound
occurring close to the central shaft. Results obtained with “mhdCompressibleInterFoam”
(that reduces to the original “compressibleInterFoam” solver for the case of Io = 0) are
in good agreement with those produced with our in-house 1D code during the entire
implosion phase. As in this case, the liner comes close to the shaft, capturing rebound using
OpenFOAM is challenging, as it requires fine resolution and small times steps. Hence, the
OpenFOAM simulation is limited to the imploding stage only.

By examining the trajectories obtained with toroidal magnetic field in the gas cavity,
one can observe the following: (i) with an increase in the magnetic field strength, the
liner turn around radius increases for the same value of magnetic diffusivity, (ii) for a
higher value of magnetic diffusivity, the liner goes deeper into a compression as some
portion of the magnetic flux diffuses into the liner reducing overall magnetic push-back,
(iii) there is a good agreement between “mhdCompressibleInterFoam” results and the
in-house 1D code until the turnaround point for all cases. It can also be noticed that for
the case of zero magnetic diffusivity (dashed lines), there is a slight deviation between
“mhdCompressibleInterFoam” and 1D code. This happens because even when the magnetic
diffusivity is set to zero, some magnetic flux getting diffused into the liner due to the
numerical diffusion. Finally, we should emphasize, that with the current numerical setup,
it is not always possible to run the simulation much longer beyond the turn around point.
This happens because during the rebound stage, the magnetic field in the liner close to
the inner surface might become higher than in the gas cavity. This might put liquid under
tension and cause delamination of the inner liner surface [35]. Mechanism of the liner
surface delamination is not captured correctly at present, as it requires a cavitation model
and addition of the third phase (cavitated liquid) into simulation. This is outside the scope
of the current work, whose primary goal is to simulate liner implosion up-to the turn
around point.

The second verification case is an extension of the first one, where a uniform vertical
magnetic field is also present in the gas cavity at the start of the simulation. The computa-
tional setup is the same as in the previous case and is shown in Figure 3. A vertical uniform
poloidal field is initially present only in the gas cavity, it then diffuses into a liquid liner
and also gets compressed during the liner implosion similar to the case with a toroidal
magnetic field. For a uniform vertical poloidal magnetic field Bpol = Bo~z, a poloidal flux
function ψ is of a form ψ = c1r2 + c2, where c1 and c2 are constants. The initial distribution
of the poloidal flux function in the gas cavity ψgas(t = 0) is then prescribed as:

ψgas(t = 0) = ψshaft ·
(

R2
in − r2

)
/
(

R2
in − R2

shaft

)
; ψshaft = 0.5 · Bo ·

(
R2

in − R2
shaft

)
, (19)

where ψshaft is the value of the poloidal flux function at the shaft, Bo is the strength of the
uniform vertical poloidal field, Rin and Rshaft are the initial radii of the inner liner surface
and the central shaft, respectively. In this verification test, the equations for the evolution
of magnetic field (Equations (3) and (4)) have been solved in both gas and liquid regions.
Here a high value of magnetic diffusivity inside the gas is used to mimic vacuum. This is
instead of using an external procedure to calculate magnetic field in the gas region, as it has
been done in the previous verification test. At the inner boundary r = Rshaft (marked by
“3” at Figure 3a), a zero gradient boundary condition is imposed for the toroidal function F
(superconductor shaft) and a fixed value of ψ = ψshaft for the poloidal flux function. As in
the previous test case, it is assumed that the magnetic field does not reach the back side of
the liner, hence ψ = 0 and a zero gradient is prescribed for F at the outer r = Rout boundary.
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Zero-gradient boundary condition is imposed at top and bottom boundaries (marked by
“1” at Figure 3a) for both toroidal function F and poloidal flux function ψ. Several tests with
different values of magnetic diffusivity in the gas have been carried out and the results have
converged to those obtained with using an external procedure to calculate the magnetic
field in the cavity for the values of magnetic diffusivity ηgas > 20.

Trajectories of the inner liner surface during the compression of poloidal, toroidal and
combination of both are shown in Figure 5. Results obtained with “mhdCompressibleInter-
Foam” are shown by the symbols, whilst those obtained with the in-house 1D code (see
Appendix A for the details) are plotted by the solid lines. Case parameters are similar to the
first verification test; Rin = 0.9 m, Rout = 1.3 m, Rshaft = 0.2 m, H = 2 m, Pout = 1× 106 Pa,
Pin = 1× 104 Pa, ρliquid = 1000 kg/m3, ηgas = 100 m2/s, ηliquid = 0.4 m2/s. Black, red and
blue curves correspond respectively to (i) Bo = 0.4 T, Io = 0, (ii) Bo = 0, Io = 2 MA and
(ii) Bo = 0.4 T, Io = 2 MA cases. First of all, one can see that for all three cases, there is
good agreement between the results obtained with “mhdCompressibleInterFoam” and
those of 1D code during the implosion phase. For a chosen set of parameters, effects of
poloidal only (black) or toroidal only (red) vacuum fields on the liner trajectory are similar.
When combined (blue), the liner’s turnaround radius increases, the time it takes to reach a
turnaround point also increases and the turnaround is more gradual.

Radial profiles of the poloidal flux function ψ and toroidal function F at several times
during the compression are shown in Figures 6 and 7 for the case where the poloidal and
toroidal vacuum magnetic fields are initially present in the cavity (case is shown by the
blue line in Figure 5; Bo = 0.4 T, Io = 2 MA). Results obtained with “mhdCompressibleIn-
terFoam” solver are shown by the red lines and those obtained with 1D code by the blue
ones. MHD equations are solved in both liquid liner and gas cavity region with “mhdCom-
pressibleInterFoam” solver, whereas the 1D code solved only the dynamics of the liquid
liner. “Ends” of the blue lines correspond to the radial position of the inner surface of the
liner at different times; it can be seen that they correlate with the points on the blue curve
in Figure 5 at those times. The latest time for which profiles are shown, is about the liner
turnaround point. Diffusion of both toroidal and poloidal magnetic fields into the liquid
liner is clearly seen, and there is good agreement between “mhdCompressibleInterFoam”
and in-house 1D code for the magnetic field profiles inside the liner. In the gas cavity region,
a parabolic profile of the poloidal flux function ψ corresponding to the uniform vertical
field, can be also seen at all times presented. A constant value of the toroidal function F
in the gas cavity, which increases as the toroidal field gets compressed, is clearly seen in
Figure 7. It is also worth reiterating, that for a given set of parameters, the magnetic field
has not diffused through the entire thickness of the liquid liner, such that no magnetic flux
leaves through the outer liner surface during the implosion.

Finally, we would like to mention, that a number of grid convergence tests have been
run for the presented test cases. Grid cell size was varied between 0.5 mm and 5 mm.
The effect of the time step has been also studied. Main outcome of these studies is that
pretty high resolution grid is required to obtain a converged solution for the diffusion of
magnetic field into the liner, especially for the small values of magnetic diffusivity. Even
finer resolution is required to accurately resolve thermal layer (due to Ohmic heating) in the
liquid liner if it is of interest. To achieve grid independent results, a higher grid resolution
is required compared to the pure hydrodynamic simulations of imploding liner. A grid
with 1 mm square cells has been found appropriate for our problems of interest. Running
simulations on structured meshes with square cells (as much as possible) and keeping a
time step small and nearly constant during the simulation was unsurprisingly found to
lead the best results.
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Figure 5. Trajectories of a cylindrical liner inner surface compressing vacuum toroidal, uniform
vertical (poloidal) and combination of both magnetic fields are shown for the comparison between new
“mhdCompressibleInterFoam” solver (symbols) and in-house 1D code (solid lines) (see Appendix A
for details about 1D code). A computational setup for those tests is shown in Figure 3. Those results
were obtained with solving equations for magnetic field in both liquid and gas regions. A high value
of magnetic diffusivity has been used in the gas to mimic vacuum. Compression of vertical uniform
magnetic field Bo = 0.4 T, Io = 0 is shown by the black color; compression of toroidal field Bo = 0,
Io = 2 MA is shown by the red color; compression of both uniform vertical (poloidal) and toroidal
fields Bo = 0.4 T, Io = 2 MA is shown by the blue color. Parameters: Rin = 0.9 m, Rout = 1.3 m,
H = 2 m, Rshaft = 0.2 m, Pout = 1× 106 Pa, Pin = 1× 104 Pa, ρliquid = 1000 kg/m3, ηgas = 100 m2/s,
ηliquid = 0.4 m2/s.
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Figure 6. Radial profiles of the poloidal flux function ψ plotted at different times during a cylindrical
liquid liner implosion, compressing toroidal and vertical uniform (poloidal) vacuum magnetic fields
(computational setup is shown in Figure 3). Profiles obtained with new “mhdCompressibleInterFoam”
solver are shown by the red lines inside both gas and liquid regions, profiles obtained with 1D code
(see Appendix A for details about 1D code) are shown by the blue lines (1D code only solves
dynamics of the liquid liner, so blue lines are only plotted for the liquid liner. “Ends” of the blue lines
correspond to the radial position of the inner liner surface at a particular time during implosion).
Results are shown for the inner liner surface implosion trajectory plotted by the blue line in Figure 5.
Parameters: Rin = 0.9 m, Rout = 1.3 m, H = 2 m, Rshaft = 0.2 m, Pout = 1× 106 Pa, Pin = 1× 104 Pa,
ρliquid = 1000 kg/m3, ηgas = 100 m2/s, ηliquid = 0.4 m2/s, Bo = 0.4 T, Io = 2 MA.
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Figure 7. Radial profiles of the toroidal function F plotted at different times during a cylindrical
liquid liner implosion, compressing toroidal and vertical uniform (poloidal) vacuum magnetic fields
(computational setup is shown in Figure 3). Profiles obtained with new “mhdCompressibleInterFoam”
solver are shown by the red lines inside both gas and liquid regions, profiles obtained with 1D code
(see Appendix A for details about 1D code) are shown by the blue lines (1D code only solves
dynamics of the liquid liner, so blue lines are only plotted for the liquid liner. “Ends” of the blue lines
correspond to the radial position of the inner liner surface at a particular time during implosion).
Results are shown for the inner liner surface implosion trajectory plotted by the blue line in Figure 5.
Parameters: Rin = 0.9 m, Rout = 1.3 m, H = 2 m, Rshaft = 0.2 m, Pout = 1× 106 Pa, Pin = 1× 104 Pa,
ρliquid = 1000 kg/m3, ηgas = 100 m2/s, ηliquid = 0.4 m2/s, Bo = 0.4 T, Io = 2 MA.

3.1.2. Hartmann Annular Flow

In this section the “mhdCompressibleInterFoam” solver is validated against an analyt-
ical solution for a Hartmann Annular Flow. Hartmann annular flow is an extension of a
classical MHD Hartmann flow benchmark problem [36] to the case of an annular channel
with a rectangular cross-section [37], see a schematic of a computational setup in Figure 8.
Geometry of the test case is defined by the inner and outer radii of the annular channel
Rin and Rout, respectively, and by the height of the channel H. A channel is filled with
an electrically conducting fluid which is initially at rest. A non-slip boundary condition
is applied at all walls of the channel. A vertical uniform magnetic field Bo acting on a
fluid is imposed through the boundary condition on the poloidal flux function (per ra-
dian) ψ; ψ(Rin, z) = 0.5BoR2

in—at the inner wall, ψ(Rout, z) = 0.5BoR2
out—at the outer wall,

ψ(r, 0) = ψ(r, H) = 0.5Bor2 - at the bottom and top walls. The initial poloidal field can be
either imposed at the start of the simulation (to speed up reaching the steady-state) or let it
to diffuse from the boundaries as simulation progresses. To induce a poloidal current, a
fixed value boundary condition for a toroidal function F is applied at the top and bottom
walls as: F(r, 0) = −Fo and F(r, H) = Fo. A zero gradient boundary condition for F is
applied at the inner and outer radii walls (superconductor).

With such a setup, an electrically conductive fluid starts to swirl inside the channel
due to the Lorentz force (in particular due to the third term in Equation (6)) and eventually
reaches a steady state when balanced by the viscous forces. An example of swirling velocity
contours at the channel cross-section is shown in Figure 8, where magnitude of the swirling
velocity varies from the maximum (dark blue) inside the channel to zero (red) at the wall.
In the middle section of the annular channel, away from the inner and outer radii walls
(schematically indicated by the green rectangular in Figure 8), this flow problem can be
analytically solved for a steady state. In this central region the laminar steady state flow is
described by the following equations (see [37] for details):
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{
Bo
µo

∂F
∂z + ρν ∂2L

∂z2 = 0

Bo
∂L
∂z + η ∂2F

∂z2 = 0,
(20)

where L ≡ rVφ(r, z) is an angular momentum, F(z) is the toroidal function, Bo is the strength
of the uniform vertical magnetic field, η is magnetic diffusivity, µo is vacuum permeability,
ρ and ν are density and kinematic viscosity of the fluid. For the case of an annular channel
entirely filled with liquid, the above system is solved with the following set of boundary
conditions:

F(z = 0) = −Fo
F(z = H) = Fo
L(z = 0) = 0
L(z = H) = 0.

(21)

H 

Figure 8. A schematic of a computational setup for Hartmann Annular Flow validation case. An an-
nular channel with a rectangular cross-section is considered, where Rin and Rout are inner and outer
radii and H is a channel height. An electrically conductive fluid is subjected to the uniform vertical
field Bo and poloidal current (due to the fixed values of toroidal function F at the top and bottom
walls). Interaction between vertical magnetic field and poloidal current causes fluid to swirl inside
the channel. An illustration of azimuthal velocity distribution (swirl) inside the channel is shown by
the colors, higher velocities in the middle of the channel (with dark blue being maximum) and lower
nearl the walls and corners (red color). Green rectangular encompasses a central region, where effects
of inner and outer walls become insignificant and self-similar profiles can be expected (to compare
with analytical profiles).

The shapes of the angular momentum L and toroidal function F profiles depend on
the Hartmann number that is defined as:

Ha = Bo H/
√

µ0ρην. (22)

The Hartmann number represents the ratio of electromagnetic and viscous forces,
hence, depending on the value of Ha number, a flow regime is dominated by the viscous
forces (low Ha) or by electromagnetic forces (high Ha).

Validation tests have been carried out for the following set of parameters: Rin = 0.1 m,
Rout = 0.15 m, H = 0.01 m, ρ = 1000 kg/m3, ν = 1 m2/s, η = 1 m2/s, Fo = 0.01 T ·m and
three different strengths of the vertical uniform magnetic field Bo = 1 T, 40 T and 80 T. For
those parameters, the corresponding test cases Hartmann numbers are Ha = 0.28, 11 and
22. Steady state laminar flow simulations have been run on a computational grid with
square cells at different resolutions. Grid convergence has been confirmed and the results
obtained for the grid with 1 mm cell size are presented below. Vertical angular momentum
and toroidal function profiles at several radial positions (away from the inner and outer
walls) along with analytical solution obtained by solving Equation (20) with boundary
conditions given by Equation (21) are plotted in Figure 9 for different Hartmann numbers.
Analytical solutions have been obtained for the same set of parameters used in numerical
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simulations, i.e., units of measurement for individual physical quantities are identical to
those used in simulations.
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(d) Toroidal function F, Ha = 11.
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(e) Angular momentum L, Ha = 22.
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(f) Toroidal function F, Ha = 22.

Figure 9. Comparison between results obtained with “mhdCompressibleInterFoam” solver (see
Figure 8 for a computational setup) and analytical solution Equations (20) and (21). Vertical profiles
of angular momentum L(z) (first column, parts (a,c,e)) and toroidal function F(z) (second column,
parts (b,d,f)) that are plotted for three different Hartmann numbers: first row Ha = 0.28 (parts (a,b));
second row Ha = 11 (parts (c,d)); third row Ha = 22 (parts (e,f)). Numerical profiles are shown for
several radial positions in the middle of the channel, away of inner and outer walls. Parameters for
both numerical simulations and analytical solutions are: Rin = 0.1 m, Rout = 0.15 m, H = 0.01 m,
ρ = 1000 kg/m3, ν = 1 m2/s, η = 1 m2/s, Fo = 0.01 T ·m, Bo = 1 T (Ha = 0.28), Bo = 40 T (Ha = 11),
Bo = 80 T (Ha = 22).

First of all, one can see, that there is an excellent agreement between the results
obtained with the “mhdCompressibleInterFoam” solver and the analytical solution for all



Fluids 2022, 7, 210 15 of 36

the test cases. A slight deviation from the analytical solution is observed for the angular
momentum profile plotted at the radial position of r = 0.14 m at Hartmann number
Ha = 0.28 (part a). This is likely because viscous forces dominate this regime, and the
influence of the outer radius wall extends to that radial position. As it can be expected, at
a low Hartmann number, the velocity exhibits a parabolic shape profile and the poloidal
electrical current (proportional to ∇F) is uniformly distributed through out the channel.
With the increase in Hartmann number, development of the Hartmann layers near the top
and bottom walls is clearly observed and the velocity profile changes from the parabolic to
the flat top shape. Hartmann layers become thinner with a further increase in Hartmann
number such that electrical currents are concentrated inside those thin layers near the top
and bottom walls, whereas the central part of the channel is electrical current free (area of
constant toroidal function F).

3.1.3. Compression of Magnetic Target in a Cylindrical Geometry

In this section a more complex verification test for the compression of a simplified
magnetic target is discussed. Results of an axisymmetric compression simulation of a
simplified magnetic target by an imploding liquid metal liner driven by a pressurized gas
in a cylindrical geometry are presented and compared to those obtained with VAC code. A
schematic of the initial simulation setup is shown in Figure 10a, while a highly compressed
target is shown in Figure 10b. Parameters for this test case have been chosen within the
range relevant to General Fusion’s FDP. Geometry of the test case is defined by the radii of
inner Rin and outer Rout liner surfaces, radius of the central shaft Rshaft and height of the
cylinder H.

(a) (b)

Figure 10. A computational setup for compression of a magnetic target in a cylindrical geometry used
to compare results obtained with “mhdCompressibleInterFoam” solver with those of “layered VAC”
code, (Data from [38]). General setup is similar to that shown in Figure 3 used in verification tests of
compressing vacuum magnetic fields. (a) initial state at t = 0. Initial magnetic target is shown by the
contours of flux function ψ. (b) Compressed target. Some portion of the poloidal flux is diffused into
the liner.

Magnetic target to be compressed is specified as an initial condition in terms of the
poloidal flux function per radian ψ(r, z) and toroidal function F(r, z) and is calculated as a
solution of Grad-Shafranov (GS) equilibrium equation [39,40] given by Equation (23). For a
rectangular cross-section and pressure and toroidal function profiles given by Equation (24),
Grad-Shafranov equation can be solved analytically (as detailed below).

∂2ψ

∂r2 −
1
r

∂ψ

∂r
+

∂2ψ

∂z2 +
1
2

dF2

dψ
+ µor2 dp

dψ
= 0, (23)
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where µo is the magnetic permeability, p(ψ) is the pressure and F(ψ) is a toroidal function.
The nature of the equilibrium is mainly determined by the choices of the two functions
F(ψ) and p(ψ) as well as the boundary conditions. Here it is assumed that:

F2 = F2
o + λ2ψ2, p = po, (24)

where Fo, λ and po are some constants. Here Fo corresponds to the value of the initial central
shaft current Ishaft and pressure is assumed to be constant and equal to po. Substituting
Equation (24) into Equation (23) leads to a specific form of Grad-Shafranov equation:

∂2ψ

∂r2 −
1
r

∂ψ

∂r
+

∂2ψ

∂z2 + λ2ψ = 0, (25)

with boundary condition of ψ = 0 at all boundaries of the domain. A rectangular cross-
section initially occupied by the magnetic target, is constrained by the central shaft radius
r = Rshaft, initial radius of the inner liner surface r = Rin, bottom wall z = 0 and top wall
z = H (see Figure 10a). General solution to Equation (25) is:

ψ =
(
(arJ1(kr) + brY1(kr)

)
sin
(πz

H

)
, (26)

where J1 and Y1 are Bessel functions. Radial wave-number k and amplitude constants a
and b are determined from boundary and initial conditions. For given radii Rshaft = r1 and
Rin = r2, wave number k is determined from boundary condition (ψ = 0 at r = r1 and
r = r2) using:

J1(kr1)Y1(kr2)− J1(kr2)Y1(kr1) = 0. (27)

Then full solution is:

ψ = c
(

rJ1(kr1)Y1(kr)− rY1(kr1)J1(kr)
)

sin
(πz

H

)
,

λ2 = k2 +
π2

H2 ,

F =
√

F2
o + λ2ψ2.

(28)

where c in an amplitude constant determining the maximum poloidal flux.
Parameters for the verification case are given below in Table 1. Following assumptions

have been made: laminar flow, incompressible liquid liner, constant magnetic diffusivity
(different values for gas and liquid regions) and, for simplicity, iso-thermal. Viscosity in the
gas region has been set to an artificially high value in order to damp waves bouncing inside
the cavity during compression. Simulation has been run on an uniform computational
grid with 1 mm cell size. Simulation has been run for the set of boundary conditions (see
Figure 3 for notation): non-slip wall at the inner boundary (r = Rsha f t), slip wall boundary
condition at top and bottom walls (z = 0 and z = H), prescribed pressure at the outer
boundary (r = Router, fixed value of ψ = 0 and zero-gradient for F at all boundaries.

Evolution of the magnetic field during the compression obtained with “mhdCom-
pressibleInterFoam” solver is compared to that obtained with “layered VAC” code for the
same set of parameters and physical models. “Layered VAC” code is in-house modified
version of VAC code, which allows to simulate a layer of liquid metal in addition to the
plasma region. Current limitation of compression simulations with VAC code is that the
trajectory and shape of the liner should be known in prior (usually from hydrodynamic
simulation), which then used as a moving boundary for VAC. In the “layered VAC”, the
velocity field in the liquid liner layer is also provided as an input to the simulation. This
allows to examine diffusion of the magnetic field into the liner during compression. With
such a numerical setup we can compare evolution of the magnetic target and diffusion of
the magnetic field into the liner between the two codes. What it is not possible to compare,
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is the effect of the magnetic field on the trajectory of the liner, as it has to be prescribed in
VAC simulation.

Table 1. Test case parameters for comparison between “mhdCompressibleInterFoam” solver and
“layered” VAC code.

Geometry

Shaft radius Rsha f t 0.15 m
Inner liner radius Rin 1.5 m
Outer liner radius Rout 2.11 m
Height of the liner H 2 m

Liquid liner (lithium)

Density ρlithium 500 kg/m3

Viscosity µlithium 3.645× 10−4 Pa
Magnetic diffusivity ηlithium 0.2 m2/s

EoS constant density
Pushing pressure pout 7× 106 Pa

Magnetic target

Initial pressure (uniform) ptarget 1× 104 Pa
Initial density (uniform) ρtarget 0.11 kg/m3

Viscosity µtarget 0.35 Pa s
Magnetic diffusivity

(constant) ηtarget 1 m2/s

Initial magnetic configuration

Shaft current Ishaft 2 MA
Maximum poloidal flux (per

radian) ψmax 0.1056 Tm2

Parameters in Equations (27) and (28)

Wave number k 2.6273 1/m
Eigenvalue λ 3.061 1/m

Amplitude constant c 0.12 Tm
Shaft current constant Fo 0.4 Tm

Simulation type

Laminar, iso-thermal, high target viscosity, constant magnetic diffusivity

Simulation with “layered VAC” code has been run on a structured non-uniform grid;
grid resolution at the plasma-liquid metal interface is 1 mm (the same as for “mhdCom-
pressibleInterFoam” solver) and is much coarser for the rest of the domain (1 cm). Both
codes have been run for identical set of parameters and physical models but viscosity in the
gas. Inviscid fluid model is used in VAC simulation, whereas in “mhdCompressibleInter-
Foam”, high viscosity is set in the gas region. Initial condition is shown in Figure 11a, where
magnetic target is plotted by the contours of the poloidal function ψ. Initial radial profiles
of the poloidal function ψ and toroidal function F at the equator (z = 1 m) (Equation (28)
with parameters in Table 1) are shown in Figure 11b.

Comparison between “mhdCompressibleInterFoam” solver and “layered VAC” for
the evolution of the magnetic field during compression is presented in Figure 12. Radial
profiles of toroidal function F and poloidal flux function ψ at the equator at several instances
during compression are given in the left and right columns of the Figure 12, respectively.
First of all, one can see that there is good agreement between the results obtained with
“mhdCompressibleInterFoam” solver and “layered VAC” for the evolution of the magnetic
field in both gas and liquid liner regions, which is encouraging. It it also important to
note that viscosity seems to have a little effect on the evolution of the magnetic field. This
indicates that using a high viscosity value in “mhdCompressibleInterFoam” to damp the
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waves and high velocities that might occur in the vicinity of the central shaft, does not
significantly influence magnetic field evolution but it does help to stabilize computation
and avoid undesirable decrease in the time step.

(a)
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Figure 11. Initial condition for a magnetic target for a test case to compare between “mhdCompress-
ibleInterFoam” solver and “layered VAC” code. (a) Initial magnetic target shown by ψ contours,
0 ≤ ψ ≤ 0.1 Wb/rad. (b) Radial initial profiles of ψ and F at equator (z = 1 m). Test parameters are
summarized in Table 1.

Comparison of the toroidal function F and poloidal flux function ψ at the plasma-
liquid metal interface at equator (z = 1 m) during compression is plotted in Figure 13.
Results are shown for two different values of volume of fraction α, given by solid (α = 0.5)
and broken (α = 0.95) red lines. Corresponding data from “layered VAC” simulation is
shown by hollow circular symbols. It can be seen that there is good agreement between the
results obtained with both codes. Following the toroidal function F value at the interface
(Figure 13a), the next can be observed: (i) it starts at 0.4 T m which corresponds to the
initial shaft current of Ishaft = 2 MA; (ii) it gradually goes up for the majority of the
compression and then rapidly increases towards the end. This behavior goes in line with
compression trajectory that is characterized by rapid acceleration of the liner during the
last millisecond of the compression. The poloidal flux function ψ value at the interface
(Figure 13b) can be interpreted as the amount of poloidal flux being diffused into the liner
at a certain time during compression. Initially, there is no poloidal flux in the liquid liner
(ψinterface(t = 0) = 0). Then the poloidal flux starts to diffuse into the liner, and for the
parameters and trajectory of the test case, about one third of the initial flux ends up in the
liner at the time of maximum compression time (ψinterface ≈ 0.035 Wb/rad at t = 8.9 ms
compared to ψmax ≈ 0.1 Wb/rad of the initial target).

(a) t = 1.6 ms (b) t = 1.6 ms

Figure 12. Cont.
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(c) t = 3.6 ms (d) t = 3.6 ms

(e) t = 6.8 ms (f) t = 6.8 ms

(g) t = 7.6 ms (h) t = 7.6 ms

Figure 12. Cont.
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(i) t = 8.88 ms (j) t = 8.88 ms

Figure 12. Radial profiles of the toroidal function F (left column) and poloidal flux function ψ (right
column) at equator (z = 1 m) at several instances during compression. Comparison is made between
“mhdCompressibleInterFoam” solver and “layered VAC” code. Simulation parameters for the test are
given in Table 1.

(a) (b)

Figure 13. Values of the toroidal function F (a) and poloidal flux function ψ (b) at gas-liquid metal
interface at equator (z = 1) during compression. Comparison is made between “mhdCompress-
ibleInterFoam” solver and “layered VAC” code. Simulation parameters for the test are given in
Table 1.

3.2. Incorporating Electrically Conductive “Solid” Regions into Simulation

To simulate compression of the magnetic targets in setups relevant to the experimental
apparatus, it might be necessary to partly incorporate the surrounding electrically con-
ductive structure into simulation. An example of such a computational setup, that is an
extension of the one was considered in the previous Section 3.1.3 (Figure 10), is shown in
Figure 14. It is worth mentioning, that in the compression scheme under design in General
Fusion, magnetized plasma is injected into the vacuum cavity inside the liquid metal
liner at some point during implosion. This is because a certain volumetric compression
of the plasma is to be achieved in a certain time in order to be on a path to achieve fusion
conditions. Hence, plasma is injected when the liner is already moving and accelerated
to a certain velocity. A schematic of such a system is shown in Figure 14a. It contains the
same parts as the test case in Figure 10, i.e., vacuum (gas) region surrounded by the liquid
liner (area in-between the two yellow lines marked as baffles in the figure). A central shaft
region is added on the left, bottom plate marked as “structure” at the bottom (separated
by the yellow line from the vacuum/liner regions), top plate similar to the bottom one
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at the top, and finally, an opening to inject the plasma into the cavity (blue region above
the upper yellow line). A simplified compression scenario can be summarized as fol-
lows: (i) evacuated cylindrical cavity inside the rotating liquid liner—as a starting point,
though liner rotation is not considered at this stage, (ii) pressurized gas pushes at the
outer liquid liner surface causing the liner to implode, (iii) when the inner liner surface
reaches outer radius of the plasma injection system opening (Figure 14b), magnetized
plasma is injected into the cavity, (iv) liner continues to implode compressing the plasma.
It is important to note, that in the real system, imploding liner will need to bridge the
injection opening, and some portion of the liquid metal will inevitably end up in the
opening etc. Here, for simplicity, it is assumed that once magnetic target is injected, the
opening is closed instantaneously, such that no liquid is allowed to enter injection area
and implosion carries on as it would be in a pure cylindrical geometry. Including parts
of the electrically conductive solids into simulation allows us to study diffusion of the
magnetic field into the structure during compression. Electrical currents generated in
the structure may lead to a strong heating of the material etc. Also, some magnetic field
configuration can be present in the structure, liner and evacuated cavity prior to the
implosion. Ability to simulate evolution of the magnetic field in such configurations
is important for overall understanding of MHD effects during compression process. A
simplified example of such a case is a fully soaked uniform vertical magnetic field, that
is discussed later in this section.

(a) (b)

Figure 14. An example of computational setup that includes electrically conductive solid regions
in addition to the liquid liner and gas cavity. Gas and liquid regions are separated from the solid
regions by internal boundaries (baffles) shown by the yellow lines. Those internal boundaries are
invisible for magnetic field but behave like a wall for velocity and pressure. Here magnetic target is
injected through the injection port at some point during the implosion. Example of such a target is
shown by the contours of the poloidal flux function ψ. (a) initial state t = 0; (b) magnetic target is
injected into the cavity once inner surface of the liner reaches outer radius of the injection port.

For our purposes, considering rigid solid regions is sufficient, so in the regions
designated as “solids”, we only solve magnetic field evolution equations (and potentially
temperature), whereas phase fraction continuity and momentum equation are not solved.
Solid regions are set up as a liquid phase, with a magnetic diffusivity corresponding
to that of a solid material. Initial velocity field is set to zero and with momentum
equation not being solved, it remains zero in those regions for the entire run. In order
to specify boundary conditions at the interface between “solid” and gas/liquid regions
the following procedure has been implemented: (i) Internal zero thickness baffles have
been defined between solid and gas/liquid regions. Example of such baffles is shown in
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Figure 10 by the yellow lines. (ii) Periodic boundary conditions have been applied at
those baffles for the magnetic field components, therefore, baffles are not seen by the
magnetic field. For the hydrodynamic variables “wall” boundary conditions are used
and, depending on the case, “slip” or “no slip” wall boundary conditions are applied.
(iii) Momentum equation is not solved for the grid cells inside “solid” regions to ensure
zero velocity. For the problem considered, the internal baffle defined at z = 2 m (dashed
yellow line in Figure 14b) also ensures that no liquid enters the injection opening as liner
bridges the gap.

Another aspect of those kind of simulations is calculation of the initial magnetic
target. It has been accomplished by developing a stand alone solver in OpenFOAM that
finds Grad-Shafranov equilibrium (by solving Equation (23)) for an arbitrary geometry
of the gas cavity. As an alternative, one can use any of already existing Grad-Shafranov
solvers and then interpolate solution on the OpenFOAM mesh. To run a simulation where
magnetic target is injected at some time though the implosion, the following procedure has
been adapted:

• Start the simulation with low density and pressure gas inside the cavity (to minimize
effect of the gas on the liner trajectory). Increase viscosity of the gas to damp waves
bouncing in the cavity to obtain a smooth velocity field.

• Stop simulation at the time of the magnetic target injection. Calculate magnetic field
for the target by finding Grad-Shafranov equilibrium using the “GradShafranovFoam”
solver.

• Restart the simulation and follow magnetic target compression.

It is worth noting, that in reality, there is no gas in the cavity prior to plasma injection,
and the gas velocity field is an artifact. Resetting gas velocity to zero at the time of
magnetic target injection, caused waves in the cavity because of discontinuity in the
velocity field. The best results have been achieved by restarting the simulation with the
velocity field as it has been obtained prior to injection of the target. The assumption here
is that the velocity field does not have a strong effect on the evolution of the magnetic
field. The good agreement between “mhdCompressibleInterFoam” solver (run with high
viscosity of the gas) and “layered VAC” (run as inviscid gas) provides some support for
this assumption.

A simulation for a numerical setup shown in Figure 14 has been carried out on a
uniform rectangular mesh with 1 mm size cells with simulation parameters listed in Table 2.
Geometry and parameters of the liquid liner and magnetic target are similar to those in
Section 3.1.3 (comparison between “mhdCompressibleInterFoam” and “layered” VAC),
albeit magnetic target is injected during the compression. Fixed value of ψ = 0 and a
zero gradient for F boundary conditions have been applied at all boundaries. Slip wall
boundary condition were set at internal baffles (yellow lines in Figure 14) and no slip wall
boundary condition was imposed at the solid shaft-gas boundary. Results for evolution of
the magnetic field during compression are shown in Figure 15 starting from the moment of
magnetic target injection at t = 4.1ms. Contours of the poloidal function ψ are shown in
the first column within the range 0 ≤ ψ ≤ 0.1 Wb/rad. Evolution of the toroidal function F
is shown in the second column for the range of 0 ≤ F ≤ 1.5 Tm. By following the evolution
of the ψ contours, it can be seen, that poloidal field diffuses into the liner and central shaft
as magnetic target gets compressed. From the plasma point of view, once a contour of ψ
touches the liner/wall, it is not considered to be part of plasma any longer, and one of the
ways to identify the plasma, is to consider the area limited by the last closed flux contour
inside the gas. Maximum value of ψ at gas-liquid/solid interfaces is an indicator of the
amount of flux lost by plasma during compression.
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By following the evolution of F contours, diffusion of the toroidal magnetic field
into the liquid liner and solid regions is observed. Electrical poloidal current is flowing
in the liner and solid regions where toroidal magnetic field is diffused. It is interesting
to note, that the toroidal magnetic field diffused into a bottom/top solid regions at the
early stages of the compression remains there, while the liquid liner continues to implode
(e.g., Figure 15f), such that the electrical current continues to flow in the solid and in the
thin layer at vicinity of the liquid liner-solid interface. Amplification of the toroidal flux
as it gets compressed is also seen in the figure. By calculating amount of toroidal flux
in the liner and solid regions, portion of the flux being diffused during compression can
be estimated.

A setup shown in Figure 15, can be further extended by imposing some magnetic
field configuration in the liner and solid regions prior to plasma injection. As an example,
a vertical uniform magnetic field that is fully soaked into the liner and solid regions is
now a starting point for the simulation. Initial distribution of the poloidal function ψ
corresponding to the uniform vertical field is then given by:

ψ(t = 0, r) = 0.5Bor2, (29)

where Bo is strength of the vertical magnetic field. As in the previous case, simulation is
first run until the inner surface of the liner reaches the outer radius of the injection opening.
Magnetic target is then calculated by solving the Grad–Shafranov equation for the gas
cavity domain. Boundary condition for the poloidal flux function is specified using poloidal
flux function field obtained in “mhdCompressibleFoam” simulation at the time of target
injection. Example of such a simulation is shown in Figure 16 starting from the moment of
plasma target injection. Geometry and parameters for the simulation are kept the same as
in the previous case (see Table 2) and the strength of initially imposed vertical magnetic
field is |Bo| = 0.1 T. The poloidal flux function ψ corresponding to the uniform vertical
magnetic field and that of magnetic target should be of opposite signs, i.e., for a positive
ψmax of the target there is a negative ψ (opposite direction) of the vertical field.

In Figure 16 the contours of the poloidal flux function and corresponding toroidal
function are shown in the left and right columns, similar to the Figure 15. Magnetic
target configuration at the moment of injection is shown in Figure 16a for the range of
−0.23 ≤ ψ ≤ 0.1 Wb/rad. Negative values of ψ correspond to the uniform vertical field
and ψ = 0.1 Wb/rad is equal to the initial ψmax of the magnetic target. The magnetic
plasma target is limited by the last closed ψ contour, such that the vertical magnetic field
provides a buffer between the target and inner surface of the liner. One can also see that
the vertical field remains frozen in the liner, such that magnetic field lines bend as liner
implodes, and, depending on the strength of the field, may deform the liner surface. For
the current set of parameters, a target remains separated from the liner surface because of a
buffer created by the vertical magnetic field throughout the entire compression. Evolution
of the toroidal field is similar to the case without vertical field, e.g., compare right columns
in Figures 15 and 16. In the future, different initial configurations of the poloidal field
obtained in the experiments can be used as a starting point for simulations to investigate
their effect on the liner dynamics and plasma compression characteristics.

Table 2. Case parameters for the setup including solid regions (see Figure 14).

Geometry

Shaft radius Rsha f t 0.15 m
Inner liner radius Rin 1.5 m
Outer liner radius Rout 2.11 m
Height of the liner H 2 m

Solid regions r < 0.9 m , r > 1.3 m, 2 m < z ≤ 3 m, −0.2 m < z ≤ 0 m
Injection opening 0.9 m ≤ r ≤ 1.3 m, 2 m < z ≤ 3 m
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Table 2. Cont.

Liquid liner (lithium)

Density ρlithium 500 kg/m3

Viscosity µlithium 3.645× 10−4 Pa
Magnetic diffusivity ηlithium 0.2 m2/s

EoS constant density
Pushing pressure pout 7× 106 Pa

Magnetic target

Initial pressure (uniform) ptarget 1× 104 Pa
Initial density (uniform) ρtarget 0.11 kg/m3

Viscosity µtarget 0.35 Pa s
Magnetic diffusivity

(constant) ηtarget 1 m2/s

Initial magnetic configuration—Grad-Shafranov equilibrium (injected in t = 4.1 ms)

Shaft current Ishaft 2 MA
Maximum poloidal flux (per

radian) ψmax 0.1 Tm2

Shaft current constant Fo 0.4 Tm

Simulation type

Laminar, iso-thermal, high target viscosity, constant magnetic diffusivity

(a) t = 4.1 ms, ψ contours (b) t = 4.1 ms, F contours

(c) t = 5.9 ms, ψ contours (d) t = 5.9 ms, F contours

Figure 15. Cont.
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(e) t = 8.05 ms, ψ contours (f) t = 8.05 ms, F contours

(g) t = 9.05 ms, ψ contours (h) t = 9.05 ms, F contours

Figure 15. Compression of the magnetic target injected at some point during the implosion (when inner
surface of the imploding liner reaches outer radius of the injector opening). Computational setup is
shown in Figure 14. Contours of the poloidal flux function ψ (0 ≤ ψ ≤ 0.1 Wb/rad) (left column) and
toroidal function F (0.4 ≤ F ≤ 1.5 Tm) (right column) are shown at several instances during compression
starting from the moment of magnetic target injection. Simulation parameters are listed in Table 2.

(a) t = 4.1 ms, ψ contours (b) t = 4.1 ms, F contours

Figure 16. Cont.
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(c) t = 5.9 ms, ψ contours (d) t = 5.9 ms, F contours

(e) t = 8.05 ms, ψ contours (f) t = 8.05 ms, F contours

(g) t = 9.05 ms, ψ contours (h) t = 9.05 ms, F contours

Figure 16. Compression of the magnetic target injected during implosion when inner liner surface reaches
outer radius of the injector opening. In this simulation a uniform vertical (poloidal) magnetic field is initially
present in the entire domain. From the start of the simulation and until the moment of magnetic target
injection, imploding liner compresses vacuum poloidal magnetic field. Contours of the poloidal flux function
ψ (−0.23 ≤ ψ ≤ 0.1 Wb/rad) (left column) and toroidal function F (0.4 ≤ F ≤ 1.5 T m) (right column)
are shown at several instances during compression starting from the moment of magnetic target injection.
Initially fully soaked vertical magnetic field is |Bo| = 0.1 T. Simulation parameters are listed in Table 2.
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currents
induced

Figure 17. A sketch of a computational setup containing a rotating liner and stationary conductive
solid regions. This numerical setup extends the one in Figure 14 by adding rotation of the liner. When
poloidal field is initially present, induced poloidal currents are generated if stationary and rotating
parts are in electrical contact. In this setup, top and bottom surfaces of the liner are assumed to be in
an electrical contact with solid structure. Induced currents generated around the contact surface are
shown by the contours of the toroidal function F. Uniform vertical magnetic field is shown by the
contours of poloidal function ψ (vertical straight lines).

3.3. Including Rotation of the Liquid Liner into Simulations

In all test cases considered in the previous sections, rotation of the liquid metal liner
has not been included into simulations. In the real compression system, however, the liquid
liner is rotating at a certain speed prior to implosion. In fact, the initial cylindrical cavity is
formed due to the rotation of the liquid metal. In addition, sufficient rotation of the liner
helps to stabilize its inner surface against Rayleigh-Taylor instability that might potentially
develop deep into compression [11]. To extend the previous test case to encounter for the
rotation of the liner, it is important to correctly specify starting conditions for the simulation
based on what is expected to happen in the real system. Going back to the numerical
setup in Figure 14, but with an initially fully soaked vertical uniform magnetic field and
a rotating liner, we now have stationary and rotating electrically conductive parts in the
system. Therefore, if those parts are in electric contact, toroidal field and accompanied
induced currents are to be generated in the system prior to the implosion (due to the last
term in Equation (3)). Example of such currents is shown in Figure 17. Here it is assumed
that a rotating liquid liner has electric contacts with top and bottom stationary regions
prior to the liner implosion. As such, there is a discontinuity in rotational speed Ω at the
interfaces. In the case of soaked poloidal field this results in generation of the toroidal field
in the vicinity of the interfaces. Developed toroidal field configuration also depends on the
boundary conditions. In the example shown in Figure 17, it was assumed that the value of
toroidal function is zero at the solid region boundaries, i.e., it is an insulator. To obtain the
result shown in Figure 17, a steady state simulation has been run with imposed constant
rotation speed of the liner. In general, this type of simulations is required to estimate torque
etc. due to the induced currents and to generate initial magnetic field configuration in
the system. It is worth noting, that the generated toroidal field is of the opposite signs in
vicinity of the upper and lower interfaces between rotating liner and stationary solids. This
means that effect of the induced currents on the liner will be different near the top and
bottom of the liner.

Example of compression simulation that includes both rotating liner and stationary
solid regions is shown in the Figure 18. In this simulation, an initially fully soaked vertical
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magnetic field with strength |Bo| = 0.05 T is compressed by the liquid liner initially rotating
at Ω = 40 rad/s. Here only compression of a vacuum magnetic field is considered, i.e.,
no magnetic target is injected at any stage of the compression. To represent vacuum,
magnetic diffusivity in the cavity (and injection path) has been set to ηvacuum = 10 m2/s.
All other parameters and geometry remain the same as in the previously considered non-
rotating liner (see Table 2). Two different scenarios are considered. In the first one, left
column of the figure (Figure 18a,c,e,g), the rotating liner and top and bottom stationary
regions are assumed to be in electrical contact prior to the implosion (situation previously
discussed and shown in Figure 17), whereas, in the second one, right column of the figure
(Figure 18b,d,f,h), rotating and stationary parts are not in an electrical contact initially,
but they come into contact, once the liner starts to implode. Contours of both poloidal
flux function ψ and toroidal function F are shown in Figure 18. Starting conditions for
both simulations are shown correspondingly in Figure 18a,b. Uniform vertical field is
shown by the contours of the poloidal function ψ (straight vertical lines) and is identical
in both simulations. As previously discussed, a toroidal magnetic field (induced currents)
is initially present in the first scenario (Figure 18a), whereas, in the second scenario no
induced currents are initially present (Figure 18b).

First of all, it is worth noting that for the simulations presented in Figure 18, implosion
is notably slower than in the previously considered cases (e.g., Figures 15 and 16), despite
a similar set of parameters. This difference is due to the initial rotation of the liner, as
some part of the pushing pressure (that is kept identical in all cases) goes to counter the
rotation, and, for the rotation speed of Ω = 40 rad/s, this part is not negligible. Several
observations can be made inspecting Figure 18: (i) Both toroidal and poloidal components of
the magnetic field initially present in the liner, move with the liner, leading to high gradients
in the vicinity of the interfaces between moving and stationary parts. Those gradients, in
turn, are directly related to the Lorentz force acting on the liner. This might have a noticeable
effect on the rotational speed of the liner near the interfaces. If to zoom in onto top corner
of the inner liner surface for both simulations (compare for example Figure 18e,f), it can
be seen that the position of this corner is not exactly the same. This can only be due to
the different distribution of induced currents, as everything else is identical between the
two simulations. (ii) Depending on the assumptions made with regard to the electrical
contact between rotating liner and stationary parts, liner surface shape during the implosion
might be noticeably different, and the effect is more pronounced with an increase in rotation
speed and strength of the initial poloidal field. (iii) Shape of the liner deviates from initial
cylindrical shape deep into compression (e.g., Figure 18g), therefore if the exact shape of the
liner is of importance, initial magnetic configuration needs to be treated with care.

3.4. Example of Magnetic Target Compression in General Fusion Inc. Fusion Demonstration Plant
(FDP) like Geometry

In this section compression simulation of the magnetic target in General Fusion FDP
like geometry is briefly presented. The methodology is similar to that discussed in the
previous sections; the liner starts to implode (with or without initially soaked magnetic field)
and when its inner surface reaches the designated position, magnetic target is injected into
the cavity and subsequently compressed. In FDP type compression, an initially cylindrical
cavity evolves towards a spherical shape during the implosion. Almost all of the liquid
metal required to form the imploding liner is initially stored in the bores arranged into a
number of rows in the vertical direction (see Figure 1, [1]). The entire vessel is rotating
prior to the implosion. Highly pressurized gas pushes on the liquid in the bores. This
forces liquid metal to flow out of the bores into the chamber forming the rotating liquid
liner. Shaping of the liner is achieved by varying pressurized gas pushing profiles applied
to each row of the bores in such a manner, that the initially cylindrical inner surface of the
liner transforms towards a spherical one as liner implodes.
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(a) t = 0 ms (b) t = 0 ms

(c) t = 3 ms (d) t = 3 ms

(e) t = 7.5 ms (f) t = 7.5 ms

Figure 18. Cont.
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(g) t = 10.5 ms (h) t = 10.5 ms

Figure 18. Compression of the initially fully soaked uniform vertical (poloidal) magnetic field in
vacuum by the imploding rotating liner. Left column: rotating liner is in electric contact with
stationary parts prior to the implosion (initial magnetic configuration corresponds to the one in
Figure 17). Right column: no electric contact between the moving and stationary parts prior to
the implosion. Geometry and liner parameters are identical to those in Table 2. Other parameters:
ηvacuum = 10 m2/s, |Bo| = 0.05 T, Ω = 40 rad/s.

A simplified example of such a compression is shown in Figure 19, starting from the
time of target injection. Solid regions and injection opening are omitted for simplicity, and
the target is injected at the moment when the upper corner of the inner surface of the liner
reaches radial position of r = 1.3 m (initial radius of a cylindrical inner surface for this case
is r = 1.5 m). Simulations have been performed for both without and with initially fully
soaked vertical field. Initial conditions for the target compression simulations are shown in
Figure 19a for |Bo| = 0 and Figure 19b for |Bo| = 0.05 T. Here it is assumed that a uniform
vertical field is imposed at the moment of target injection, therefore, vertical field contours
are the straight vertical lines to begin with. It can be seen that the inner surface of the liner
deviates from the cylindrical shape at the moment of injection because of different pressure
pulses applied at different bores, i.e., higher pressure near the top and bottom and lower
pressure with a slight time delay at the center. Magnetic target configuration has been
calculated by solving Grad-Shafranov equation for the curved shape of the cavity. As in the
previous tests, magnetic configuration has been defined by Equation (24), with Fo = 0.4 T m
(Ishaft = 2 MA) and ψmax = 0.1 Wb/rad. Injected magnetic target are shown by ψ contours
with the last closed ψ surface emphasized with the green color. Volume inside the green
line is what is considered to be plasma. Initial rotational speed of the liner has been set to
Ω = 34 rad/s with liner properties set to that of lithium. Generation of toroidal field in
the liner due to contact between rotating liner and stationary regions, however, has been
omitted in those simulations. Constant values of magnetic diffusivity have been used for
gas and liquid metal phases (ηgas = 1 m2/s, ηlithium = 0.2 m2/s). Simulations have been
run using uniform 2 mm resolution mesh. Boundary conditions are the same as in the
previous cases. Following target compression in FDP geometry presented in Figure 19, one
can observe shaping of the liner’s inner surface towards a more spherical one during
implosion, trapping the plasma target in the center of the cavity. Following the last
closed flux surface denoted by the green line, it can be seen that shape of the plasma
target can be manipulated to some extent by imposing uniform vertical field prior to
the compression. Wiggles developed on the contours of the ψ associated with uniform
vertical magnetic field in the liner (middle column), are due to boundary conditions at
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the bores walls. Initially vertical lines are deformed as ψ field values remain frozen at
the bore walls, while liquid is pushed along the bore. The next step will be to extend
the current setup to include part of surrounding electrically conducting structure and
simulate more realistic configurations.

(a) t = 7 ms (b) t = 7 ms

(c) t = 10 ms (d) t = 10 ms

(e) t = 11.8 ms (f) t = 11.8 ms

Figure 19. Cont.
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(g) t = 12.2 ms (h) t = 12.2 ms

Figure 19. Example of magnetic target compression in FDP like geometry. Magnetic target is injected
at some point during the liner implosion. In this simulation pushing gas pressure profiles vary in
the vertical direction, such that initially cylindrical liner surface becomes more like a spherical one
at late stages of the compression. Left column: compression of the target with no initial magnetic
field present, Right column: compression of the target when uniform vertical field is initially present
in the entire domain (|Bo| = 0.05 T). Magnetic target is shown by the contours of the poloidal flux
function ψ. Cyan solid line marks last closed flux surface for the magnetic target during compression.

4. Summary and Conclusions

An “mhdCompressibleInterFoam” solver for simulating electrically conducting com-
pressible and immiscible fluids using the Volume of Fluid (VOF) has been developed
based on the “compressibleInterFoam” solver within OpenFOAM. The new code has been
verified using several reference test cases for which analytical/reduced order solutions
exist and also by comparing results with those obtained with VAC (Versatile Advection
Code) for a more complex problem of compressing magnetic target by an imploding liquid
metal liner in a cylindrical geometry. Methodology to include stationary regions to mimic
parts of conducting solid structure surrounding liquid metal liners has been proposed and
applied to a simplified setup relevant to the MTF scheme for FDP developed by General
Fusion Inc. So far the new solver appears to be robust and the results are encouraging.

The next step is to apply “mhdCompressibleInterFoam” to a wide range of relevant
problems which include conducting fluids and solids to better understand solver capabil-
ities and limitations. The main purpose of this solver is to bridge the gap between pure
hydrodynamic simulations of liner dynamics and detailed simulations of plasma evolution
which are conducted using dedicated plasma codes. One of the crucial assumptions here,
that evolution of magnetic fields is not overly sensitive to the fine details of plasma evolu-
tion. Preliminary data, coming from comparison between “mhdCompressibleInterFoam”
results and those produced with VAC code using a much more sophisticated plasma model,
indicates that it is likely to be the case (at least for some range of parameters). If the
assumption holds, then to study interaction of magnetic fields with conducting liquid and
solid using a simplified plasma model is justified.

Stability of the inner surface of the liner during implosion is also of great importance
for the overall success of MTF scheme in pursuit by General Fusion. Hydrodynamic
interface instabilities and means of their suppression have been extensively studied in
General Fusion by combination of numerical simulations and linear stability theory. We are
optimistic that with our new “mhdCompressibleInterFoam” solver some of the effects of
the magnetic field on the stability of the interface can be studied (for the case of n = 0 mode).
Unfortunately, n = 1 and higher modes instabilities of the liner surface that might develop
because of 3D plasma instabilities are out of reach for the current version of the code.

The main limitations of the current solver are: (i) solver can only be applied to the
axi-symmetric problems. Therefore, investigation of any three-dimensional instabilities (in
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plasma or liner surface) is not possible for the time being; (ii) only simplified magnetic target
model has been implemented and tested. As such, detailed plasma evolution characteristics
(such as temperature) can not be simulated at present; (iii) VOF approach, as it is currently
implemented in OpenFOAM, is numerically difficult for high density ratios between fluids.
This puts a limitation on the kind of plasma that can potentially be simulated. For example,
simulations of low density plasma are likely to be out of reach even if more complex plasma
models are implemented.

With respect to the future solver development, an implementation of more sophisti-
cated plasma models is something we will be investigating. Extension of the solver to full
3D is also being considered.
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Appendix A. In-House 1D Code for Dynamics of Imploding Cylindrical Liner
Compressing Vacuum Magnetic Fields

Here we present the equations of the 1D code. We consider the axisymmetric motion
of the cylindrical shell made of incompressible fluid with density ρ.

The radial component of Navier-Stokes equation in axisymmetric case is:

ρ(v̇r + vrv′r) = −p′ + ρ
v2

φ

r
+ fmag, (A1)

where dot above symbol means the partial time derivative ∂/∂t, prime means radial
derivative ∂/∂r, fmag is the volumetric force due to magnetic fields (Lorentz force). The
radial velocity profile of incompressible fluid is

vr(t, r) =
Ṙin(t)Rin(t)

r
, (A2)

where Rin(t) is the inner radius of the fluid shell at a given time (compression trajectory).
Substituting Equation (A2) into Equation (A1) and integrating it over the radial extent of
the shell, we obtain equation for compression trajectory:

ρ(R̈inRin + Ṙ2
in) ln

Rout

Rin
+

ρ

2
Ṙ2

in

(
R2

in
R2

out
− 1
)
= pin − pout + pc f + pmag, (A3)
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where pin is the gas pressures inside cavity (it changes in time according to adiabatic ideal
gas law), pout is the driving pressure outside the shell (it is a prescribed function of time),
pc f is the centrifugal pressure and pmag is the magnetic pressure. The outer shell radius
Rout(t) is related to the inner radius Rin(t) by conservation of mass:

R2
out(t)− R2

in(t) = R2
out(0)− R2

in(0). (A4)

The azimuthal component of Navier-Stokes equation in axisymmetric case can be
written in the form, which reflects conservation of angular momentum:

(rvφ )̇ + vr(rvφ)
′ = 0. (A5)

Assuming that the shell rotates initially as a rigid body with angular velocity Ω0, we
can solve Equation (A5):

vφ(t, r) = Ω0r +
Ω0

r

(
R2

in(0)− R2
in(t)

)
. (A6)

Using this we can obtain analytical expression for centrifugal pressure:

pc f =

Rout∫
Rin

ρ
v2

φ

r
dr =ρ

Ω2
0

2

[
R2

out − R2
in + 2

(
R2

in(0)− R2
in

)
ln

R2
out

R2
in

+

+

(
R2

in(0)− R2
in

)2( 1
R2

in
− 1

R2
out

)]
.

(A7)

The magnetic field is assumed to have only toroidal (azimuthal) and vertical (axial) components:

B =
F
r

eφ + Bzez = Φ′eφ +
ψ′

r
ez, (A8)

where F is the toroidal field function (poloidal current stream function), Φ is the toroidal
flux per height, ψ is the poloidal flux per radian. The magnetic pressure follows from the
radial component of the Lorentz volumetric force:

pmag =

Rout∫
Rin

1
µ0

[
(∇× B)× B

]
rdr =

1
2µ0

(
B2

z,in − B2
z,out −

Rout∫
Rin

(F2)′

r2 dr
)

. (A9)

The time evolution of the field components inside the shell is derived from MHD
induction equation and has the form of resistive diffusion equations for corresponding fluxes:

dΦ
dt

= η
1
r
(rΦ′)′, (A10)

dψ

dt
= ηr

(
ψ′

r

)′
. (A11)

Note that time derivatives here are the full material derivatives, i.e., they are taken in
the reference frame moving with fluid parcells (Lagrangian description). For the perfectly
conducting fluid η = 0 and Equations (A10) and (A11) reflect the frozen-in condition for
the magnetic field (magnetic fluxes).

Equation for radial compression trajectory (A1) with pressures given by (A7) and (A9),
along with dynamics of field fluxes (A10) and (A11) constitute the basis for our 1D numeri-
cal scheme.
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